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Introduction

This extended abstract outlines the idea of realizing locally weighted learning and
statistical inference within the framework of superset learning. More specifically,
we propose an alternative to standard locally weighted linear regression, which
is commonly used in statistics and machine learning. Our approach is based on
replacing precisely observed output values by intervals—a process we refer to as
“data imprecisiation”. As will be explained in more detail later on, the influence
of an observation can thus be controlled by the length of the corresponding
interval.

Our approach builds on a generic framework for superset learning that we recently
introduced in [5, 6], and that will be briefly recalled in the next section. The main
purpose of this framework is to support the systematic development of methods
for learning from imprecise or ambiguous data, namely, training data that is
characterised in terms of sets of candidate values. Additionally, however, it can be
used for learning from standard (precise) data, which is deliberately turned into
imprecise data. In this way, different effects can be achieved, including the one
already mentioned, namely the weighing of the influence of a training example
on the overall result of the learning process: the more imprecise an observation is
made, the less it will influence the model or prediction induced from the data.

In the next section, we recall our generic approach to superset learning based on
generalized loss minimization. Then, we show how this approach can be used
to develop an alternative method for locally weighted linear regression. Prior to
concluding, we present some experimental results.
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Superset Learning

Superset learning is a specific type of learning from weak supervision, in which
the outcome (response) associated with a training instance is only characterized
in terms of a subset of possible candidates. Thus, superset learning is somehow
in-between supervised and semi-supervised learning, with the latter being a
special case (in which supersets are singletons for the labeled examples and
cover the entire output space for the unlabeled ones). There are numerous
applications in which only partial information about outcomes is available [8].
Correspondingly, the superset learning problem has received increasing attention
and has been studied by various authors in recent years, albeit under different
names [4, 7, 9, 2].

Setting

Consider a standard setting of supervised learning with an input (instance) space
𝒳 and an output space 𝒴. The goal is to learn a mapping from 𝒳 to 𝒴 that
captures, in one way or the other, the dependence of outputs (responses) on
inputs (predictors). The learning problem essentially consists of choosing an
optimal model (hypothesis) 𝑀* from a given model space (hypothesis space) M,
based on a set of training data

𝒟 =
{︀

(𝑥𝑛, 𝑦𝑛)
}︀𝑁

𝑛=1
∈ (𝒳 × 𝒴)𝑁 . (1)

More specifically, optimality typically refers to optimal prediction accuracy, i.e.,
a model is sought whose expected prediction loss or risk

ℛ(𝑀) =
∫︁

𝐿
(︀
𝑦, 𝑀(𝑥)

)︀
𝑑 P(𝑥, 𝑦) (2)

is minimal; here, 𝐿 : 𝒴 × 𝒴 −→ R+ is a loss function, and P is an (unknown)
probability measure on 𝒳 ×𝒴 modeling the underlying data generating process.

Here, we are interested in the case where output values 𝑦𝑛 ∈ 𝒴 are not necessarily
observed precisely; instead, only a superset 𝑌𝑛 ⊆ 𝒴 is observed, i.e., a subset 𝑌𝑛

such that 𝑦𝑛 ∈ 𝑌𝑛. Therefore, the learning algorithm does not have direct access
to the (precise) data (1), but only to the (imprecise, ambiguous) observations

𝒪 =
{︀

(𝑥𝑛, 𝑌𝑛)
}︀𝑁

𝑛=1
∈ (𝒳 × 2𝒴)𝑁 . (3)
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Generalized Loss Minimization

Recall the principle of empirical risk minimization (ERM): A model 𝑀* is sought
that minimizes the empirical risk

ℛ𝑒𝑚𝑝(𝑀) = 1
𝑁

𝑁∑︁
𝑛=1

𝐿
(︀
𝑦𝑛, 𝑀(𝑥𝑛)

)︀
, (4)

i.e., the average loss on the training data 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁
𝑖=1. The empirical risk

(4) serves as a surrogate of the true risk (2). In order to avoid the problem of
possibly overfitting the data, not (4) itself is typically minimized but a regularized
version thereof.

In [6], we developed a generic approach to superset learning that can be seen as
a generalization of empirical risk minimization. More specifically, this approach
is based on the minimization of the empirical risk with respect to the generalized
loss function or optimistic superset loss (OSL)

𝐿* : 2𝒴 × 𝒴 −→ R+, (𝑌, 𝑦) ↦→ min
{︀

𝐿(𝑦, 𝑦) | 𝑦 ∈ 𝑌
}︀

(5)

instead of the original loss 𝐿. Thus, each candidate model 𝑀 ∈M is evaluated
in terms of

ℛ𝑒𝑚𝑝(𝑀) = 1
𝑁

𝑁∑︁
𝑛=1

𝐿*(︀𝑌𝑛, 𝑀(𝑥𝑛)
)︀

, (6)

and an optimal model 𝑀* is one that minimizes (6). The choice of the minimum
as an aggregation of the possible true losses in (5) is motivated by the goal of
“data disambiguation”, i.e., of finding the most plausible instantiations 𝑦*

𝑛 ∈ 𝑌𝑛

of the ambiguous observations 𝑌𝑛. For details of this approach, we refer to [?].

Interestingly, several existing machine learning methods are recovered as special
cases of our framework, i.e., for specific combinations of output space, loss
function and imprecisiation of the data. For example, support vector regression
[10] is obtained as a generalisation of standard regression with 𝐿1 loss if precise
output values 𝑦𝑛 ∈ R are replaced by interval-valued data 𝑌𝑛 = [𝑦𝑛 − 𝜖, 𝑦𝑛 + 𝜖],
i.e., 𝜖-intervals around the original data points; in fact, our generalized loss then
corresponds to the 𝜖-insensitive loss function used in support vector regression.
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Locally Weighted Linear Regression

Obviously, the OSL 𝐿* is a relaxation of the original loss 𝐿 in the sense that
𝐿* ≤ 𝐿. More specifically, the larger the set 𝑌 , the smaller the loss:

𝑌 ⊃ 𝑌 ′ ⇒ ∀ 𝑦 ∈ 𝒴 : 𝐿*(𝑌, 𝑦) ≤ 𝐿*(𝑌 ′, 𝑦)

Thus, the loss 𝐿(𝑦, 𝑦) incurred for a prediction 𝑦 can be weakened by replacing
the original observation 𝑦 with a subset around 𝑦, and the larger the subset, the
smaller the loss. This observation is on the basis of our idea of realizing locally
weighted inference within the framework of superset learning.

In particular, our framework suggests natural approaches to locally weighted
linear and support vector regression that deviate from the standard approaches
[1, 3]. In standard locally weighted regression, a prediction 𝑦 for a query instance
𝑥 takes the form 𝑦 = 𝑥⊤𝛽*, where 𝛽* is obtained by minimizing a sum of
weighted losses:

𝛽* = arg min
𝛽

𝑁∑︁
𝑛=1

𝑘(𝑥, 𝑥𝑛)𝐿
(︀
𝑦𝑛, 𝑥⊤

𝑛 𝛽
)︀

, (7)

where 𝑘(𝑥, ·) is a kernel function that assigns large weights to instances 𝑥𝑛 close
to 𝑥 and smaller weights to instances farther away; moreover, 𝐿 is a loss function
such as absolute or squared difference.

Instead of weighing each individual loss 𝐿 (𝑦𝑛, 𝑦𝑛) in terms of a constant factor
𝑐𝑛 = 𝑘(𝑥, 𝑥𝑛), our approach suggests another modification, namely, a specific
kind of “stretching” of the loss function around the observed outcome 𝑦𝑛, which
is achieved by the OSL (5) if 𝑦𝑛 is replaced by a superset 𝑌𝑛 ∋ 𝑦𝑛. This superset
reasonably takes the form of an interval [𝑦𝑛 − 𝛿𝑛, 𝑦𝑛 + 𝛿𝑛], where the length 𝛿𝑛

plays the role of the weight 𝑐𝑛 = 𝑘(𝑥, 𝑥𝑛) in the original approach. Thus, our
method finds the generalized empirical risk minimizer

𝛽* = arg min
𝛽

𝑁∑︁
𝑛=1

𝐿* (︀𝑌𝑛, 𝑥⊤
𝑛 𝛽
)︀

. (8)

This is accomplished by an iterative algorithm that alternates between two
steps:

∙ Given a current instantiation of the set-valued data, i.e., values 𝑦*
𝑛 ∈ 𝑌𝑛,

𝑛 = 1, . . . , 𝑁 , a parameter vector 𝛽* is fit to this data using standard
linear regression (the first instantiation is initialized with the original data
𝑦𝑛, i.e., the midpoints of the intervals 𝑌𝑛).
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∙ Then, given this solution, an improved instantiation is determined by
replacing the current values 𝑦*

𝑛 with those that appear most plausible
under this solution:

𝑦*
𝑛 ← arg min

𝑦∈𝑌𝑛

𝐿(𝑦, 𝑥⊤
𝑛 𝛽*)

For this algorithm, convergence to the optimal solution (8) can be proved formally.
The values 𝑦*

𝑛 eventually found serve as a (hypothetical) disambiguation of the
set-valued data 𝑌𝑛, 𝑛 = 1, . . . , 𝑁 .

Experiments

In a first experimental study, we compared our interval-based approach to
locally weighted linear regression with the conventional one on a number of UCI
benchmark data sets. The loss function 𝐿 in (7) was initialised with the standard
squared error loss, and the Gaussian kernel function 𝑘(𝑥, 𝑥′) = exp(−𝜆2‖𝑥−𝑥′‖2)
was used. To assure maximal comparability of the two approaches, we used a
similar function, namely exp(𝜆2‖𝑥− 𝑥′‖2)− 1, to specify the width of intervals
in our method. Prediction accuracy (mean squared error) was estimated by
means of a 10-fold cross validation, and the hyper-parameter 𝜆 was selected in
an internal (5-fold) cross validation.

Table 1 shows the results in terms of average error ± standard deviation. As can
be seen, the two methods perform more or less on a par; at least, there are no
statistically significant differences between them.

Table 1: Experiment result on real-world data (with standardized outputs).

data set locally weighted interval-based
Breast cancer Wisconsin 0.1399 ± 0.4781 0.1432 ± 0.4621
Red wine quality 0.6083 ± 0.9737 0.5936 ± 0.9601
White wine quality 0.6456 ± 1.3481 0.6291 ± 1.1302
Community violence pred. 0.0361 ± 0.0735 0.0419 ± 0.0704
Combined cycle power plant 0.0612 ± 0.0944 0.0648 ± 0.0933
Parkinsons telemonitoring 0.3765 ± 0.9295 0.3596 ± 0.6646
Physicochemical properties
of protein tertiary structure

0.1011 ± 0.3913 0.1582 ± 0.7911
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Concluding Remarks

Overall, the results are quite promising, suggesting that our method based on
superset learning provides a viable alternative to standard locally weighted
learning. This provides a strong motivation for investigating this idea in more
detail, not only from an empirical but also from a theoretical and algorithmic
point of view.

Currently, we are elaborating on locally weighted linear regression with 𝐿1 instead
of 𝐿2 loss, a case for which our framework suggests an alternative approach
to locally weighted support vector regression. Of course, going beyond local
regression, the same framework can also be applied to generalize any other type
of instance weighing in machine learning. Thus, building on the results so far,
there are various interesting lines of research to be explored in future work.
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