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1 University of Marburg, Germany
dirk.schaefer@uni-marburg.de

2 Department of Computer Science
Paderborn University, Germany

eyke@upb.de

Abstract. We propose a new method for dyad ranking, a problem that
was recently introduced in the realm of preference learning. Our method,
called PLNet, combines a statistical model for rank data, namely the
Plackett-Luce model, with neural networks (feed-forward multi-layer per-
ceptrons) in order to learn joint-feature representations for dyads, which
are pairs of objects from two domains. The efficacy of PLNet is shown
by comparing it experimentally with state-of-the-art methods for dyad
and label ranking.
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1 Introduction

A specific problem in the realm of preference learning [7] is the problem of label
ranking, which consists of learning a model that maps instances to rankings (total
orders) over a finite set of predefined alternatives [20]. An instance, which defines
the context of the preference relation, is typically characterized in terms of a set
of attributes or features; for example, an instance could be a person described by
properties such as sex, age, income, etc. As opposed to this, the alternatives to be
ranked, e.g., the political parties of a country, are only identified by their name
(label), while not being characterized in terms of any properties or features.

In [17], we introduced dyad ranking as a practically motivated generalization
of the label ranking problem. In dyad ranking, not only the instances but also the
alternatives are represented in terms of attributes—a dyad is a pair consisting
of an instance and an alternative. Moreover, for learning in the setting of dyad
ranking, we proposed an extension of an existing label ranking method based
on the Plackett-Luce model, a statistical model for rank data. This approach is
based on modeling latent utility scores of dyads in the form of a Kronecker prod-
uct of the feature representations of the instance and alternative, respectively,
which is why we speak of a bilinear Plackett-Luce model.

In this paper, we propose a variant of this approach, called PLNet, that
allows for modeling latent utilities in a more flexible way. Instead of assuming a



bilinear structure of the joint-feature representation, we model utilities as (feed-
forward) neural networks; thanks to the hidden layer of such networks, important
non-linear dependencies can thus be captured [16].

The rest of the paper is organized as follows. We provide a formal description
of the dyad ranking problem in Section 2 and an overview of related methods
in Section 3. Our new method PLNet is described in Section 4. Experimental
results are presented in Section 5, prior to concluding in Section 6.

2 Problem Setting

Formally, a dyad is a pair of feature vectors z = (x,y) ∈ Z = X × Y, where
the feature vectors are from two (not necessarily different) domains X and Y. A
single training observation ρn (1 ≤ n ≤ N) takes the form of a dyad ranking

ρn : z(1) � z(2) � . . . � z(Mn), Mn ≥ 2, (1)

the length Mn of which can vary between observations in the data set D =
{ρn}Nn=1. An equivalent notation for a single training example that will be used
later on is a set of dyads

%n =
{
z(1), z(2), . . . ,z(Mn)

}
together with a permutation πn : {1, . . . ,Mn} −→ {1, . . . ,Mn} indicating how
these dyads are ranked.

The task of a dyad ranking method is to learn a ranking function that accepts
as input any set of (new) dyads and produces as output a ranking of these dyads.

An important special case, called contextual dyad ranking, is closely related
to label ranking [17]. As already mentioned, the label ranking problem is about
learning a model that maps instances to rankings over a finite set of predefined
choice alternatives Y = {y1, . . . , yK}. In terms of dyad ranking this means that
all dyads in an observation share the same context x, i.e., they are all of the
form z(j) = (x,y(j)); in this case, (1) can also be written as

ρn :
(
x,y(1)

)
�
(
x,y(2)

)
� . . . �

(
x,y(Mn)

)
. (2)

Likewise, a prediction problem will typically consist of ranking a subset{
y(1),y(2), . . . ,y(M)

}
⊆ Y

in a given context x. Contextual dyad ranking generalizes label ranking by con-
sidering feature vectors instead of labels. This includes vector space embeddings
of labels and additional descriptions (side-information) about labels. Contextual
dyadic preferences are equivalent to training triplets of the form y(1) �x y(2),
which are encountered frequently in applications such as similarity learning.



3 Related Work

The Bilinear Plackett-Luce model (BilinPL) for dyad ranking was introduced in
[17]. It builds on a statistical ranking model introduced by Plackett and Luce [14]
and represents the parameters of this model as a log-bilinear function f(x,y) =
exp g(x,y), which takes as input the dyad member feature vectors x and y.
The output of the function is a real positive value, which can be interpreted
as a utility score. The bilinear function g(x,y) = x>Wy can equivalently be
expressed as the function g(x,y) = 〈w,x ⊗ y〉, i.e., the dot product between a
weight vector and a joint-feature vector consisting of cross-products (also known
as the Kronecker product). This kind of joint-feature vector formulation strongly
depends on the dyad feature vectors, and the representation bias it imposes on
the model can be suboptimal.

Comparison training refers to a framework introduced for learning from pair-
wise preferences with a neural network [19]. The network architecture consists
of two subnetworks which are connected to a single output node and indicates
which of the two inputs is preferred over the other. The weights associated with
the last hidden layer of one subnetwork is the mirrored version of the other sub-
network’s weights. This setup solves two principal problems, namely efficiency
and consistency. In the evaluation phase it is sufficient to use just one sub-
network and evaluate n alternatives instead of O(n2) pairs. Furthermore, this
kind of network architecture also enforces transitivity of the predicted prefer-
ences. Although many modifications of the original comparison training have
been proposed in the past (see e.g. the survey [6]), its inputs however are essen-
tially restricted to pairwise training signals.

The aforementioned label ranking problem has been tackled with neural net-
work approaches previously [15, 11]. A multi-layer perceptron (MLP) has been
utilized to produce recommendations on meta-heuristics (labels) on different
meta-features (instances) within the realm of meta-learning [11]. This kind of
neural network exhibits an output layer with as many nodes as there are la-
bels. The error signal used to modify the network’s weights is formed by using
the mean squared error on the target rank positions of the labels. In [15] more
effort has been spent to incorporate label ranking loss information into the back-
propagation procedure. To this end some variations for this procedure have been
investigated. Both architectures are similar to each other and have two essential
limitations: first, they depend on a fixed number of labels, and second, they can-
not cope with incomplete ranking observations. In addition, they lack the ability
to provide probabilistic information on their predictions.

In the domain of information retrieval, the neural network-based approaches
RankNet and ListNet have a probabilistic foundation [2, 3]. RankNet [2] uses
pairwise inputs to learn a utility scoring function with the cross entropy loss.
To this end, the training data consists of sample pairs together with target
probabilities. These quantify the probability to rank the first sample higher than
the second. With the introduction of target probabilities, this approach enables
the possibility of modeling ties between samples. ListNet [3, 13] similarly uses
the cross entropy as a metric, but in contrast to RankNet it processes lists of



samples instead of pairwise preferences as basic observation. There are, however,
some important differences between ListNet and our approach:

– The learning approach in ListNet addresses only a special case of the Plackett-
Luce distribution, namely the case of Top-k data with k = 1.

– In ListNet, a linear neural network is used. This is in contrast to our ap-
proach, in which non-linear relationships between inputs and outputs are
learned. Linearity in the ListNet approach implies that much emphasize
must be put on engineering joint feature input vectors.

– In ListNet, the query-document features are associated with absolute scores
(relevance degrees) as training information, i.e., quantitative data, whereas
PLNet deals with rankings, i.e., data of qualitative nature.3

ListNet as well as RankNet expect single instance joint-feature vectors x =
Ψ(q, d) as inputs that are created from query-document pairs (q, d) via feature-
engineering. These approaches are closely related to our method, though with the
major difference of ranked dyads instead of absolute ratings as training input;
and perhaps more importantly, our goal is to learn joint-feature representations
instead of engineering them.

4 Plackett-Luce Network

Throughout this section we use the following notation. A ranking of dyads is
represented in terms of a permutation π. More specifically, given a numbering
of dyads from 1 to M , let π(i) be the number j of the dyad put on the i-th
position in the ranking; the inverse π−1(j) denotes the rank position of the dyad
specified by index j.

4.1 Plackett-Luce Model

The Plackett-Luce (PL) model is a parameterized probability distribution on
the set of all rankings over a set of alternatives y1, . . . , yK . It is specified by a
parameter vector v = (v1, v2, . . . , vK) ∈ RK+ , in which vi accounts for the (latent)
utility or “skill” of the option yi. The probability assigned by the PL model to
a ranking with a permutation π is given by

P(π |v) =

K∏
i=1

vπ(i)

vπ(i) + vπ(i+1) + . . .+ vπ(K)
=

K−1∏
i=1

vπ(i)∑K
j=i vπ(j)

(3)

Obviously, the Plackett-Luce model is only determined up to a positive multi-
plicative constant, i.e., P(π |v) ≡ P(π | s · v) for all s > 0.

As an appealing property of the PL model, we also note that its marginal
probabilities (probabilities of rankings on subsets of alternatives) are easy to
compute and can be expressed in closed form. More specifically, the marginal of
a PL model on M < K alternatives yi(1), . . . , yi(M) is again a PL model with
parameters vi(1), . . . , vi(M).

3 The use of query-document-associated scores as PL model parameters is arguable.



4.2 Architecture

The core idea of the Placket-Luce Network (PLNet) is to learn (latent) utility
functions u = g(x,y), where g is a single multi-layer feed-forward neural net-
work. Since we are interested in utility scores that reflect rankings, we utilize the
Plackett-Luce model and express its real-valued skill parameters as functions of
the form log(v) = u = g(x,y). Thus, probabilities of rankings are given by

P (π | %,u) =

K−1∏
k=1

exp(uπ(k))∑K
l=k exp(uπ(l))

. (4)

The PLNet is a multi-layer perceptron (MLP), which is constructed as shown
in Figure 1. It consists of multiple layers and takes as input two vectors corre-
sponding to the members of a dyad. There is at least one hidden layer with nodes
using a sigmoidal activation function to learn non-linear mappings. The output
layer produces a scalar value of the form u = 〈wL,aL−1〉+bL. Technically, a bias
term bL is actually not needed, as it has no effect on the PLNet model (4): With
the choice of the exponential function (to ensure positivity of the parameters v)
and the independence of bL of the inputs x and y, we have

v = exp
(
〈wL, aL−1〉+ bL

)
= bL · exp

(
〈wL, aL−1〉

)
,

and as noted before, the PL model is invariant toward multiplication of the
weights with a positive scalar.

1

x1

y1

output

u
xr

yc

hiddeninput

1 L-1 L
layers

Fig. 1. PLNet architecture. This kind of feed-forward neural network is composed of
several layers. Dyad members z = (x,y) are entered at the input layer, whose nodes
are fully connected with the nodes of the next layer. Inner (hidden) layers have nodes
endowed with a non-linear activation function. The output layer consists of a single
node with linear activation function.



4.3 Training

The training procedure uses back-propagation, which is a gradient technique to
find optimal weights [16]. Following [1], a feed-forward network can be seen as
a framework for modeling the conditional probability distribution. For a set of
training data {%n, πn} with

%n =
{(

x(1)
n ,y(1)

n

)
, . . . ,

(
x(Mn)
n ,y(Mn)

n

)}
,

the likelihood can be written as

L =
∏
n

P(%n, πn) =
∏
n

P(πn | %n)P(%n)

if we assume the observations {%n, πn} to be independent and identically dis-
tributed. It is generally more convenient to minimize the logarithm of the like-
lihood, hence we aim to minimize the following error function:

E = − lnL = −
∑
n

lnP(πn | %n)−
∑
n

P(%n) (5)

The second term in (5) can be dropped, as it does not depend on the network
parameters (and only represents an additive constant). More specifically, we
denote the negative log-likelihood (NLL) by E =

∑
nEn, where

En = − logP (πn | %n,u) =

Mn−1∑
k=1

log

Mn∑
l=k

exp
(
uπ(l)

)
−
Mn−1∑
k=1

uπ(k) . (6)

The errors propagated back to the network can thus be expressed as the (partial)
derivatives of the NLL:

δLi ≡
∂En
∂ui

=

Mn−1∑
k=1

1{π−1(i)≥k} exp(ui)∑Mn

l=k exp(uπ(l))
− 1{i≤Mn−1} (7)

Note that the calculation of the error in (7) depends on all the Mn utilities of
a training sample. To this end, we propose a training procedure as depicted in
Figure 2, where we run Mn feed-forward calculations for a sample (consisting of
Mn dyads) in parallel to obtain utility values. The δ-values obtained according to
(7) can then be used for the standard back-propagation procedure on each of the
parallel Mn copies of the master network. After performing the weight updates
individually, the master’s weights can be updated by aggregating the individual
weight changes. In the implementation we applied the following simple strategy:
wji = wji − η · ∆wkji, 1 ≤ k ≤ Mn, where η denotes the learning rate. The
procedure is then repeated several times with the training samples and stopped
when the error has diminished sufficiently.

Another point to be mentioned is regularization. Here, we suggest to use
early stopping by tracking the NLL values of the training and validation data
during the learning process. A good point to stop the training and to prevent
over-fitting is when the validation NLL values begin to rise again.
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Fig. 2. PLNet training steps. An observation consists of M ranked dyads, which are fed
into M copies of the current PLNet model. The output of this composite feed-forward
procedure (step 2) is used to calculate the ranking cost (step 3). Finally, the weights
are adjusted via back-propagation (step 4), and the changes in the weights are merged
into a single network (step 5).

4.4 PLNet for Label Ranking

In order to apply PLNet on the problem of label ranking, one needs a vector
representation for labels. Unless other label features are available, a natural
approach is to a use 1-of-K encoding. Thus, given K labels, the i-th label is
represented by the vector ei ∈ {0, 1}K with entry 1 at position i and 0 otherwise.

5 Experiments

In the following experiments, the predictive performance is measured in terms
of the Kendall’s tau coefficient [12], a rank correlation measure commonly used
in the statistical and preference learning literature [20, 21]. It is defined as

τ =
C(π, π̂)−D(π, π̂)

K(K − 1)/2
, (8)

with C and D the number of concordant (put in the same order) and discordant
(put in the reverse order) label pairs, respectively, and K the length of the
rankings π and π̂ (number of alternatives). Kendall’s tau assumes values in
[−1,+1], with τ = +1 for the perfect prediction π̂ = π and τ = −1 if π̂ is the
exact reversal of π.

5.1 Synthetic Data

Here, we compare the dyad ranking methods PLNet and BilinPL. To this end,
we sample from a PLNet with three layers. Its inputs are dyads composed of



one-dimensional vectors, i.e., x,y ∈ [−1, 1]. The hidden layer has 25 nodes and
all weights are initialized at random by sampling from the uniform distribution
in [−15, 15]. From a total of 400 dyads, we sample 500 training and 50 test
rankings consisting of 5 dyads each.

(a) (b)

(c) (d)

Fig. 3. Log-skill landscapes of the methods PLNet and BilinPL. (a) is produced by
PLNet after learning from object pair rankings. (b)-(d) are produced by BilinPL using
different feature specifications.

For the BilinPL, we choose from three different variants of input features.
They are based on the Kronecker product between object pair features to from
joint-feature vectors (resulting in first and second order models):

xf yf ⇒ zf Identifier

x y [x · y] BilinPL-1
[x, 1] [y, 1] [x, y, xy, 1] BilinPL-2
[x, x2, 1] [y, y2, 1] [x, x2, y, y2, xy, xy2, x2y, x2y2, 1] BilinPL-3

Table 1 and the corresponding Figure 3 underpin two key aspects. Firstly, the
expressiveness of PLNet can be much larger compared to the BilinPL versions.
Secondly, the predictive quality varies strongly for BilinPL depending on the
choice of the dyad features.



Table 1. Results of the synthetic pair ranking data experiment.

PLNet BilinPL-1 BilinPL-2 BilinPL-3

Kendall’s τ 0.944 0.380 0.644 0.852

Figure 3 (a) (b) (c) (d)

5.2 UCI Label Ranking Datasets

A suite of benchmark data sets have been established for the label ranking
setting [4].4 They are based on 16 well known multi-class and regression data
sets from the UCI repository and processed in two ways to address the ranking
problem (see Table 2 for their properties). For data sets of type A (multi-class
problems), rankings were generated by training a naive Bayes classifier on the
complete data set and ordering the class labels according to the predicted class
probabilities for each example. For data sets of type B (regression problems), a
subset of instance attributes are removed from the data sets and were interpreted
as labels. Rankings were then obtained by standardizing the attributes and then
ordering them by size. This approach is justified by assuming that the original
attributes are correlated and the remaining features contain information about
the rankings of the removed attributes.

We compare the performance of PLNet to other state-of-the-art label rank-
ings methods on these data sets using 10-fold cross-validation. For PLNet, we
use three layers with 10 neurons for the hidden layer. In addition to BilinPL,
we include Ranking by Pairwise Comparison (RPC, [10]), Constrained Clas-
sification (CC, [8, 9]), and the log-linear model for label ranking (LL, [5]) as
additional baselines.5 For BilinPL, we chose as dyad features xf = [x, 1] and

y
(i)
f = ei, which by means of the Kronecker product results in a joint-feature

vector representation called multi-vector [18].
The results (see Table 3) indicate that PLNet is competitive to the other

approaches and most of the time even superior. The performances on data sets
where PLNet is less powerful also show its weakness. For data sets consisting of
only a few instances but many attributes, PLNet is likely to over-fit. Of course,
another issue is the choice of the architecture itself (how many layers, how many
nodes, ...). Linear models are advantageous in comparison to PLNet if their
inductive bias is correct, which is the case, for example, for the fried problem.

6 Conclusion

We introduced a new method for the problem of dyad ranking, called PLNet.
The method exhibits some interesting properties, notably the following: it is

4 Available online at https://www-old.cs.uni-paderborn.de/fachgebiete/intelligente-
systeme/software/label-ranking-datasets.html.

5 CC was used in its online variant as described in [10].



Table 2. Semi-synthetic label ranking data sets and their properties.

Type A Type B

data set # inst.(N) # attr.(d) # labels(M) data set # inst.(N) # attr.(d) # labels(M)

authorship 841 70 4 bodyfat 252 7 7
glass 214 9 6 calhousing 20640 4 4
iris 150 4 3 cpu-small 8192 6 5
pendigits 10992 16 10 elevators 16599 9 9
segment 2310 18 7 fried 40769 9 5
vehicle 846 18 4 housing 506 6 6
vowel 528 10 11 stock 950 5 5
wine 178 13 3 wisconsin 194 16 16

Table 3. Results on the UCI label ranking data sets.

data set BilinPL CC LL PLNet RPC-LR

authorship 0.931±0.013 0.916±0.015 0.935±0.013 0.908±0.025 0.917±0.020

bodyfat 0.268±0.059 0.245±0.052 0.287±0.060 0.251±0.040 0.285±0.061

calhousing 0.220±0.011 0.254±0.009 0.235±0.010 0.272±0.014 0.243±0.010

cpu-small 0.445±0.016 0.468±0.017 0.431±0.017 0.500±0.019 0.449±0.016

elevators 0.730±0.007 0.770±0.009 0.725±0.006 0.788±0.009 0.749±0.008

fried 0.999±0.000 0.999±0.000 0.997±0.001 0.951±0.010 1.000±0.000

glass 0.835±0.072 0.830±0.079 0.825±0.074 0.846±0.080 0.889±0.057

housing 0.655±0.040 0.639±0.044 0.646±0.034 0.703±0.033 0.672±0.041

iris 0.813±0.112 0.800±0.109 0.804±0.101 0.960±0.049 0.911±0.047

pendigits 0.892±0.003 0.896±0.002 0.879±0.002 0.905±0.005 0.932±0.002

segment 0.903±0.008 0.910±0.008 0.879±0.009 0.939±0.008 0.929±0.009

stock 0.704±0.016 0.714±0.016 0.702±0.018 0.882±0.020 0.774±0.024

vehicle 0.855±0.020 0.850±0.025 0.790±0.023 0.872±0.025 0.855±0.015

vowel 0.581±0.026 0.577±0.046 0.608±0.023 0.805±0.016 0.644±0.021

wine 0.929±0.052 0.914±0.069 0.954±0.041 0.942±0.034 0.925±0.054

wisconsin 0.629±0.028 0.612±0.030 0.605±0.027 0.514±0.028 0.632±0.027

average rank 3.250 3.625 3.812 2.125 2.188

probabilistic in nature, can handle incomplete rankings, and builds on standard
neural network components. Thus, it is possible to improve the method further
with techniques developed in the neural networks literature during the last years,



especially with recent advances in deep learning. This point is an important
aspect of future research. The study of other neural network architectures such
as (restricted) Boltzman machines for dyad ranking are also conceivable.
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