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Abstract
We consider the problem of (macro) F-measure
maximization in the context of extreme multi-label
classification (XMLC), i.e., multi-label classifica-
tion with extremely large label spaces. We investi-
gate several approaches based on recent results on
the maximization of complex performance mea-
sures in binary classification. According to these
results, the F-measure can be maximized by prop-
erly thresholding conditional class probability esti-
mates. We show that a naı̈ve adaptation of this ap-
proach can be very costly for XMLC and propose
to solve the problem by classifiers that efficiently
deliver sparse probability estimates (SPEs), that is,
probability estimates restricted to the most prob-
able labels. Empirical results provide evidence for
the strong practical performance of this approach.

1. Introduction
Extreme classification refers to multi-class and multi-label
learning problems that involve hundreds of thousands (Deng
et al., 2009; Partalas et al., 2015) or even millions of
labels (Agrawal et al., 2013). Applications of that kind
can be found in image classification (Deng et al., 2011),
text document classification (Dekel & Shamir, 2010),
on-line advertising (Beygelzimer et al., 2009a), and
video recommendation (Weston et al., 2013). Several
approaches for efficient extreme classification have recently
been proposed, including FASTXML (Prabhu & Varma,
2014), LOMTREES (Choromanska & Langford, 2015),
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SLEEC (Bhatia et al., 2015), robust Bloom filters (Cisse
et al., 2013), label partitioning (Weston et al., 2013), and fast
label embeddings (Mineiro & Karampatziakis, 2015).

These algorithms have been mainly evaluated in terms of
ranking-based measures such as Precision@K or NDCG@K.
In this work, we focus on extreme multi-label classification
(XMLC) and turn our attention to the (macro) F-measure,
which is a commonly used performance measure in
multi-label classification as well as other fields, such as
natural language processing. A variant of this measure has
also been used in the Kaggle’s LSHTC competition (Partalas
et al., 2015); see https://www.kaggle.com/c/lshtc.

We tackle the learning problem within the Empirical Utility
Maximization (EUM) framework for F-measure maximiza-
tion. As shown recently, maximizing the F-measure in EUM
can be accomplished by properly tuning a threshold ⌧ on
class probability estimates (CPEs), that is, using a suitably
chosen threshold ⌧ to separate between positive and negative
predictions (Koyejo et al., 2014; Narasimhan et al., 2014;
Kotłowski & Dembczynski, 2015). In the extreme learning
scenario, both probability estimation and threshold tuning
are challenging tasks; in particular, tuning the threshold for
each label through exhaustive search is computationally in-
feasible. In this paper, we aim at extending existing threshold
tuning methods for optimizing the F-measure in binary clas-
sification, so as to make them amenable to the optimization
of the macro F-measure in the XMLC setting. To this end,
we propose the idea of sparse probability estimates (SPEs).

Following a formal description of the macro F-measure and
the EUM approach in Section 2 and 3, respectively, we adapt
threshold tuning methods to the XMLC setting by exploting
the idea of SPEs in Section 4. In Section 5, we discuss two
concrete methods for delivering SPEs. The combination
of these methods with threshold optimization approaches
is evaluated experimentally in Section 6.

https://www.kaggle.com/c/lshtc
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2. Macro-averaged F-measure
Consider an XMLC problem with m labels and denote the
true and predicted label vector of the ith instance xi by yi =

(yi,1, . . . , yi,m) 2 {0, 1}m and b

yi = (ŷi,1, . . . , ŷi,m) 2
{0, 1}m, respectively. For a test set {(xi,yi)}ni=1 of size
n, let Y be the n ⇥m matrix with entries yi,j , 1  i  n,
1  j  m, and denote by y·j the jth column of Y ; the
same notation is used for the collection of estimates b

Y . The
macro F-measure (or F-score) is then defined as:
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To maximize this measure, it obviously suffices to maximize
the (standard) F-measure F (y·j , by·j) for each label j

separately. In principle, threshold tuning methods for
F-measure maximization in binary classification can thus
be used, simply by applying them independently for each
label. However, a naı̈ve adaptation of these methods can be
very costly for problems with extremely large label spaces.
This is because the tuning methods require CPEs for all
labels and instances of the set at hand; for example, at least
10

10 predictions have to be produced and possibly stored for
m > 10

5 labels and n > 10

5 instances.

Fortunately, a significant reduction of complexity is possible
thanks to important properties of the XMLC problem and the
F-measure. First, the number of positive labels in XMLC is
typically very small in comparison to the number of negative
labels. Second, for computing the F-measure, only the
true positive labels (yi,j = 1) and the predicted positive
labels (ŷi,j = 1) are needed, but neither the true negatives
nor the predicted negatives. These properties motivate the
idea of sparse probability estimates (SPEs), by which we
mean probability estimates restricted to the top-labels, i.e.,
those labels with a sufficiently high probability—other
probabilities are not important for tuning the threshold. As
will be seen, SPEs will significantly reduce complexity of
threshold tuning in extreme classification.

3. Expected Utility Maximization (EUM)
Suppose a finite setDn = {(xi,yi)}ni=1 of labeled instances
to be given. Moreover, denote by ⌘(x, j) the probability that
the jth label is positive for the instance x, i.e., ⌘(x, j) =

P(yj = 1 |x), and that estimates b⌘(x, j) of these posteriors
are produced by a probabilistic classifier b⌘ : X ⇥ [m] �!
[0, 1]. For the time being, we are not interested in the training
of this classifier but focus on the F-measure optimization step.

The EUM principle is based on the empirical estimate of the
F-score on the data Dn. Consider the F-score obtained by the

threshold classifier b⌘⌧ (x) = (b⌘

⌧1
(x, 1), . . . , b⌘

⌧m
(x,m)),

where b⌘

⌧j
(x, j) = Jb⌘(x, j) � ⌧jK:1

F (⌧ ; b⌘,Dn) =
1

m

m
X

j=1

Pn
i=1 yi,jb⌘

⌧

(xi, j)
Pn

i=1 yi,j +
Pn

i=1 b⌘
⌧

(xi, j)
(2)

Obviously, with byi,j = b⌘

⌧

(xi, j), we have F (⌧ ; b⌘,Dn) =

FM (Y ,

b

Y ), and the optimal threshold vector

⌧ 2 argmax

⌧2[0,1]m
F (⌧ ; b⌘,Dn) (3)

can be found by searching for the ⌧j in the finite set of
candidates {b⌘(xi, j)}ni=1, independently for each label.

The problem of F-measure optimization has received
increasing attention in recent years and has been tackled
with different methods, including EUM but also alternatives
like the so-called decision-theoretic approach (Ye et al.,
2012). Although most of the contributions so far refer to
binary classification (i.e., the standard F-measure), many of
the results can be readily extended to the case of the macro
F-measure, thanks to the fact that the latter is an average
of binary F-measures. More concretely, based on the result
of Ye et al. (2012), F (⌧ ; b⌘,Dn)

P�! F (b⌘

⌧

) as n ! 1 for
any ⌧ 2 (0, 1)

m, where F (b⌘

⌧

) is the population level macro
F-score of b⌘⌧ defined as

F (b⌘

⌧
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1

m

m
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⌧i
(x, i)]

E [⌘(x, i)] +E [b⌘

⌧i
(x, i)]

,

and the expectation is taken with respect to the data distribu-
tion. Narasimhan et al. (2014) provide an even stronger result,
which can be extended to the macro F-measure, too: If a clas-
sifier b⌘Dn is induced from Dn by an L1-consistent learner
for every label and a threshold ⌧ is obtained by maximizing
(2) on an independent set D0

n, then F (b⌘

⌧

Dn
)

P�! F (⌘

⌧

⇤
) as

n �! 1 (under mild assumptions on the data distribution),
where ⌧ ⇤

= argmax

⌧2[0,1]m F (⌘

⌧

). Finally, based on (Ye
et al., 2012) (see their Theorem 4), there is no classifier
of the form X ⇥ [j] �! {0, 1} with a population level
macro F-score better than F (⌘

⌧

⇤
). This provides another

justification for using threshold classifiers in the multi-label
scenario. For a more elaborate discussion on consistency
of multi-label classification with complex performance
measures, see (Koyejo et al., 2015).

4. Macro F-measure maximization
This section presents three F-measure optimization methods,
the first two of which directly build on the EUM framework.
Each of these methods seeks to optimize the threshold values
in (3), typically in a label-wise manner. Sorting-based

1JP K = 1 if the predicate P is true and = 0 otherwise.
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threshold optimization (STO) finds an optimal threshold on
a validation set, while the fixed thresholds approach (FTA)
validates only a restricted set of predefined candidates for the
threshold. The third method, online F-measure optimization
(OFO), tunes the threshold in an online setting. It can be
used either in combination with an online learning method or,
like the two previous methods, be applied on a validation set.

In the following, we denote the SPE of the posterior
⌘(x) = (⌘(x, 1), . . . , ⌘(x,m)) for an instance x and the
corresponding index set by

bs



(x) =

n

b⌘(x, j) : j 2 b

`



(x)

o

,

b

`



(x) = {j 2 [m] : b⌘(x, j) > j} ,

where  = (1, . . . ,m) 2 [0, 1]

m, and j is the threshold
used for the jth label. If the threshold is the same for each
label, i.e., 1 = · · · = m = , we write bs(x) and b

`(x)

instead of bs



(x) and b

`



(x). Concrete (tree-based) SPE
techniques for computing these sets in a very efficient way
will be discussed in Section 5.

4.1. Search-based threshold optimization (STO)

An exact solution of (3) on a finite setDn calls for computing
all CPEs for all labels and, moreover, the F-score for all
CPEs as possible thresholds. This can be implemented by
sorting the CPEs for each label first, and finding the threshold
that yields the highest F-measure with a single pass over
the sorted list afterward. Since n · m posterior estimates
are needed, and sorting requires time O(n log n), the overall
computational complexity of this procedure is O(mn log n).

To reduce the cost, we can solve (3) by using SPEs. We
first compute and store the positive labels for which the
posterior estimates are above fixed thresholds , which is an
input parameter of Algorithm 1. Next, the algorithm seeks
to find the optimal threshold for each label j based on an
exhaustive search by computing the F-score for each b⌘(xi, j)

as a possible threshold. The cost of this search is much lower
now, as it only needs to sort the SPE values—provided j

is not too close to 0, these should be much less than n.

Needless to say, the SPE thresholds j have to be chosen
carefully and definitely smaller than the optimal thresholds
in (3); otherwise, the latter cannot be found anymore. On
the other side, the larger j , the more efficient the search
procedure will be. So what is a reasonable range of values
for an optimal threshold ⌧

⇤, and hence for j?

To answer this question, we derive (theoretical) bounds for a
threshold. Interestingly, the optimal solution on a population
level (i.e., all probabilities are known) satisfies the following
condition (Zhao et al., 2013):

F

⇤
= F (⌧

⇤
) = 2⌧

⇤ (4)

Algorithm 1 STO(Dn, b⌘,)

1: for j = 1 ! m do
2: Ij = ;
3: for i = 1 ! n do
4: Compute bs(xi) and b

`(xi) . SPE
5: for each j 2 b

`⌧ (xi) do
6: Ij = Ij [ {i}
7: pij = b⌘(x1, j)(2 bs(xi))

8: for j = 1 ! m do
9: Find ⌧j based on {pij : i 2 Ij} and {yi,j : i 2 Ij}

using sorting
10: return ⌧

That is, the optimal F-measure is twice the value of the
optimal threshold. As an immediate consequence, the upper
bound of the threshold is 0.5. In order to derive a lower
bound, note that a classifier which always predicts positive
(i.e., which uses a threshold ⌧ = 0) yields an F-measure
of F = 2⇡/(⇡ + 1), where ⇡ is the (prior) probability of
the label being positive. Since ⇡ > 0 can reasonably be
assumed, F > ⌧ = 0, and (4) is violated. Therefore, F must
be smaller than the optimal value F ⇤, and

⌧

⇤
=

1

2

F

⇤
>

1

2

F =

⇡

⇡ + 1

.

Our analysis thus suggests that, for each label j, the threshold
⌧

⇤
= ⌧

⇤
j should be chosen from the range

(⇡j/(⇡j + 1), 0.5] . (5)

Remark that this result assumes the posteriors ⌘(x, j) (or
at least perfect estimates ⌘̂(x, j) thereof) to be given.

4.2. Fixed thresholds approach (FTA)

Following the EUM principle, STO optimally tunes the
threshold for each label on the data Dn. By doing so, it is of
course prone to overfitting. Therefore, one can consider a dif-
ferent implementation of line 9 in Algorithm 1. FTA follows
a simple modification, in which a predefined set of possible
threshold values within the range (5) is tried. This approach
can be simplified even further, by using the same threshold
for all labels, which turns out to produce more stable
results. As a side remark, we note that a common threshold
for all labels is provably optimal for micro-averaged and
instance-averaged F-measures (Koyejo et al., 2015).

Implementing FTA like Algorithm 1 requires computing
and storing all SPEs for a validation set and checking the
F-measure for each predefined threshold. Alternatively, one
can compute the F-measure for each threshold simultane-
ously by passing the validation set only once. In that case,
SPEs do not need to be stored, but auxiliary variables for
each of the predefined thresholds have to be kept.
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4.3. Online F-measure optimization (OFO)

The OFO algorithm by Busa-Fekete et al. (2015) optimizes
the binary F-measure by tuning the threshold in an online
fashion. Assuming instances to be observed sequentially, the
algorithm seeks to maximize the so-called online F-measure,
which is defined for label j as

Fi,j =
2

Pi
`=1 y`,jby`,j

Pi
`=1 y`,j +

Pi
`=1 by`,i

=

2ai,j

bi,j
, (6)

where we concisely write

ai,j =

i
X

`=1

y`,jby`,j , bi,j =

i
X

`=1

y`,j +

i
X

`=1

by`,j . (7)

The OFO algorithm simply sets the threshold to

⌧i,j =
ai�1,j

bi�1,j
, (8)

when processing the ith instance, and thus makes predictions
byi,j = Jb⌘(xi, j) > ⌧jK. The threshold update is motivated
by condition (4). Moreover, Busa-Fekete et al. (2015) have
proven the consistency of this approach: The threshold and
the online F-score computed by OFO converge in probability
to the optimal F-score and threshold, respectively, as n goes
to infinity, provided the posterior estimates are coming from
an L1 consistent classifier.

Thanks to its online nature, OFO can be readily adapted to
a large-scale learning regime. In contrast to STO, it allows
the data to be processed in a sequential manner, without the
need to store any predicted scores or labels from previous
iterations. The pseudo-code of the algorithm is shown in
Algorithm 2. First, the initial threshold is set based on
a = (a1, . . . , am) and b = (b1, . . . , bm), which are input
parameters (the impact of which will be investigated in
our experimental study). Then, in each iteration, the set
of predicted positive labels b

`(x) is computed (line 4), and
the thresholds are updated according to (8) for all labels
in `(xi) [ b

`

⌧

(xi), where `(x) is the set of positive labels
for x. Note that this update can be implemented in an
efficient way, since, according to the definition of ai,j and
bi,j , if label j and the predicted label are both negative, then
neither ai,j nor bi,j need to be updated. Finally, the memory
requirement of the algorithm is O(m), since only two
auxiliary arrays (a and b) and the array of thresholds need to
be stored. The computational complexity is O(nm

0
), where

m

0
=

Pn
i=1 |`(xi)[ b

`

⌧

(xi)|, which can be orders of magni-
tude smaller than m if both the labels and the predictions are
sparse. In general, OFO can be either applied on a validation
set or run simultaneously with training of the class proba-
bility model. For large validation sets, a single pass over the
data is enough to obtain an accurate estimate of the threshold.

Algorithm 2 OFO(Dn, b⌘,a,b)

1: for i = 1 ! m do
2: Set ⌧i = ai/bi . Initial value
3: for i = 1 ! n do
4: Compute b`

⌧

(xi) . Predicted positives
5: for all j 2 `(xi) [ b

`

⌧

(xi) do
6: aj = aj + Jj 2 `(xi) \ b

`

⌧

(xi)K
7: bj = bj + Jj 2 `(xi)K + Jj 2 b

`

⌧

(xi)K
8: ⌧j =

aj

bj

9: return ⌧

5. Efficient sparse probability estimators
In this section, we discuss extreme classification algorithms
for computing sparse probability estimates. We mainly fo-
cus on Probabilistic Label Trees (PLTs), which ideally fit
the idea of sparse probability estimation. Later, we recall
FASTXML (Prabhu & Varma, 2014) and explain why this
algorithm can be treated as an efficient sparse probability es-
timator, too. We also discuss other large scale algorithms that
do not deliver sparse probability estimates in an efficient way.

5.1. Probabilistic label trees

PLTs share similarities with conditional probability
estimation trees (Beygelzimer et al., 2009a) and probabilistic
classifier chains (Dembczyński et al., 2010), while being
suited to estimate marginal posterior probabilities ⌘(x, j).
They are also similar to Homer (Tsoumakas et al., 2008),
which transforms training examples in the same way but does
not admit a probabilistic interpretation. Let us also remark
that a similar concept is known in neural networks and
natural language processing under the name of hierarchical
softmax classifiers (Morin & Bengio, 2005); however, it has
not been used in a multi-label scenario.

In a nutshell, PLTs are based on the label tree ap-
proach (Beygelzimer et al., 2009b; Bengio et al., 2010; Deng
et al., 2011), in which each leaf node corresponds to one
label. Classification of a test example relies on a sequence of
decisions made by node classifiers, leading the test example
from the root to the leaves of the tree. Since PLTs are
designed for multi-label classification, each internal node
classifier decides whether or not to continue the path by
moving to the child nodes. This is different from typical
left/right decisions made in tree-based classifiers. Moreover,
a leaf node classifier needs to make a final decision regarding
the prediction of a label associated to this leaf. PLTs use a
class probability estimator in each node of the tree, such that
an estimate of the posterior probability of a label associated
with a leaf is given by the product of the probability estimates
on the path from the root to that leaf. Prediction then relies on
traversing the tree from the root to the leaf nodes. Whenever
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the intermediate value of the product of probabilities in an
internal node is less than a given threshold, the subtree below
this node is not explored anymore. This pruning strategy
leads to a very efficient classification procedure.

5.2. Formal description of PLTs

To introduce PLTs more formally, denote a tree by T and the
root of the tree r(T ). In general, T can be of any form; here,
we consider trees of height k and degree b. The leaves of T
correspond to labels. We denote a set of leaves of a (sub)tree
rooted in node t by L(t). The parent node of t is denoted by
pa(t), and the set of child nodes by Ch(t). The path from
the root r(T ) to the jth leaf is denoted by Path(j).

PLTs use a path from a root to the jth leaf to estimate pos-
teriors ⌘(x, j). With each node t and training instance x, we
associate a label zt = J

P

j2L(t) yj � 1K. In the leaf nodes,
the labels zj , j 2 L, correspond to the original labels yj .

Consider the leaf node j and the path from the root to this
leaf node. Using the chain rule of probability, we can express
⌘(x, j) in the following way:

⌘(x, j) =

Y

t2Path(j)

⌘T (x, t) , (9)

where ⌘T (x, t) = P(zt = 1 | zpa(t) = 1,x) for all non-root
nodes t, and ⌘T (x, t) = P(zt = 1 |x) if t is the root node.
The correctness of (9) follows from the observation that
zt = 1 implies zpa(t) = 1. A detailed derivation of the chain
rule in this setup is given in Appendix A.

The training algorithm for PLTs is given in Algorithm 3.
Let Dn = {(xi,yi)}ni=1 be a training set of multi-label
examples. To learn classifiers in all nodes of a tree T , we
need to properly filter training examples to estimate ⌘T (x, t)
(line 5). Moreover, we need to use a learning algorithm A

that trains a class probability estimator ⌘̂T (x, t) for each
node t in the tree. The training algorithm returns a set of
probability estimation classifiers Q.

The learning time complexity of PLTs can be expressed in
terms of the number of nodes in which an original training
example (x,y) is used. Since the training example is used in
a node t only if t is the root or zpa(t) = 1, this number is upper
bounded by s · b · k+1, where b and k denote the degree and
height of the tree, respectively, and s is the number of positive
labels in y. For sparse labels, this value is much lower than
m. Note that learning can be performed simultaneously for
all nodes, and each node classifier can be trained using online
methods, such as stochastic gradient descent (Bottou, 2010).

Interestingly, in the case of sparse features, the space
complexity can be significantly reduced as well. Admittedly,
the number of models is the highest for binary trees and
can be as high as 2m � 1 (notice that the size of a tree
with m leaves is upper bounded by 2m � 1). This is twice

Algorithm 3 PLT.TRAIN(T,A,Dn)

1: Q = ;
2: for each node t 2 T do
3: D0

= ;
4: for i = 1 ! n do
5: if t is root or zpa(t) = 1 then
6: zt = J

P

j2L(t) yij � 1K
7: D0

= D0 [ (xi, zt)

8: ⌘̂T (x, t) = A(D0
), Q = Q [ ⌘̂T (x, t)

9: return a set of probability estimation classifiers Q.

Algorithm 4 PLT.PREDICT(x, T,Q, ⌧)

1: ˆ

y = 0m, Q = ;, Q.add(r(T ), ⌘̂T (x, r(T )))

2: while Q 6= ; do
3: (t, pt) = pop(Q)

4: if pt � ⌧ then
5: if t is a leaf node then
6: ŷt = 1

7: else
8: for c 2 Ch(t) do
9: Q.add(c, pt · ⌘̂T (x, c))

10: return ˆ

y.

the number of models in the simplest 1-vs-all approach.
Paradoxically, the space complexity can be the lowest at this
upper bound. This is because only the sibling nodes need to
share the same features, while no other features are needed
to build corresponding classifiers. Therefore, only those
(few) features needed to describe the sibling labels have to
be used in the models. If the space complexity still exceeds
the available memory, one can always use feature hashing
over all nodes (Weinberger et al., 2009).

Prediction with probabilistic label trees relies on estimating
(9) by traversing the tree from the root to the leaf nodes.
However, if the intermediate value of this product in node
t, denoted by pt, is less than a given threshold ⌧ , then the
subtree starting in node t is no longer explored. For the sake
of completeness, we shortly describe this procedure (see
Algorithm 4). We start with setting ˆ

y = 0m. In order to
traverse a tree, we initialize a queue Q to which we add the
root node rT with its posterior estimate ⌘̂T (x, r(T )). In the
while loop, we iteratively pop a node from Q and compute
pt. If pt � ⌧ , we either set ŷj = 1 if t is a leaf, or otherwise
add its child nodes to Q with the value pt multiplied by their
posterior estimates ⌘̂T (x, c), c 2 Ch(t). If Q is empty, we
stop the search and return ˆ

y.

Traversing a label tree can be much cheaper than querying
m independent classifiers, one for each label. If there is
only one label exceeding the threshold, PLT ideally needs
to call only bk + 1 classifiers (all classifiers on a path from
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the root to a leaf plus all classifiers in siblings of the path
nodes). Of course, in the worst-case scenario, the entire
tree might be explored, but even then, no more than 2m� 1

calls are required (with m leaves, the size of the tree is upper
bounded by 2m� 1). In the case of sparse label sets, PLTs
can significantly speed up the classification procedure. The
expected cost of prediction depends, however, on the tree
structure and accuracy of node classifiers.

Note that PLTs can be used with any value as a threshold.
Moreover, by considering a separate threshold ⌧t in each
node t, one can use a different threshold for each label j on
posterior estimates ⌘̂(x, j). It is enough to set a threshold in
the parent node t as follows: ⌧t = minj2Ch(t) ⌧j . In this way,
PLTs can efficiently obtain SPEs for any  in STO and FTA
(Algorithm 1), and any ⌧ in OFO (Algorithm 2). PLTs can
easily be tailored for Precision@K, too. To predict the top
labels, it is enough to change Q to a priority queue and stop
the prediction procedure after a given number of top labels.

Let us finally underline that PLTs obey strong theoretical
guarantees. In Appendix A, we derive a surrogate regret
bound showing that the overall error of PLTs is reduced
by improving the node classifiers. For optimal node
classifiers, we obtain optimal multi-label classifiers in terms
of estimation of posterior probabilities ⌘(x, j).

5.3. FastXML

As an example of another efficient sparse probability
estimator, we recall FASTXML, which adapts the idea of
standard decision trees (Breiman et al., 1984) to the XMLC
setting. To improve predictive performance, FASTXML
uses an ensemble of decision trees. Internal nodes in the
trees contain sparse linear classifiers, which are trained to
optimize an nDCG-based ranking loss. The authors show
that this optimization can be performed very efficiently.
The most costly step is L1-regularized logistic regression
solved by the newGLMNET algorithm (Yuan et al., 2012)
implemented in the LibLinear package (Fan et al., 2008).
The height of trees in FASTXML scales logarithmically with
the number of training examples (though it should be noted
that different stopping rules for growing a tree can be used).

Sparse predictions of class probabilities, a major prerequistie
for efficient macro F-measure maximization, are produced
by FASTXML in a quite natural way. This is because, during
training, the nodes are recursively partitioned till each leaf
contains only a small number of training examples. Thus,
only a small number of active labels is assigned to each leaf.
During prediction, a test example passes down the tree until
it reaches a leaf node. The prediction procedure can then
focus exclusively on the label distribution in the leaf node.
FASTXML uses a standard prediction procedure for decision
trees that relies on the relative frequencies of labels in the leaf
node reached by the test example. These relative frequencies

can be treated as CPEs. Since FASTXML is an ensemble,
the leaf node label distributions are averaged over all trees
in the ensemble. Eventually, CPEs are thus only delivered
for a small number of labels for a given test example. For the
remaining labels, the probabilities are assumed to be 0. By us-
ing thresholds and ⌧ in STO, FTA, and OFO, respectively,
the CPEs returned by FASTXML can be treated as SPEs.

5.4. PLT vs. FastXML

Both FASTXML and PLTs achieve fast prediction time
thanks to exploiting a tree-structure. A PLT is a single label
tree with linear classifiers in each node, while FASTXML
makes use of an ensemble of regular trees with linear splits.
Notice that the height of a PLT scales logarithmically with
the number of labels, while the size of a tree in FASTXML
is logarithmic in the number of training examples. Therefore,
depending on the problem, the trees may differ in size.

For a single tree, FASTXML follows only a single path from
the root to a leaf. Each leaf node corresponds to a region
in the feature space and returns a label distribution for this
region. By assuming that, in a certain region, only a small
number of labels have non-zero conditional probability,
FASTXML is able to efficiently deliver SPEs. PLTs in turn
may explore several paths from the root to the leaves. By
using a threshold on probability estimates, each internal
node decides whether to go down the tree or stop exploration.
Therefore, PLTs can efficiently deliver all labels the CPEs
of which exceed given thresholds.

Another difference is that, while FASTXML is training the
structure of the tree, PLT assumes a predefined structure
(or uses a random tree). Of course, just like conditional
probability trees (Beygelzimer et al., 2009a), PLTs could in
principle be combined with an online tree learning procedure.
Let us remark, however, that a predefined tree structure
allows for training the node classifiers independently of each
other, thereby making the whole training process amenable
to massive parallelization.

In the XMLC setting, only a few methods suggest themselves
for a combination with threshold tuning methods, such as
STO, FTA and OFO. It seems that PLTs and FASTXML
are among the best options. Some algorithms are also able
to deliver SPEs, but not always efficiently. For example, the
1-vs-all approach scales linearly with m, which is too expen-
sive in many applications. Even methods that rely on fast
training, like negative sampling (Collobert & Weston, 2008)
or fast label embeddings (Mineiro & Karampatziakis, 2015),
still exhibit linear cost for prediction. To deliver sparse
probability estimates efficiently, additional structures, such
as trees (Bengio et al., 2010; Weston et al., 2013) or locality
sensitive hashing (Shrivastava & Li, 2014), are required.
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6. Experiments
We carried out two sets of experiments. In the first, we verify
the effectiveness of PLTs in handling a large number of
labels by comparing its performance to that of FASTXML
in terms of Precision@K. In the second experiment, we
combine PLTs and FASTXML with the threshold tuning
methods, namely with FTA, STO and OFO, for maximizing
the macro F-measure. In both experiments we used six
large-scale datasets taken from the Extreme Classification
Repository2 with predefined train/test splits (see main
statistics of these datasets in Table 1).

To perform the experiments we implemented PLTs in
Java.3 We used random complete b-ary trees (where b is
a hyperparameter) with L2-logistic regression as a node
classifier, trained by a variant of stochastic gradient descent
introduced by Duchi & Singer (2009) (see Appendix B for
details). To deal with a large number of weights, we used
feature hashing shared over all tree nodes with 2

30 hash
values. In the first experiment, we tuned the hyperparameters
of PLTs in a simple 80/20 validation on the training set.
We applied the off-the-shelf hyperparameter optimizer
SMAC (Hutter et al., 2011) with a wide range of parameters,
reported in Appendix C. In the second experiment, we
used the values of the hyperparameters found to be optimal
in the first experiment. For FASTXML, we used the C++
code delivered by Prabhu & Varma (2014), as well as the
hyperparameters suggested by them.

6.1. Sparse probability estimators

In the first experiment, we evaluate the algorithms in terms of
Precision@K (for K = 1, 3, 5) and computational cost. The
results are shown in Table 1. The performance of PLTs is on
a par with that of FASTXML, getting better results on half
of the datasets. It also seems that PLTs are more efficient
in handling very sparse labels, because their training time
is typically smaller for those datasets where the number of
labels per instance is small (i.e., < 6). This can be explained
by the fact that only a very small part of the label tree is up-
dated in case of only a few positive labels (see Algorithm 4).
Notice, however, that the comparison is not completely
fair as both algorithms are implemented using different
technologies and coding styles. In the next subsection, we
more carefully analyze test time complexity, focusing on the
number of computed inner products per test example.

6.2. Extreme macro F-measure optimization

In the second experiment, we test the threshold tuning algo-
rithms described in Section 4. We use 80% of each dataset for

2http://research.microsoft.com/en-
us/um/people/manik/downloads/XC/XMLRepository.html

3Get code at https://github.com/busarobi/XMLC.

training PLTs and FASTXML, and then run FTA, STO and
OFO on the remaining 20%. The latter part of the training set
is also used to validate the input parameters of the threshold
tuning algorithms. For the vector , the input parameter of
STO and FTA, we first compute the lower bound ⌫j of the op-
timal threshold according to (5), i.e., ⌫j = b⇡j/(b⇡j +1), with
b⇡j the prior probability estimate for label j. Then,
each element of  is set to max(1/c, ⌫j), where
c 2 C = {10000, 1000, 200, 100, 50, 20, 10, 7, 5, 4, 3, 2}.
Similarly, the input parameter b of OFO is tuned over the
same setC, while its other input parameter a is constantly set
to 1. We additionally carried out experiments for assessing
the impact of parameter a (see results in Appendix D), which
slightly improves the results. We also control the thresholds
in OFO to be greater than the lower bound ⌫j .

In Figure 1, the validation and test macro F-scores of PLTs
and FASTXML are plotted against various input parameter
values in the form of 1/c. As one would expect, STO
outperforms both FTA and OFO in terms of F-score on the
validation set for high values of c (see the dashed lines on
the plots). This is not surprising, since as j goes to 0, the
probability estimates are getting less sparse. In particular, for
j = 0, STO finds the optimal threshold on the validation
set. Therefore,  can be used to trade computational
complexity off against approximation quality.

More surprisingly, the difference between the validation
and test performance of STO is substantial. This can be
explained by the fact that only 20% of the training data was
used for tuning the thresholds, and this data is not guaranteed
to contain positive instances for every label. In case of no
positive examples for a label and no predicted positives
either the F-score is set to 1 as suggested by Lewis (1995).
In turn, FTA and OFO seem to be more efficient in handling
sparse probability estimate and there is no such difference
in performance on validation and test sets.

The optimal parameters of the threshold tuning algorithms
were chosen based on the validation performance (dashed
lines in Figure 1). The corresponding test scores are shown
in Table 2. Based on the results, STO is clearly outperformed
by either FTA or OFO. We explain the poor performance of
sorting-based optimization by its susceptibility to overfitting
for sparse classes, whereas FTA and especially OFO seem
to be more robust in the extreme learning regime.

In extreme classification, the computational requirements for
evaluating the model on test examples are not less important
than the predictive performance of the model. Therefore,
we also study the average (per example) wall-clock test
times and number of inner products computed by the trained
models. We believe that the number of inner products is a
more objective measure of the computational complexity,
because PLTs and FASTXML can be viewed as an ensemble
of linear classifiers, whose main computational effort

https://github.com/busarobi/XMLC
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Table 1. Main characteristics of the datasets used in the experiment and Precision@K scores with K = {1, 3, 5} for PLTs and FASTXML
along with their training time in minutes. The highest Precision@K values are in bold for every dataset.

Main statistics of datasets PLT FASTXML
#labels #features #test #train inst./lab. lab./inst. P@1 P@3 P@5 Time P@1 P@3 P@5 Time

RCV1 2456 47236 155962 623847 1218.56 4.79 90.46 72.4 51.86 64 91.13 73.35 52.67 78
AmazonCat 13330 203882 306782 1186239 448.57 5.04 91.47 75.84 61.02 96 92.95 77.50 62.51 561
Wiki10 30938 101938 6616 14146 8.52 18.64 84.34 72.34 62.72 290 81.71 66.67 56.70 16
Delicious 205443 782585 100095 196606 72.29 75.54 45.37 38.94 35.88 1327 42.81 38.76 36.34 458
WikiLSHTC 325056 1617899 587084 1778351 17.46 3.19 45.67 29.13 21.95 653 49.35 32.69 24.03 724
Amazon 670091 135909 153025 490449 3.99 5.45 36.65 32.12 28.85 54 34.24 29.3 26.12 422

Table 2. The macro F-measure on the test set for the best hyperparameter values obtained on a validation set and the average (per example)
wall-clock test time (in milliseconds) and number of inner products computed by PLTs and FASTXML on the test sets. The numbers
in bold indicate the best macro F-score achieved on each dataset.

Macro F-score on test set Test time in millisec. Num. of inner products
PLT FASTXML PLT FASTXML PLT FASTXML

Dataset FTA STO OFO FTA STO OFO FTA STO OFO – FTA STO OFO –

RCV1 20.41 21.16 21.56 17.04 19.58 18.93 0.33 0.78 0.19 0.96 252 354 212 747
AmazonCat 34.83 31.64 33.13 41.07 37.28 42.46 0.37 2.23 0.85 1.14 225 2272 711 871
Wiki10 29.98 24.02 30.28 29.88 28.26 29.51 1.69 2.18 1.87 3.00 534 13682 2518 541
Delicious-200K 11.12 10.96 11.20 11.18 10.83 11.19 0.61 17.41 4.11 3.86 216 29067 5610 739
WikiLSHTC 12.31 16.22 14.00 21.24 20.41 20.84 0.22 13.46 4.54 1.17 175 28448 2875 900
Amazon 51.77 46.94 51.28 52.86 47.53 50.44 0.29 5.54 0.54 1.39 132 5557 125 796
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Figure 1. The macro F-measure obtained by STO, FTA and OFO with PLTs (top) and FASTXML (bottom). The dashed and solid lines
represent the performance of the methods on the validation and test set for various initial parameters, respectively.

consists of computing inner products.

The average per test example wall-clock time and number
of inner products are shown in Table 2. We used the set of
thresholds that were found to be the best in the validation
process described above. Remark that for FASTXML the
number of inner products does not depend on a tunning
method (i.e., for each method only one path from the root to
a leaf node is visited). The results reveal some general trends.
First, PLTs along with the thresholds found by FTA have the
smallest computation time except on RCV1. Second, PLTs
with thresholds found by OFO outperforms FASTXML on
three datasets. Third, the computational time for STO is
the highest in almost every case; since its performance is
usually lower than that of OFO and FTA, this suggests that
the thresholds found by STO are in general underestimated.
Remark that FASTXML uses 50 trees, while in PLTs a single
tree is explored. Moreover, the height of a tree in FASTXML

scales with the number of training examples. Therefore, a
FASTXML tree can in some cases be larger than a PLT.

7. Conclusion
We addressed the problem of macro-F measure maximization
in XMLC and combined three tuning methods (STO, FTA,
OFO) with two efficient sparse probability estimators
(PLTs and FASTXML). It seems that online F-measure
optimization (OFO) used with either of the two classifiers
yields the most promising results. As a next step, we plan
to generalize the results presented here to other complex
performance measures and work further on different types
of sparse probability estimators.
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optimal multilabel classification via probabilistic classifier
chains. In ICML, pp. 279–286, 2010.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. ImageNet: A large-scale hierarchical image database.
In CVPR, pp. 248—255, 2009.

Deng, J., Satheesh, S., Berg, A. C., and Fei-Fei, L. Fast
and balanced: Efficient label tree learning for large scale
object recognition. In NIPS 24, pp. 567–575, 2011.

Duchi, J. and Singer, Y. Efficient online and batch learning
using forward backward splitting. JMLR, 10:2899–2934,
2009.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin,
C.-J. LIBLINEAR: A library for large linear classification.
JMLR, 9:1871–1874, 2008.

Hutter, F., Hoos, H., and Leyton-Brown, K. Sequential
model-based optimization for general algorithm config-
uration. In Learning and Intelligent Optimization, pp.
507–523. Springer, 2011.

Kotłowski, W. and Dembczynski, K. Surrogate regret
bounds for generalized classification performance metrics.
In ACML, 2015.

Koyejo, S., Natarajan, N., Ravikumar, P., and Dhillon,
I. Consistent binary classification with generalized
performance metrics. In NIPS 27, pp. 2744–2752, 2014.

Koyejo, S., Natarajan, N., Ravikumar, P., and Dhillon, I.
Consistent multilabel classification. In NIPS 29, pp.
3321–3329, 2015.

Lewis, D. Evaluating and optimizing autonomous text
classification systems. In SIGIR, pp. 246–254, 1995.

Mineiro, P. and Karampatziakis, N. Fast label embeddings
via randomized linear algebra. In ECML/PKDD 2015, pp.
37–51, 2015.

Morin, F. and Bengio, Y. Hierarchical probabilistic neural
network language model. In AISTATS, pp. 246–252, 2005.

Narasimhan, H., Vaish, R., and S., Agarwal. On the statistical
consistency of plug-in classifiers for non-decomposable
performance measures. In NIPS 27, pp. 1493–1501, 2014.

Partalas, I., Kosmopoulos, A., Baskiotis, N., Artières, T.,
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