
Consistency of Probabilistic Classifier Trees

Krzysztof Dembczyński1(B), Wojciech Kot�lowski1, Willem Waegeman2,
Róbert Busa-Fekete3, and Eyke Hüllermeier3

1 Poznan University of Technology, Poznań, Poland
{kdembczynski,wkotlowski}@cs.put.poznan.pl

2 Ghent University, Ghent, Belgium
willem.waegeman@ugent.be

3 Paderborn University, Paderborn, Germany
{busarobi,eyke}@upb.de

Abstract. Label tree classifiers are commonly used for efficient multi-
class and multi-label classification. They represent a predictive model in
the form of a tree-like hierarchy of (internal) classifiers, each of which
is trained on a simpler (often binary) subproblem, and predictions are
made by (greedily) following these classifiers’ decisions from the root
to a leaf of the tree. Unfortunately, this approach does normally not
assure consistency for different losses on the original prediction task,
even if the internal classifiers are consistent for their subtask. In this
paper, we thoroughly analyze a class of methods referred to as proba-
bilistic classifier trees (PCTs). Thanks to training probabilistic classifiers
at internal nodes of the hierarchy, these methods allow for searching the
tree-structure in a more sophisticated manner, thereby producing pre-
dictions of a less greedy nature. Our main result is a regret bound for 0/1
loss, which can easily be extended to ranking-based losses. In this regard,
PCTs nicely complement a related approach called filter trees (FTs), and
can indeed be seen as a natural alternative thereof. We compare the two
approaches both theoretically and empirically.

1 Introduction

Multi-class and multi-label classification problems are nowadays characterized
not only by large sample sizes and feature spaces, but also by a large number of
labels. In application fields like image classification [12], text classification [8],
online advertising [3], and video recommendation [23], it is not uncommon to
deal with tens or hundreds of thousands [11], or even millions of labels [20].

Label tree classifiers belong to the most efficient approaches for problems at
this scale [2]. In this approach, a solution to the original problem is represented
in the form of a hierarchy of classifiers, each of which is trained on a simpler
subproblem. A prediction for a new example is then derived from the predictions
of these (internal) classifiers, each of which corresponds to a node in the tree-like
hierarchical structure; typically, each label in the original classification problem
is uniquely represented by a path from the root to a leaf of that tree.

c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 511–526, 2016.
DOI: 10.1007/978-3-319-46227-1 32

512 K. Dembczyński et al.

However, combining conventional training of the internal classifiers with
greedy inference, namely, following a single root-to-leaf path in the tree, does not
guarantee consistency of this approach [4,10]. Thus, even perfect (zero regret)
classifiers in each node of the tree do not imply a perfect (global) classification
of new examples. There are two ways to remedy this problem: adjusting training
and adjusting inference. The first idea is to modify the training of the inter-
nal classifiers so as to assure the consistency of greedy inference later on. The
second approach, while training more conventionally, guarantees consistency by
searching the tree-structure for an optimal prediction in a less greedy way.

The first idea is realized by the filter tree (FT) approach [4]. By construct-
ing label trees in a bottom-up manner, an internal classifier can anticipate the
decisions of its successor classifiers, and exploit this information to properly
condition its own behavior to these classifiers. In the case of 0/1 loss, this is
accomplished thanks to a specific filter technique, which removes examples from
the training data on which successor classifiers made incorrect predictions. For
this training procedure, a regret bound connecting the global performance with
the average performance of node classifiers can be proved [4]. This bound can
be generalized from 0/1 loss to any cost-based loss function, albeit at the price
of a more expensive training procedure; ranking-based losses, which require the
ordering of labels, cannot be tackled by FTs. Since inference can be done in
a greedy way, the complexity of prediction is only logarithmic in the number
of labels. More recently, the training of FTs has been further improved in the
context of multi-label classification [17].

The second approach ensures consistency thanks to more sophisticated search
of label trees in the inference phase [10,16,18]. To this end, probabilistic classi-
fiers in each node of the tree are required, which allow for assessing the useful-
ness of different search directions. Label trees with probabilistic classifiers have
already been considered in multi-class classification under the name of condi-
tional probability trees [3] and nested dichotomies [14]. In multi-label classifica-
tion, a similar approach has been referred to as probabilistic classifier chains [9].
The same concept also appears in neural networks and natural language process-
ing under the name of hierarchical softmax [19]. In the following we unify all these
approaches and jointly refer to them as probabilistic classifier trees (PCTs).

We restrict to binary label trees, which are especially natural for multi-label
classification; here, each level of the binary tree directly corresponds to one label.
Higher order trees (including nodes with more than two children) are often used
in multi-class classification. This usually improves the predictive performance at
the cost of an increase in prediction time. We also assume the tree structure to be
given beforehand, or to have been induced using any of the methods developed for
this purpose [2,3,23], and focus on the (orthogonal) problem of how training and
prediction should be performed to ensure consistency (given the tree structure).

The main contribution of the paper is a regret bound for PCT in the case of
0/1 loss, which is expressed in terms of the search error and the Kullback-Leibler
(KL) divergence (i.e., log-loss regret) of the internal classifiers. The regret bound
implies the consistency of the method, a good “sanity check” for any learning

Consistency of Probabilistic Classifier Trees 513

algorithm. Its form quantifies a trade-off between the computational complexity
and the statistical accuracy. Moreover, we show that under log-loss we do not
theoretically pay any price in terms of performance for representing the joint
distribution over classes by a tree structure. Our regret analysis significantly
extends and improves the results of [3] for the estimation error of conditional
probability trees expressed in terms of squared error loss. We also point out that
the bound can be further generalized to ranking-based losses, e.g., recall at k.
We also generalize the tree search algorithms of [10,18] to get an anytime A∗-like
algorithm and study its theoretical guarantees, extending the previous results
given in [10]. Our theoretical contributions are complemented by a comparison
of PCTs with filter trees, both conceptually and experimentally.

The paper is organized as follows. We formally state the problem in Sect. 2.
Section 3 describes PCTs and gives a theoretical analysis of the generalized tree
search algorithm. In Sect. 4, we prove the regret bound for 0/1 loss. Section 5
compares PCTs with other label tree approaches, particularly with conditional
probability and filter trees. Section 6 discusses the use of PCTs for predicting
top-k labels and its extension to multi-label classification. Section 7 presents
experimental results, prior to concluding the paper in Sect. 8.

2 Problem Statement

We formalize our problem in the setting of multi-class classification. Let (x, y)
be an example coming from a probability distribution P (X = x, Y = y) (later
denoted P (x, y)) on X × Y, where x ∈ X = R

d and y ∈ Y = {1, . . . , m}.
A classifier h predicts a label ŷ = h(x) ∈ Y for each x ∈ X . The prediction
accuracy of h can be measured in terms of 0/1 loss:1

�0/1(y, h(x)) = �y �= h(x)�

We are interested in minimizing the expected loss, also referred to as the risk :

L0/1(h) = E(x,y)∼P

[
�0/1(y, h(x))

]
=

∫

X×Y
�y �= h(x)� dP (x, y)

The Bayes classifier
h∗ = arg min

h
L0/1(h)

minimizes the risk among all possible classifiers. While h∗ may not be unique
in general, the risk of h∗, denoted L∗

0/1, is unique, and is called the Bayes risk.
Decomposing the risk over classes, i.e., writing L0/1(h) in the form

L0/1(h) =
∫

X

(∑

y∈Y
�y �= h(x)�P (y|x)

︸ ︷︷ ︸
=1−P (h(x)|x)

)
dP (x) ,

1 We use �P � to denote a number that is 1 if condition P is satisfied, and 0 otherwise.

514 K. Dembczyński et al.

y0

y1 = (0)

y = 1

y = (0, 0)

0

y = 2

y = (0, 1)

1

0

y1 = (1)

y = 3

y = (1, 0)

0

y = 4

y = (1, 1)

1

1

y0

y = 1

y = (0)

0

y1 = (1)

y2 = (1, 0)

y = 3

y = (1, 0, 0)

0

y = 4

y = (1, 0, 1)

1

0

y = 4

y = (1, 1)

1

1

Fig. 1. Different binary codes in multi-class classification.

reveals that h∗ minimizes risk in a pointwise manner, i.e., for every x,

h∗(x) = arg min
y∈Y

{1 − P (y|x)} = arg max
y∈Y

P (y |x) .

Given a classifier h, the regret of h is defined as

reg0/1(h) = L0/1(h) − L∗
0/1 =

∫

X

(
P (h∗(x)|x) − P (h(x)|x)

)
dP (x) . (1)

The regret quantifies the suboptimality of h compared to the optimal classifier
h∗. The goal is to train a classifier h with a small regret, ideally equal to zero.

In the following, we assume h to be represented as a label tree classifier. To
this end, we encode the labels {1, . . . , m} using a prefix code. Any such code can
be represented by a tree with 0/1 splits. Each path from the root to a leaf node
then corresponds to a code word. Recall that codes of fixed length are also prefix
codes. Figure 1 shows two examples of coding trees for multi-class classification
with 4 classes. Under the coding, we represent each label y by a binary vector
y = (y1, . . . , yl), where l is the maximum length of the code. The set of all code
words we denote by C. As another special case, consider the problem of multi-
label (instead of multi-class) classification, where the goal is to predict the set of
labels assigned to a given instance x. Such a set can be represented by a binary
vector y = (y1, . . . , ym), which in turn can be used as a prefix code.

In the label tree approach, we put a binary classifier in each non-leaf node of
the tree. An internal node can be uniquely identified by the partial code word
yi = (y1, . . . , yi). We denote the root node by y0, which is an empty vector
(without any elements). The final prediction is determined by a sequence of
decisions of internal classifiers. In the next section, we present a specific instance
of the label tree approach that uses probabilistic classifiers in internal nodes of
the tree.

3 Probabilistic Classifier Trees

Probabilistic classifier trees (PCTs) are designed to estimate probabilities
P (y |x) by following a path from the root to a leaf node, which corresponds

Consistency of Probabilistic Classifier Trees 515

to a code word y = (y1, . . . , yl) assigned to label y ∈ Y. Recalling the chain rule
of probability, the process corresponds to computing

P (y |x) = P (y |x) =
l∏

i=1

P (yi|yi−1,x) , (2)

where P (yi|yi−1,x) are probabilities of yi ∈ {0, 1}, estimated in non-leaf nodes
yi−1. In the next two subsections, training and inference (classification of new
examples) for PCT will be discussed in more detail.

3.1 Training

Training of PCT naturally decomposes into learning problems over non-leaf
nodes of the tree. In each node yi−1, the task is to train a probabilistic classifier
(e.g., logistic regression) to estimate P (yi|yi−1,x).

Looking at PCTs as a reduction technique, it is worth mentioning that its
training complexity could be much lower than that of the 1-vs-all approach, since
each example (x, y) is used in only l instead of m binary problems, where l is the
height of the tree (i.e., l = �log2 m� if the tree is balanced). To further improve
the training time complexity, one can use online learning methods, such as sto-
chastic gradient descent [5]. Moreover, internal classifiers in PCT can be trained
independently of each other, thereby allowing for a massive parallelization of the
training procedure. Let us also remark that the learning process can be defined
as a single task; this is the so-called one-classifier trick [4], in which a node indi-
cator is used as an additional feature. Alternatively, one can use a separate task
for each level of the tree. This approach is used in multi-label classification, as
will be discussed in Sect. 6.

3.2 Inference

The classification procedure in PCTs is more involved. To begin with, note that
a probability estimate Q(y |x) for any label y (given instance x) is obtained
quite easily, simply by following the corresponding path in the tree and applying
the chain rule:

Q(y |x) = Q(y |x) =
l∏

i=1

Q(yi|yi−1,x)

However, being interested in minimization of 0/1 loss, we actually seek to find

ŷ∗ = arg max
y∈C

Q(y |x) , (3)

preferably without computing the probability of each label first. A simple idea
is to follow a single path in the tree, starting in the root and always choosing
the branch yi ∈ {0, 1} for which Q(yi|yi−1,x) > 0.5. However, while being
efficient, this approach is not guaranteed to find the optimal solution [4,10].

516 K. Dembczyński et al.

Algorithm 1. Inference with ε-approximate A∗

1: input: x (test example)
2: priority list Q ← {y0} (contains root node initially)
3: priority list K ← {} (contains nodes whose both children were not inserted to Q)
4: ε ← 2−c with 1 ≤ c ≤ m
5: while Q �= ∅ do
6: v ← pop first element in Q
7: if v is a leaf then delete all elements in K and break the while loop
8: v1 ← (v, 1) (left child of v) and v0 ← (v, 0) (right child of v)
9: compute E(v1 |x) and E(v0 |x) recursively from E(v |x) using Eq. (4)

10: if E(v1 |x) ≥ ε then add (v1, E(v1 |x)) to Q sorted in descending order of E
11: if E(v0 |x) ≥ ε then add (v0, E(v0 |x)) to Q sorted in descending order of E
12: if v1 and v0 are not inserted to Q then add v to K in descending order of E

13: θ ← 0
14: while K �= ∅ do
15: v′ ← pop first element in K
16: v′ ← apply greedy search downward on v′

17: if Q(v′ |x) ≥ θ then v ← v′ and θ ← Q(v′ |x)

18: return hε(x) = ŷε = v

Better inference methods have been presented in recent years, based on search
algorithms such as uniform-cost search [10], beam search [16], and A∗ [18].

All three approaches allow for trading complexity against optimality, and
hence for using PCTs in an anytime fashion, thanks to a hyper-parameter ε. This
parameter controls the degree of optimality, i.e., of finding the true loss minimizer
(3), as a function of the runtime (it finds a solution ŷε the conditional probability
Q(ŷε |x) of which is not much worse than the probability of the optimal solution
ŷ∗ defined in Eq. 3). In the analysis that follows, we will use this property to
give a formal bound on the error made by such inference algorithms, with a
particular focus on uniform-cost and A∗ search. An extension of the analysis to
beam search is straightforward and omitted due to lack of space. The pseudo
code in Algorithm 1 unifies the approaches of [10,18]. This general algorithm,
which we denote hε(x), is a variant of A∗. It fulfills the anytime property, i.e.,
the search can be stopped at any time and the algorithm will deliver a valid
though possibly suboptimal solution.

Recall that each node in the tree is uniquely defined by a path from the root
to this node, i.e., by the partial code word yi. We use v to denote the node
currently visited by the algorithm, and associate with this node the following
value:

E(v |x) = E(yi |x) = Q(yi |x) × H(yi |x)

This value can be interpreted as an approximation of the maximal value of
Q(y |x), in which Q(yi |x) is the part of the path that can be computed when
moving from the root to node v, and H(yi |x) is a heuristic that optimistically
guesses the part of the path that has not yet been computed (in the considered
case, E(yi |x) has to overestimate or to be the same as the maximal value of

Consistency of Probabilistic Classifier Trees 517

Q(y |x)). Q(yi |x) can be computed recursively as follows: Q(y0 |x) = 1 and

Q(yi |x) = Q(yi = 1|yi−1,x) × Q(yi−1 |x) . (4)

In [18], a procedure for computing H(yi |x) is proposed for the specific case of
logistic regression as a base learner, whereas the heuristic is simply H(yi |x) = 1
in uniform-cost search used in [10]. The former approach has the advantage of
providing a more accurate estimation of maximal Q(y |x), albeit with an addi-
tional computing cost, while the latter approach makes a more rough estimation
without any additional cost. Interestingly, as shown in experiments in [18], the
former approach is still more expensive in terms of the total search cost than
the latter.

In a nutshell, Algorithm 1 starts from the root of the label tree, which is
the single element of priority list Q, sorted in descending order of E. In every
iteration, the top element of the list is popped and the children v0 and v1 of
the corresponding node v are visited. E(yi |x) is then recursively computed for
the children of node v, which are added to the list if this quantity exceeds the
threshold ε = 2−c with 1 ≤ c ≤ l, where l is the maximal length of the path
in the tree. Basically, they are inserted into the list at the appropriate position,
so that the order imposed by E(yi |x) is respected. The first while-loop of the
algorithm stops in two situations: (i) when the element popped from the list Q
corresponds to a leaf of the tree, or (ii) when the list Q is empty. The label
corresponding to the leaf is then returned in the former case, while in the latter
case, inference by greedy search is applied to define a path from all nodes from
the list K. This list, also sorted in descending order of E, contains nodes for
which none of their children has been added to Q. The use of list K ensures that
by decreasing the value of ε, the algorithm will always find a solution that is not
worse than a solution that would be found with greater ε.

Algorithm 1 enjoys strong theoretical guarantees. Assuming the cost for com-
puting H(yi |x) to be constant, the following result immediately follows from a
theorem proved in [10].

Theorem 1. Let 1 ≤ c ≤ l. Algorithm 1 with ε = 2−c needs at most O(lε−1)
iterations to find a prediction hε(x) = ŷε such that

Q(ŷ∗ |x) − Q(ŷε |x) ≤ ε − 2−l .

From the theorem, we see that the quality of the solution found by the algorithm
improves with the length of the running time. Consequently, the algorithm will
always find the optimal solution, provided its probability mass is greater than
ε. Reformulating the above, we can say that the algorithm finds the solution in
time linear in 1/qmax, where qmax is the probability mass of the best solution in
the estimated distribution Q. For problems with low noise (high values of qmax),
this method should work very fast.

The theorem also implies that the greedy search, which corresponds to the
algorithm with ε = 0.5, has very poor guarantees that approach the bound of
0.5 with m → ∞.

518 K. Dembczyński et al.

4 Regret Bounds for PCT

In this section, we are concerned with the generalization ability of the PCT
classifier, measured by means of the regret (1). Assume for a moment that Q(·|x),
the label distribution produced by PCT, coincides with the true conditional
distribution P (·|x) for every x. Then, if the ε-approximate inference algorithm
is used for classification, Theorem 1 implies the regret of the PCT classifier is
at most ε, i.e., the expected classification error of PCT is at most ε larger than
the expected classification error of the Bayes classifier.

It is, however, unrealistic to assume that PCT is able to perfectly match the
true data distribution, hence Q(·|x) and P (·|x) will differ in general. Thus, the
question arises whether the expected classification error of PCT is still not much
worse than the expected classification error of the Bayes classifier if Q(·|x) and
P (·|x) do not coincide, but are close to each other in some sense. This section
presents an affirmative answer to this question, delivering a regret bound on
the classification error that takes into account the predictive performance of the
internal classifiers. More precisely, we bound the PCT regret for 0/1 loss in terms
of the difference between Q and P , quantified in terms of log-loss regret.

We start with a general definition of the log-loss. Consider a problem of
estimating a probability distribution on some outcome space S. The log-loss of
probability estimate Q(·) on S when the observed outcome is y ∈ S is given by

�log(y,Q) = − log Q(y) .

The log-loss is by far the most popular measure for quantifying the accuracy
of probabilistic predictions, and plays an important role in information theory,
data compression, and statistics [7] (we briefly analyze the other loss function,
squared loss, in Sect. 5). The log-loss risk is the expected log-loss of Q(·):

Llog(Q) = Ey∼P [�log(y,Q)] ,

where P (·) is the true distribution of y. The log-loss is a strictly proper loss,
which means that the unique minimizer of the risk is achieved at Q(·) ≡ P (·)
(see, e.g., [21]). We thus define the log-loss regret as:

reglog(Q) = Llog(Q) − Llog(P) = Ey∼P

[
log

P (y)
Q(y)

]
= D(P‖Q),

where D(·‖·) is the Kullback-Leibler (KL) divergence.
We now turn back to PCTs. Let us first fix an instance x ∈ X and consider

the distribution over code words y ∈ C. There are two ways in which log-loss
can be used in this setting:

– To measure the quality of the estimate of the joint distribution of labels
given x, Q(y|x), i.e., the outcome space is S = C, and the log-loss is
�log(y, Q(·|x)) = − log Q(y|x). The log-loss regret is then the KL divergence
between true joint conditional distribution P (y|x) and its estimate Q(y|x),
reglog(Q(·|x)) = D(P (·|x)‖Q(·|x)).

Consistency of Probabilistic Classifier Trees 519

– To measure the quality of individual classifiers in each node of the tree.
Given a node yi−1 = (y1, . . . , yi−1), the probability estimate for label yi ∈
{0, 1} at this node is Q(·|yi−1,x). Thus, the outcome space is S = {0, 1},
and �log(yi, Q(·|yi−1,x)) = − log Q(yi|yi−1,x). The log-loss regret is then
reglog(Q(·|yi−1,x)) = D(P (·|yi−1,x)‖Q(·|yi−1,x)).

Both ways described above turn out to be equivalent. Indeed, we have

�log(y, Q(·|x)) = − log Q(y|x) =
l∑

i=1

− log Q(yi|yi−1,x)

=
l∑

i=1

�log(yi, Q(·|yi−1,x)) ,

so that the log-loss of the joint distribution is equal to the sum of log-losses of
individual node classifiers along the path from the root to leaf y. Similarly,

reglog(Q(·|x)) = Ey∼P (·|x)

[
log

P (y|x)
Q(y|x)

]
= Ey∼P (·|x)

[l∑

i=1

log
P (yi|yi−1,x)
Q(yi|yi−1,x)

]

= Ey∼P (·|x)

[l∑

i=1

reglog(Q(·|yi−1,x))
]
, (5)

i.e., the log-loss regret of the joint distribution is equal to the sum of the regrets
of node classifiers along the random path from the root to leaf y, where y is
drawn from P (·|x). This basically expresses the chain rule for KL divergence [7].
The consequence of the above is that under log-loss we theoretically do not pay
any price in terms of performance for representing the joint distribution by a
tree structure.

We are now ready to present the main result of this section, which states that
the 0/1-regret of the PCT classifier is bounded by means of the sum of log-loss
regrets along a random path from the root to the leaf (or, equivalently, by the
log-loss regret of the joint distribution) and the search error ε of the inference
procedure.

Theorem 2. Consider PCT, which estimates the probability Q(·|yi−1,x) in
each non-leaf node yi−1, and let hε be the classifier which for any x, outputs
ŷε found by the ε-approximate inference procedure (Algorithm1). Then, for any
distribution P ,

reg0/1(hε) ≤
√

2reglog(Q) + ε − 2−l,

where reglog(Q) = E(x,y)∼P

[∑l
i=1 reglog(Q(·|yi,x))

]
is the expected sum of

regrets at internal classifiers along a path from the root to the leaf.

Proof. We first condition everything on a fixed x. Let y∗ = arg maxy P (y|x) be
the mode of P (·|x), and let ŷε = hε(x) be the output of Algorithm1 for input x.

520 K. Dembczyński et al.

Moreover, we let ŷ∗ = arg maxy Q(y|x) denote the mode of Q(·|x), and note
that from Theorem 1,

Q(ŷ∗|x) − Q(ŷε|x) ≤ ε − 2−l. (6)

According to (1), the 0/1-regret of ŷε conditioned at x is given by

reg0/1(ŷε) = P (y∗|x) − P (ŷε|x).

Note that the regret is 0 if y∗ = ŷε, hence we assume y∗ �= ŷε in what follows.
From the definition of ŷ∗, Q(ŷ∗|x)−Q(y∗|x) ≥ 0, which together with (6) gives
Q(ŷε|x) − Q(y∗|x) + ε − 2−l ≥ 0. Hence, we obtain the upper bound

reg0/1(ŷε) ≤
(
P (y∗|x) − Q(y∗|x)

)
+

(
Q(ŷε|x) − P (ŷε|x)

)
+ ε − 2−l

≤ |P (y∗|x) − Q(y∗|x)| + |Q(ŷε|x) − P (ŷε|x)| + ε − 2−l

≤
∑

y∈C
|P (y|x) − Q(y|x)| + ε − 2−l,

where the last inequality is from y∗ �= ŷε. We now make use of Pinsker’s inequality

1
2

∑

y∈C

∣
∣P (y |x) − Q(y |x)

∣
∣ ≤

√
1
2
D(P (· |x)‖Q(· |x)) ,

which together with (5) implies

reg0/1(ŷε) ≤
√√
√
√2Ey∼P (·|x)

[l∑

i=1

reglog(Q(·|yi−1,x))
]

+ ε − 2−l. (7)

Note that the 0/1-regret of hε, reg0/1(hε), is just the expectation of the left-hand
side of (7) with respect to x. Thus, taking expectation on both sides of (7), and
using E

[√·] ≤ √
E [·] on the right-hand side (which is Jensen’s inequality applied

to the concave function x
→ √
x) gives

reg0/1(hε) ≤
√√
√
√2E(x,y)∼P

[l∑

i=1

reglog(Q(·|yi−1,x))
]

+ ε − 2−l

=
√

2reglog(Q) + ε − 2−l .

��
Theorem 2 states that if the log-loss regret of node classifiers is small, the

resulting ε-approximate classifier will be close to the Bayes classifier in terms
of 0/1 loss. This suggests to use node classifiers which minimize log-loss on the
training sample, examples of which include logistic regression, Gradient Boost-
ing Machines, deep neural networks,2 and many others. One can show that the
square-root dependence in the bound of Theorem 2 cannot be improved in gen-
eral, since when the tree consists only of the root node, our bound essentially
specializes to the bound in [1], which also exhibits square-root dependence.
2 In this case, the log-loss if often referred to as “soft-max” function.

Consistency of Probabilistic Classifier Trees 521

5 Relation to Other Label Tree Approaches

5.1 Conditional Probability Trees

Conditional probability trees (CPTs) [4] estimate a conditional probability dis-
tribution P (y|x) in the multiclass setting and have the same structure as PCTs.
What distinguishes this approach from ours is that CPTs are used for proba-
bility estimation, with squared loss �sq(yi, Q(·|yi−1,x)) =

(
yi − Q(yi|yi−1,x)

)2

as a performance measure, whence there is no inference phase to determine the
mode of the conditional distribution. The main result in [4] relates the squared
loss regret on the joint distribution to the expected squared loss over the nodes
of the tree. This result is analogous to the identity (5), except that an additional
O(

√
l) factor appears in the squared loss bound. Moreover, no result analogous

to Theorem 2 is given, which would relate expected squared loss regret to the
0/1 classification regret.

In fact, we can show a lower bound on the 0/1 regret in terms of expected
squared loss, which is at least a factor of Ω(

√
l) worse than our bound. To be

more precise, one can show that for any l > 2, there exists a true distribution
P and an estimate Q with the following property: even when assuming that the
inference algorithm can identify the mode of the distribution exactly, it holds
that reg0/1(hε) >

√
l regsq(Q), where regsq(Q) is the corresponding regret with

log-loss replaced by squared loss.3 In other words, using squared loss yields a
bound for classification error that is at least a factor Ω(

√
l) worse than the bound

we obtained for log-loss.

5.2 Filter Trees

The filter tree (FT) approach [3] is the first label tree algorithm for which a regret
bound for the classification error has been proved. Interestingly, the specific
training procedure used in FTs ensures that the greedy classification procedure
is sufficient for obtaining consistent predictions.

FT uses the same tree structure as PCT, but with binary classifiers instead
of class probability estimators in the non-leaf nodes of the tree. The method
follows a bottom-up strategy, which can be interpreted as a single elimination
tournament on the set of labels. A classifier in node yi−1 is trained to predict yi,
but FT implicitly transforms the underlying distribution of examples in the node.
The transformation for 0/1 loss relies on filtering out all training examples that
have been misclassified by successor classifiers on a path to a leaf. The learning
algorithm starts with classifiers on the lowest non-leaf level of the tree. The
correctly classified examples are then moved upward to nodes one level above.
This process is repeated until the root node is reached.

In [3], a regret bound for 0/1 loss has been proved that is conceptually similar
to the one given in Theorem 2. The difference is that the right side of the

3 We skip the details of the construction of P and Q due to the space limit.

522 K. Dembczyński et al.

bound is expressed in terms of 0/1 loss of the binary classifiers in non-leaf nodes.
Therefore, these two bounds are not directly comparable.

Another advantage of FTs is that they can be used with any cost-based
loss function. An appropriate bound has also been proved in [3]. The classifi-
cation procedure still follows a greedy search, but training is more demanding.
It requires weighting of examples, the use of cost-sensitive learners, and each
training example generally occurs in each internal classifier.

6 Extensions of PCTs

Since PCT estimates the entire conditional distribution over labels, it can be
used with any loss function. This comes with no additional cost during training,
but may lead to very costly inference. Actually, inference can be performed
efficiently only for certain losses, such as 0/1 loss as discussed in Sect. 3.2, but
also some ranking-based loss functions. As an example, consider recall at kth
position defined as

R@k(y,x,Yk) = �y ∈ Yk� ,

where Yk is a set of k labels predicted for x. One can easily verify that an optimal
Yk should contain k top-labels with largest P (y |x). This can be approximated
by k top-labels with largest Q(y |x), which are easily obtained by PCT and
a small extension of the ε-approximate algorithm: it is enough to continue the
search procedure until k leaves are visited. Moreover, the bound in Theorem 2
can be easily extended to this case.

As already mentioned, PCTs can also be used in multi-label classification. In
this case, the tree is of height m and is fully balanced. Each path from the root
to a leaf corresponds to one of possible label combinations. In principle, PCT
contains a single classifier in each non-leaf node. In multi-label case, storing
2m − 1 classifiers for large m is not feasible. One can, however, follow a trick
used in probabilistic classifier chains [9] and condensed filter trees [17], which
relies on using one binary classifier per tree level. In other words, prediction of
the ith label corresponds to the prediction made by the classifier on level i with
additional features that indicate a given node of the tree.

7 Experimental Results

We empirically evaluate PCTs and FTs in two scenarios: multi-label classification
(MLC) and multi-class classification (MCC). We test the algorithms in terms of
0/1 loss and the computational costs of their training and testing procedures.
For PCTs, we additionally report R@k.

We conduct experiments on 3 multi-class and 3 multi-label datasets.4 Table 1
provides a summary of basic statistics of the datasets. Notice that the number of
4 Taken from the libsvm repository https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

datasets and the image net competition webpage http://www.image-net.org/
challenges/LSVRC/2010.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.image-net.org/challenges/LSVRC/2010
http://www.image-net.org/challenges/LSVRC/2010

Consistency of Probabilistic Classifier Trees 523

Table 1. Multi-class (MCC) and multi-label (MLC) datasets and their properties: the
number of training (#train) and test (#test) examples, the number of labels (m) and
features (d).

MCC MLC

Dataset #train #test m d Dataset #train #test m d

Sector 6412 3207 105 55197 Yeast 1500 917 14 103

Aloi 97200 10800 1000 128 TMC 21519 7077 22 30438

ILSVR2010 1261406 150000 1000 1000 Mediamill 30993 12914 101 120

leaf nodes is equal to m (the number of labels) in case of multi-class problems,
and 2m (the number of all possible label combinations) in case of multi-label
problems. We therefore use multi-label datasets up to around 100 labels. For
datasets with a greater number of labels, the 0/1 loss is usually very close to 1.
We use the original split into a training and test set if available; otherwise, we
use 90/10 train/test splits. For the ILSVR2010 dataset, we use the visual code
words (sbow) vectors provided by the organizers of the challenge. Features were
generated on the basis of the guidance contained in the ILSVR development kit.

7.1 Implementation

We carefully implemented PCTs and FTs in Java. As internal classifiers, we use
L2 linear logistic regression trained by a variant of stochastic gradient descent
(SGD) introduced in [13]. To deal with a large number of weights, we use feature
hashing [22] shared over all tree nodes using hashes up to size of 224. We use
a random complete binary tree to code class labels in the MCC scenarios and
train a classifier in each node of the tree. For MLC problems we take the original
order of the labels to obtain the code words. We use one classifier per tree
level. We tune the hyper-parameters of SGD in a 80/20 simple validation on the
training set. We applied an off-the-shelf hyper-parameter optimizer [15] with a
wide range of parameters. We tune PCTs to optimize the log-loss as suggested
by our theoretical analysis. FTs are tuned to perform well on 0/1 loss.

We use PCTs with the ε-approximate inference algorithm with different val-
ues of ε ∈ {0, 0.25, 0.5}. The variant with ε = 0.5 corresponds to greedy search,
while the algorithm with ε = 0 will always find the optimal solution, but may
visit all nodes of the tree in the worst case (in fact, ε should be set to 2−l instead
to 0 to be concordant with the description of the algorithm; to keep the notation
simple, we use 0 to indicate the smallest possible value of ε for a given dataset).

7.2 Results

The results are given in Table 2. We can observe that PCTs improve with decreas-
ing value of ε. PCT with ε = 0.5 gets worse results than FT, which confirms the
theoretical results, i.e., filtering of misclassified examples during training in FT

524 K. Dembczyński et al.

Table 2. Experimental results for 0/1 loss and 1-R@5 (both in %), train (ttrn) and
test (ttest) running times (in seconds), and the average (A) number of inner products
per a test example. The Top 1 column indicates the results for top-1 prediction, while
column Top 5 the results for top-5 prediction (only for PCT with ε < 0.5). The best
results are indicated in bold (except for wall-clock times which can be affected by many
factors). The value in subscript of PCT corresponds to the value of ε.

MCC MLC

ttrn Top 1 Top 5 ttrn Top 1 Top 5

0/1 ttest A 1-R@5 ttest A 0/1 ttest A 1-R@5 ttest A

Sector, m = 105 Yeast, m = 14

FT 11.75 13.43 0.144 6.81 – 2.49 78.73 0.07 14 –

PCT.5 11.56 17.18 0.154 6.81 – 3.12 80.15 0.04 14 –

PCT.25 11.56 13.68 0.16 7.04 12.61 0.24 7.5 3.12 79.28 0.05 17.15 76.22 0.12 21.3

PCT0 11.56 13.28 0.198 7.13 7.23 0.48 18.2 3.12 78.62 0.09 23.82 58.77 0.17 64.6

Aloi, m = 105 TMC, m = 22

FT 15.11 88.98 0.14 9.97 – 30.7 77.06 0.47 22 –

PCT.5 13.43 88.99 0.14 9.97 – 34.3 75.06 0.39 22 –

PCT.25 13.43 88.95 0.15 9.98 88.64 0.21 10.2 34.3 73.74 0.45 27.97 68.50 0.57 34.0

PCT0 13.43 88.95 0.21 9.98 76.19 0.55 26.1 34.3 73.18 0.73 33.50 41.18 1.29 87.9

ILSVR2010, m = 1000 Mediamill, m = 101

FT 1710 95.10 10.12 8.39 – 220 90.79 2.24 101 –

PCT.5 1825 99.96 10.13 8.39 – 274 90.78 2.22 101 –

PCT.25 1825 95.30 13.23 10.03 95.30 20.10 14.4 274 90.06 2.79 107 89.14 3.02 129

PCT0 1825 94.76 15.20 10.57 92.33 44.31 34.3 274 89.65 5.23 274 74.22 9.50 529

improves for the greedy inference. For ε = 0.25, the results are already very com-
petitive to FT. For ε = 0, PCT consistently outperforms FT, but the difference
is not always large.

From a computational perspective, FTs achieve better performance. The
training time of both approaches is very similar, but the testing time is in favor
of FTs (and PCTs with ε = 0.5). To give a deeper insight into the time costs we
also report the average number of inner products computed by internal classifiers
per test example. Interestingly, PCT with ε = 0 always finds the solution in a
reasonable time. Its testing time is never longer than three times that of FT.
Similarly, the number of inner products is only up to three times greater than
that of FT or PCT with ε = 0.5.

Recall at kth position (R@k) can be measured only for PCTs. There is no way
to deliver top-k predictions in FTs, since this algorithm uses binary decisions in
non-leaf nodes, so the search process results only in a single path from the root
to a leaf node. From the results we observe that PCT efficiently finds topmost
results. The positive label appears more often in the top-5 predictions than in
the top-1. Similarly as for 0/1 loss, R@5 improves with decreasing value of ε.
Unfortunately, predicting top-k labels increases test time. Therefore, the label
tree search for ε = 0 requires about 2–3 times more steps to find top-5 labels.

Consistency of Probabilistic Classifier Trees 525

8 Conclusions

In this paper, we analyzed probabilistic classifier trees for efficient multi-class
and multi-label classification. In particular, we proved a regret bound for 0/1
loss, which provides a strong theoretical foundation of PCTs, and which can also
be extended to ranking-based losses. Moreover, we compared PCTs with the
closely related filter tree method. We conclude the paper by summarizing the
main theoretical and empirical results of FTs and PCTs, pointing out advantages
and disadvantages of both approaches.

An unquestionable advantage of FTs is their prediction time, which is loga-
rithmic in the number of classes or possible label combinations. FT can be used
with any type of binary classifier as base learner and relies on simple 0/1 pre-
dictions. However, to guarantee the consistency of greedy inference, it requires
more demanding training. In the näıve implementation, classifiers are trained
sequentially in a bottom-up manner. The most important disadvantage is a sig-
nificant reduction of the number of training examples in the top levels of the
tree, which is caused by filtering examples in each level from bottom to top.
This sparsity of training data may deteriorate predictive performance. However,
thanks to filtering, an internal classifier is aware of errors of the successor clas-
sifiers. FT can be used with any cost-based loss function, but it is not able to
predict top-k labels.

Prediction with PCTs requires search techniques, whence it is usually more
demanding than FTs (yet significantly faster than 1-vs-all). Moreover, anytime
algorithms can be used for searching the tree. The time complexity of PCT
strongly depends on the noise contained in the data. If the signal-to-noise ratio
is high, we can expect prediction time to be small. However, learning is much
simpler for PCT than for FT, and can be easily parallelized. There is no filtering
of training examples, so all examples are used for training on each level of the
tree. The probabilistic nature of PCTs allows for delivering a list of top-labels
and to work efficiently for R@k.

The results we obtained for FTs are comparable with those reported in [6].
We stress that better results can be obtained by other algorithms, for example
LomTrees introduced in the same paper. This is mainly because LomTrees train
the tree structure online, along with the internal classifiers, whereas PCTs and
FTs use random trees/coding. Interestingly, LomTrees are not consistent. Thus,
an important challenge for future research is to find an algorithm that is able to
train the tree structure online while ensuring consistency.

Acknowledgments. The work of Krzysztof Dembczyński and Wojciech Kot�lowski
has been supported by the Polish National Science Centre under grant no.
2013/09/D/ST6/03917 and 2013/11/D/ST6/03050, respectively.

526 K. Dembczyński et al.

References

1. Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk
bounds. J. Am. Stat. Assoc. 101(473), 138–156 (2006)

2. Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi-class
tasks. In: NIPS, vol. 23, pp. 163–171. Curran Associates, Inc. (2010)

3. Beygelzimer, A., Langford, J., Lifshits, Y., Sorkin, G.B., Strehl, A.L.: Conditional
probability tree estimation analysis and algorithms. In: UAI, pp. 51–58 (2009)

4. Beygelzimer, A., Langford, J., Ravikumar, P.: Error-correcting tournaments. In:
Chaudhuri, K., Gentile, C., Zilles, S. (eds.) ALT 2015. LNCS (LNAI), vol. 9355,
pp. 247–262. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04414-4 22

5. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In:
Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–
187. Springer, Heidelberg (2010)

6. Choromanska, A., Langford, J.: Logarithmic time online multiclass prediction. In:
NIPS, vol. 29 (2015)

7. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)
8. Dekel, O., Shamir, O.: Multiclass-multilabel learning when the label set grows with

the number of examples. In: AISTATS (2010)
9. Dembczyński, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classifica-

tion via probabilistic classifier chains. In: ICML, pp. 279–286. Omnipress (2010)
10. Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: An analysis of

chaining in multi-label classification. In: ECAI (2012)
11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale

hierarchical image database. In: CVPR, pp. 248–255 (2009)
12. Deng, J., Satheesh, S., Berg, A.C., Li, F.F.: Fast and balanced: efficient label tree

learning for large scale object recognition. In: NIPS, vol. 24, pp. 567–575 (2011)
13. Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward

splitting. JMLR 10, 2899–2934 (2009)
14. Fox, J.: Applied Regression Analysis, Linear Models, and Related Methods. Sage,

Thousand Oaks (1997)
15. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization

for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol.
6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3 40

16. Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Beam search algorithms for mul-
tilabel learning. Mach. Learn. 92(1), 65–89 (2013)

17. Li, C.L., Lin, H.T.: Condensed filter tree for cost-sensitive multi-label classification.
In: ICML, pp. 423–431 (2014)

18. Mena, D., Montañés, E., Quevedo, J.R., del Coz, J.J.: Using A* for inference in
probabilistic classifier chains. In: IJCAI, pp. 3707–3713 (2015)

19. Morin, F., Bengio, Y.: Hierarchical probabilistic neural network language model.
In: AISTATS, pp. 246–252 (2005)

20. Prabhu, Y., Varma, M.: Fastxml: A fast, accurate and stable tree-classifier for
extreme multi-label learning. In: KDD, pp. 263–272. ACM (2014)

21. Reid, M.D., Williamson, R.C.: Composite binary losses. JMLR 11, 2387–2422
(2010)

22. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature
hashing for large scale multitask learning. In: ICML, pp. 1113–1120. ACM (2009)

23. Weston, J., Makadia, A., Yee, H.: Label partitioning for sublinear ranking. In:
ICML, pp. 181–189 (2013)

http://dx.doi.org/10.1007/978-3-642-04414-4_22
http://dx.doi.org/10.1007/978-3-642-25566-3_40

	Consistency of Probabilistic Classifier Trees
	1 Introduction
	2 Problem Statement
	3 Probabilistic Classifier Trees
	3.1 Training
	3.2 Inference

	4 Regret Bounds for PCT
	5 Relation to Other Label Tree Approaches
	5.1 Conditional Probability Trees
	5.2 Filter Trees

	6 Extensions of PCTs
	7 Experimental Results
	7.1 Implementation
	7.2 Results

	8 Conclusions
	References

