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Abstract. Object ranking is one of the most relevant problems in the realm of

preference learning and ranking. It is mostly tackled by means of two different

techniques, often referred to as pairwise and pointwise ranking. In this paper,

we present a case study in which we systematically compare two representatives

of these techniques, a method based on the reduction of ranking to binary clas-

sification and so-called expected rank regression (ERR). Our experiments are

meant to complement existing studies in this field, especially previous evalua-

tions of ERR. And indeed, our results are not fully in agreement with previous

findings and partly support different conclusions.
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1. Introduction

Preference learning is an emerging subfield of machine learning that has received
increasing attention in recent years [1]. Roughly speaking, the goal in preference
learning is to induce preference models from observed data that reveals information

Received: 11 December 2016 / Accepted: 30 December 2016



74

about the preferences of an individual or a group of individuals in a direct or indirect
way; these models are then used to predict the preferences in a new situation.

In general, a preference learning system is provided with a set of items (e.g.,
products) for which preferences are known, and the task is to learn a function that
predicts preferences for a new set of items (e.g., new products not seen so far), or for
the same set of items in a different context (e.g., the same products but for a different
user). Frequently, the predicted preference relation is required to form a total order,
in which case we also speak of a ranking problem. In fact, among the problems in the
realm of preference learning, the task of “learning to rank” has probably received the
most attention in the literature so far, and a number of different ranking problems
have already been introduced. Based on the type of training data and the required
predictions, Fürnkranz and Hüllermeier [1] distinguish between the problems of object
ranking [2, 3], label ranking [4–6] and instance ranking [7].

The focus of this paper is on object ranking. What we present is an empirical study
in which we compare the two most common approaches to this problem: pairwise
ranking and pointwise ranking, with the latter being represented by a method called
expected rank regression [3,8,9]. Although we are not the first to conduct experiments
of that kind, our study sheds new light on the comparison of these two techniques
and helps to better understand their advantages and disadvantages.

The rest of the paper is organized as follows. In the next section, we recall the
problem of object ranking as well as the techniques of pairwise and pointwise ranking.
The ranking data used for the purpose of our case study is described in Section 3. The
design of the experiments and the results obtained are then presented in Section 4,
prior to concluding the paper in Section 5.

2. Object ranking

Consider a reference set of objects or items X , and assume each item x ∈ X to be
described in terms of a feature vector; thus, an item is a vector x = (x1, . . . , xd) ∈ Rd

and X ⊆ Rd. Training data consists of a set of rankings {O1, . . . , ON}, where each
ranking Oj is a total order of a subset of nj = |Oj | items xji ∈ X:

Oj : xj1 � xj2 � . . . � xjnj
(1)

The order relation � is typically (though not necessarily) interpreted in terms of
preferences, i.e., x � x′ suggests that x is preferred to x′.

The goal in object ranking is to learn a ranking function that accepts any (query)
subset Q ⊆ X of n = |Q| items as input. As output, the function produces a ranking
(total order) O of these items. This prediction is evaluated in terms of a suitable loss
function or performance metric; a common choice is the Kendall τ correlation, which
counts the number of item pairs x,x′ ∈ Q that are incorrectly ordered by O and
normalizes this number (which is between 0 and n(n− 1)/2) to the range [−1,+1].
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2.1. Representation and learning

The ranking function sought in object ranking is a complex mapping from 2X to the
set of all total orders over subsets of X . A first question, therefore, is how to represent
a “ranking-valued” function of that kind, and a second one is how it can be learned
efficiently.

As for the question of representation, a ranking function is typically implemented
by means of a scoring function U : X −→ R, so that x � x′ if U(x) > U(x′) for
all x,x′ ∈ X . In other words, a ranking-valued function is implicitly represented by
a real-valued function. Obviously, U can be considered as a kind of utility function,
and U(x) as a latent utility degree assigned to an item x. Seen from this point of
view, the goal in object ranking is to learn a latent utility function on a reference
set X . In the following, we shall also refer to U itself as a ranking function.

The representation of a ranking function in terms of a real-valued (utility) function
also suggests natural approaches to learning. In particular, two such approaches are
prevailing in the literature. The first one reduces the original ranking problem to
regression; as it seeks a model that assigns appropriate scores to individual items x,
it is referred to as the pointwise approach. The second idea is to reduce the problem
to binary classification; here, the focus is on pairs of items, which is why the approach
is called the pairwise approach.

2.2. Pairwise ranking

Given a ranking (1) as training information, the pairwise approach extracts all pair-
wise preferences xji � xjk , 1 ≤ i < k ≤ nj , and considers these preferences as exam-
ples for a binary classification task. This approach is especially simple if U is a linear
function of the form U(x) = w>x. In this case, U(x) > U(x′) if w>x > w>x′, which
is equivalent to w>z > 0 for z = x−x′ ∈ Rd. Thus, from the point of view of binary
classification (with a linear threshold model), z can be considered as a positive and
−z as a negative example.

In principle, any binary classification algorithm can be applied to learn the weight
vector w from set of examples produced in this way. In the case of logistic regression,
the resulting model has a specifically nice interpretation. Given two items x and x′,
the model produces a probability for the preference x � x′ and a complementary
probability for x′ � x. The former corresponds to the probability of a positive label
y = +1 for the instance z = x− x′, i.e.,

P(x � x′) = P(y = +1 | z) =
1

1 + exp(−w>(x− x′))

=
exp(U(x))

exp(U(x)) + exp(U(x′))

Thus, observed preferences are supposed to follow the Bradley-Terry model of discrete
choice [10]: Having to choose between two options x and x′, the probability for decid-
ing in favor of either of them is proportional to the (exponential of the) corresponding
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utility. The maximum likelihood estimator w then simply maximizes the probability
of the observed preferences under this choice model.

2.3. Pointwise ranking

Pointwise ranking methods induce a (utility) function U : X −→ R as well. To do so,
however, they fit a regression function to training examples of the form (xi, yi). Here,
an obvious question concerns the definition of the target values yi. In the setting of
object ranking as introduced above, only relative information about the preference
of items xi in comparisons to others is given, but no absolute evaluations that could
immediately be associated with a single xi.

Obviously, a reasonable target yi for an item xi is its (relative) position in X , i.e.,
yi = #{x ∈ X |xi � x},1 because sorting according to these scores yields perfect
ranking performance. Again, however, since only rankings Oj of subsets of X are
observed, these scores are not part of the training data.

In the method of expected rank regression (ERR), the scores are therefore approx-
imated in terms of their expectation [3,8,9]. More specifically, given a ranking Oj of
length nj , an item xi ranked on position ri in Oj is assigned the score yi = ri/(ni+1).
This is justified by taking an expectation over all (complete) rankings of X and as-
suming a uniform distribution. Roughly speaking, the items in Oj are assumed to be
distributed uniformly among the whole spectrum of ranks.

2.4. Pairwise versus pointwise ranking

The pointwise approach solves a regression problem on |O1|+ . . .+ |ON | training ex-
amples in total; thus, if |Oj | ≈ K, the size of the training data is of the order O(KN).
The number of examples created by the pairwise approach for binary classification is
of the order O(K2N)—although, at the cost of a slight loss of information, it could
be reduced to O(KN) as well, namely by only extracting consecutive preferences
xji � xji+1

from (1). In any case, linear regression is simpler and computationally
less expensive than methods for binary classification, such as logistic regression. Thus,
from the point of view of complexity, the pointwise approach seems to be preferable.

Also note that, while the pointwise approach leaves the rankings Oj intact, the
pairwise approach splits a ranking Oj into pairwise comparisons. This necessarily
comes with a loss of information, even when generating the full set of comparisons.
This is because, statistically, the probability of observing the ranking as a whole is
normally different from the probability of observing the set of pairwise preferences
independently of each other.

That being said, the assignment of scores yi in ERR is based on a rather strong
and arguably unrealistic assumption. Moreover, these scores do not reflect an inherent

1 Assuming X is finite.
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property of an item xi, but instead depend on the context in which xi is observed.
Therefore, one may wonder whether predicting the yi as a function of item-features
is possible at all. Roughly speaking, the pointwise approach could be questioned
because it adds information to the training data that is actually not present. This
information is unreliable at best and misleading at worst. The pairwise approach, on
the other hand, extracts only qualitative information. This information is weaker but
indeed valid.

Finally, one may wonder whether a regression approach is suitable for fitting
(relative) ranks, because ranks are only measured on an ordinal scale. In this regard,
however, one should also note that the regression function U is not required to fit the
data well in a numerical sense, i.e., in terms of the squared error loss. Instead, as it
is only used for the purpose of ranking, any function that is comonotonic with the
ranks is equally good.

Empirically, ERR has indeed been shown to be competitive and sometimes even
superior to other ranking methods [3,8,9], albeit under experimental conditions that
agree with the assumptions underlying this method. This paper is meant to com-
plement these experiments by another case study, in which we systematically control
certain properties of the training data in order to see to what extent they affect ERR.
In particular, we are interested in scenarios that violate the assumptions of ERR. The
hypotheses of this study are as follows:

H1: Due to the disputable way in which target values are produced for training in
ERR, this method should in general be inferior to pairwise ranking.

H2: In particular, the shorter the training rankings Oj , the less accurate the approx-
imation of target values in terms of expected ranks, and hence the worse the
performance of ERR should be. Likewise, we suspect that the variance of the
lengths n1, . . . , nN of the rankings in the training data has a negative influence.

H3: The performance of ERR will also drop due to a violation of the assumption of
uniform sampling of positions.

3. TripAdvisor hotel dataset

Our case study deals with the ranking of hotels. The dataset used for performing
the experiments was taken from the TripAdvisor website,2 using a combination of
web crawling and web scraping tools, on September 21 and 22, 2014. The dataset
contains five rankings for hotels in five major German cities: Düsseldorf (110 hotels),
Hamburg (170 hotels), Berlin (363 hotels), Frankfurt (149 hotels), and Munich (194
hotels). These rankings are referred to as complete rankings in the rest of this paper
(they correspond to the reference set X ).

The position of each hotel in the ranking is determined by the so-called popu-
larity index, which is computed by TripAdvisor based on the reviews for the hotels.

2 www.tripadvisor.com
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Although the true underlying computational formula (utility function) is unknown,
several major factors contributing to this index are mentioned on the website.3 These
include the number of reviews, the age of reviews, and the overall quality of reviews.
We used these attributes as features for each hotel in the dataset and complemented
them by a set of additional attributes: distance to the city center (real number), num-
ber of hotel stars (ordinal), number of pictures on the TripAdvisor website (natural
number), number of hotel rooms (natural number), average price per double room
(real number), recommendation percent (percentage), number of reviews, five numer-
ical features containing the number of ratings (from very good to very poor) given
by the reviewers, and six real-valued features with average rating for different hotel
attributes (location, sleep quality, room service, cost benefit, and cleanliness).

4. Experiments

We compare ERR with pairwise ranking based on logistic regression (LR). To guar-
antee a fair comparison, a linear utility function U(x) = w>x is used in both ap-
proaches. Moreover, the preprocessing of the data, including a standardization of all
input attributes, was done in exactly the same way.

The general experimental design is as follows: We use one complete ranking
(Berlin with 363 hotels) to generate training data in the form of incomplete rank-
ings O1, . . . , ON . LR and ERR are trained on this data as described in Sections 2.2.
and 2.3., respectively. The models thus obtained are then evaluated on the remaining
four cities: The four complete rankings are predicted, the Kendall correlation is de-
termined for each of them individually, and finally the correlations are averaged. All
experiments are repeated 100 times.

To test our hypotheses, the sampling procedure was controlled as follows:

� The lengths nj = |Oj | were sampled (independently) at random from a uni-
form distribution on {K − d, . . . ,K + d}. Thus, the average length of an ob-
servation is K, and the standard deviation is proportional to d. We chose
K ∈ {5, 10, 20, 50, 100, 250} and d ∈ {0, 1, 3, 4, 5, 7, 17, 47, 97}.4

� To make the results of different experiments comparable, regardless of the pa-
rameters K and d, we set N = 1000/K. Thus, the total number of hotels
included in a sample is always 1000 (on average).

� After the length nj of a ranking has been obtained, the ranking Oj itself is
produced by randomly sampling nj hotels in Berlin (and keeping their original
order). For the sampling procedure, three different scenarios are considered:

– Uniform. In this case, hotels are drawn uniformly at random (without
replacement).

3 https://www.tripadvisor.com/TripAdvisorInsights/n684/tripadvisor-popularity-ranking-key-
factors-and-how-improve

4 Since a length cannot be negative, not all (K, d) combinations are possible.
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– Top hotels. This procedure has a bias in favor of hotels in the top of the
list. First, we randomly pick one hotel from the first 50 in the complete
ranking. This hotel is removed, and the next one is chosen among its
neighbors, namely the three ones above and below. This procedure is
continued until nj hotels are collected.

– Two groups. The same sampling procedure as in the previous case is used
(with a smaller neighborhood of 2 instead of 3), but the first hotel is
randomly taken from first or the last 50 hotels.

The results of the experiments are summarized in Table 1 in terms of the average
Kendall τ correlation and its standard deviation. Moreover, the following loss/gain
of performance of ERR relative to LR is shown in the form of heatmaps in Figure 1:

τLR − τERR

τLR
(2)

The following conclusions can be drawn from these results:

� The pairwise approach (LR) consistently outperforms the pointwise approach
(ERR) in all experiments. Moreover, pairwise ranking remains relatively stable
across all settings, whereas the performance of ERR is much more sensitive
toward the parameters. Thus, our hypothesis H1 is clearly confirmed.

� Our conjecture that ERR benefits from longer rankings is confirmed as well.
Indeed, the performance of ERR clearly improves with increasing K. For the
variance of the lengths, a clear trend is not visible. A problem here could
be that the mean and variance of the length cannot be separated completely:
Increasing d will always lead to producing a few rankings that are longer than
K, which might be beneficial for ERR. Anyway, our conjecture H2 is confirmed
only partially.

� Both approaches perform best in the case of uniform sampling. This was to
be expected, since uniform sampling produces observations from the complete
feature space. In the top hotels scenario, the pairwise approach remains rather
stable, whereas ERR significantly drops in performance and seems to predict
almost at random. A similar picture is obtained for the two groups scenario.
These results clearly support our conjecture H3, namely that ERR is very sen-
sitive toward deviations from the assumption of uniform sampling.
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Table 1. Mean ± standard deviation of Kendall’s tau for the uniform scenario (top),
top hotels (middle), and two groups (bottom).

Approach K/d 0 1 3 4 5 7 17 47 97

Pointwise 2 .248± .228 – – – – – – – –
Pairwise 2 .832± .010 – – – – – – – –

Pointwise 5 .390± .229 .302± .221 .154± .204 – – – – – –
Pairwise 5 .840± .006 .840± .005 .839± .006 – – – – – –

Pointwise 10 .377± .179 .432± .145 .536± .104 .555± .125 .567± .111 .615± .091 – – –
Pairwise 10 .841± .005 .841± .005 .840± .005 .840± .005 .839± .006 .839± .005 – – –

Pointwise 20 .707± .054 .703± .053 .700± .063 .712± .064 .713± .048 .719± .038 .743± .037 – –
Pairwise 20 .841± .004 .841± .004 .841± .005 .841± .005 .840± .005 .841± .005 .840± .005 – –

Pointwise 50 .786± .016 .785± .016 .784± .019 .786± .019 .785± .019 .785± .017 .788± .018 .794± .016 –
Pairwise 50 .841± .004 .841± .004 .841± .004 .841± .005 .841± .004 .842± .005 .841± .005 .841± .004 –

Pointwise 100 .803± .009 .804± .009 .802± .010 .805± .009 .804± .009 .803± .010 .801± .010 .802± .009 .806± .008
Pairwise 100 .841± .004 .841± .004 .841± .004 .841± .004 .841± .004 .842± .003 .841± .004 .842± .004 .842± .004

Pointwise 250 .812± .003 .811± .003 .812± .004 .812± .004 .811± .004 .812± .004 .811± .004 .811± .004 .812± .004
Pairwise 250 .843± .003 .842± .003 .843± .003 .843± .003 .842± .003 .843± .003 .843± .003 .842± .003 .843± .002

Approach K/d 0 1 3 4 5 7 17 47 97

Pointwise 2 .085± .232 – – – – – – – –
Pairwise 2 .749± .079 – – – – – – – –

Pointwise 5 .088± .339 .010± .316 .021± .287 – – – – – –
Pairwise 5 .722± .073 .735± .068 .734± .081 – – – – – –

Pointwise 10 .037± .291 .028± .233 .083± .227 .137± .285 .067± .253 .115± .257 – – –
Pairwise 10 .704± .078 .708± .082 .711± .075 .675± .105 .700± .084 .676± .087 – – –

Pointwise 20 .321± .217 .332± .224 .327± .231 .299± .205 .367± .203 .304± .216 .412± .183 – –
Pairwise 20 .670± .090 .673± .067 .676± .075 .673± .072 .683± .068 .707± .066 .707± .050 – –

Pointwise 50 .587± .042 .589± .046 .586± .047 .585± .040 .586± .048 .581± .046 .579± .043 .596± .054 –
Pairwise 50 .777± .016 .781± .014 .776± .016 .776± .016 .773± .019 .774± .018 .764± .027 .790± .018 –

Pointwise 100 .675± .013 .677± .014 .674± .012 .675± .012 .676± .010 .678± .012 .674± .018 .654± .035 .690± .052
Pairwise 100 .762± .013 .763± .014 .759± .014 .765± .013 .767± .014 .767± .012 .782± .014 .766± .010 .781± .010

Pointwise 250 .792± .006 .792± .005 .794± .007 .793± .006 .794± .007 .794± .008 .794± .011 .789± .013 .782± .022
Pairwise 250 .811± .004 .811± .004 .812± .004 .811± .004 .811± .004 .811± .005 .814± .005 .816± .004 .822± .009

Approach K/d 0 1 3 4 5 7 17 47 97

Pointwise 2 .006± .279 – – – – – – – –
Pairwise 2 .402± .210 – – – – – – – –

Pointwise 5 .015± .287 .008± .173 .030± .139 – – – – – –
Pairwise 5 .533± .132 .569± .124 .543± .109 – – – – – –

Pointwise 10 .019± .243 .004± .190 .021± .183 .010± .155 .023± .187 .018± .160 – – –
Pairwise 10 .595± .065 .575± .070 .587± .062 .588± .069 .589± .076 .602± .069 – – –

Pointwise 20 .172± .263 .061± .211 .076± .190 .030± .217 .045± .206 .048± .198 .021± .212 – –
Pairwise 20 .658± .051 .646± .052 .655± .045 .670± .050 .663± .052 .667± .054 .696± .044 – –

Pointwise 50 .350± .295 .260± .251 .160± .233 .153± .225 .177± .228 .116± .254 .110± .242 .158± .249 –
Pairwise 50 .761± .016 .762± .016 .760± .018 .764± .018 .764± .017 .762± .017 .765± .017 .789± .014 –

Pointwise 100 .482± .249 .423± .237 .406± .212 .420± .217 .342± .193 .385± .221 .259± .272 .270± .296 .408± .266
Pairwise 100 .803± .015 .804± .010 .805± .009 .805± .012 .805± .013 .806± .011 .807± .011 .819± .010 .834± .008

Pointwise 250 .802± .011 .803± .012 .802± .012 .802± .012 .802± .012 .805± .012 .799± .019 .798± .023 .789± .032
Pairwise 250 .836± .008 .836± .008 .836± .008 .836± .009 .836± .007 .837± .007 .838± .006 .839± .007 .838± .009
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Figure 1. Relative improvement (2) for the uniform scenario (top), top hotels (mid-
dle), and two groups (bottom).
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5. Conclusion

In summary, the results of our case study convey a picture that to some extent
disagrees with previous experimental evaluations of expected rank regression, and
which confirms our reservations regarding this approach. ERR seems to be compet-
itive under ideal conditions, namely for sufficiently long rankings that are uniformly
distributed across ranks. However, any deviation from these conditions leads to a sig-
nificant drop in performance. As opposed to this, pairwise ranking shows a much
more stable behavior and maintains a consistently strong performance across differ-
ent experimental settings.

Needless to say, a single case study is necessarily limited in scope. Therefore, the
conclusions drawn from the study should of course not be overgeneralized. Instead,
we consider them as a starting point for further investigations that are needed to
complete the picture and to gain a full understanding of the techniques of pairwise
and pointwise ranking.
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