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Abstract

The F-measure, which has originally been introduced in information retrieval, is nowa-
days routinely used as a performance metric for problems such as binary classification,
multi-label classification, and structured output prediction. Optimizing this measure is a
statistically and computationally challenging problem, since no closed-form solution exists.
Adopting a decision-theoretic perspective, this article provides a formal and experimental
analysis of different approaches for maximizing the F-measure. We start with a Bayes-risk
analysis of related loss functions, such as Hamming loss and subset zero-one loss, show-
ing that optimizing such losses as a surrogate of the F-measure leads to a high worst-case
regret. Subsequently, we perform a similar type of analysis for F-measure maximizing algo-
rithms, showing that such algorithms are approximate, while relying on additional assump-
tions regarding the statistical distribution of the binary response variables. Furthermore,
we present a new algorithm which is not only computationally efficient but also Bayes-
optimal, regardless of the underlying distribution. To this end, the algorithm requires only
a quadratic (with respect to the number of binary responses) number of parameters of
the joint distribution. We illustrate the practical performance of all analyzed methods by
means of experiments with multi-label classification problems.

Keywords: F-measure, Bayes-optimal predictions, regret, statistical decision theory,
multi-label classification, structured output prediction

1. Introduction

Being rooted in information retrieval (van Rijsbergen, 1974), the so-called F-measure is
nowadays routinely used as a performance metric for different types of prediction problems,
including binary classification, multi-label classification (MLC), and certain applications
of structured output prediction. Amongst others, examples of such applications include
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chunking or named entity recognition in natural language processing (Sang and De Meulder,
2003), image segmentation or edge detection in computer vision (Martin et al., 2004) and
detection of geographic coincidence in social networks (Zhuang et al., 2012).

Compared to measures like error rate in binary classification and Hamming loss in multi-
label classification, the F-measure enforces a better balance between performance on the
minority and the majority class, respectively. Therefore, it is more suitable in the case of
imbalanced data, as it does not take the true negative rate into account. Given a prediction
h = (h1, . . . , hm) ∈ {0, 1}m of an m-dimensional binary label vector y = (y1, . . . , ym) (e.g.,
the class labels of a test set of size m in binary classification or the label vector associated
with a single instance in MLC or the binary vector indicating named entities in a text
document in a structured output prediction task), the F-measure is defined as follows:

F (y,h) =
2
∑m

i=1 yihi∑m
i=1 yi +

∑m
i=1 hi

∈ [0, 1] , (1)

where 0/0 = 1 by definition. This measure essentially corresponds to the harmonic mean
of precision prec and recall recl:

prec(y,h) =

∑m
i=1 yihi∑m
i=1 hi

, recl(y,h) =

∑m
i=1 yihi∑m
i=1 yi

.

One can generalize the F-measure to a weighted harmonic average of these two values, but
for the sake of simplicity, we stick to the unweighted mean, which is often referred to as the
F1-score or the F1-measure.

Despite its popularity in experimental settings, very few theoretical studies of the F-
measure can be found. This paper intends to bridge this gap by analyzing existing methods
and, moreover, by presenting a new algorithm that exhibits the desirable property of sta-
tistical consistency. To this end, we will adopt a decision-theoretic viewpoint. Modeling
the ground-truth as a random variable Y = (Y1, Y2, . . . , Ym), i.e., assuming an underly-
ing probability distribution P over {0, 1}m, the prediction h that maximizes the expected
F-measure is given by

hF = arg max
h∈{0,1}m

E [F (Y ,h)] = arg max
h∈{0,1}m

∑
y∈{0,1}m

P (y)F (y,h). (2)

The corresponding optimization problem is non-trivial and cannot be solved in closed form.
Moreover, a brute-force search is infeasible, as it would require checking all 2m combinations
of prediction vector h and summing over an exponential number of terms in each combina-
tion. As a result, many researchers who report the F-measure in experimental studies rely
on optimizing a surrogate loss as an approximation of (2). For problems such as multi-label
classification and structured output prediction, the Hamming loss and the subset zero-one
loss are immediate candidates for such surrogates. However, as will be shown in Section 3,
these surrogates do not yield a statistically consistent model and, more importantly, they
manifest a high regret. As an intermezzo, we present results for the Jaccard index, which
has recently gained an increased popularity in areas such as multi-label classification. This
measure is closely related to the F-measure, and its optimization appears to be even more
difficult.
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Apart from optimizing surrogates, a few more specialized approaches for finding the
F-measure maximizer (2) have been presented in the last decades (Lewis, 1995; Chai, 2005;
Jansche, 2007; Ye et al., 2012; Quevedo et al., 2012). These algorithms will be revisited in
Section 4. They typically require the assumption of independence of the Yi, i.e.,

P (Y = y) =
m∏
i=1

pyii (1− pi)1−yi , (3)

with pi = P (Yi = 1). While being natural for problems like binary classification, this
assumption is indeed not tenable in domains like MLC and structured output prediction.
We will show in Section 4 that algorithms based on independence assumptions or marginal
probabilities are not statistically consistent when arbitrary probability distributions P are
considered. Moreover, we also show that the worst-case regret of these algorithms is very
high.

Looking at (2), it seems that information about the entire joint distribution P is needed
to maximize the F-measure. Yet, as will be shown in this paper, the problem can be
solved more efficiently. In Section 5, we present a general algorithm that requires only a
quadratic instead of an exponential (with respect to m) number of parameters of the joint
distribution. If these parameters are given, then, depending on their form, the exact solution
can be obtained in quadratic or cubic time. This result holds regardless of the underlying
distribution. In particular, unlike algorithms such as Chai (2005); Jansche (2007); Ye et al.
(2012) and Quevedo et al. (2012), we do not require independence of the binary response
variables (labels).

Our theoretical results are specifically relevant for applications in multi-label classi-
fication and structured output prediction. In these application domains, three different
aggregation schemes of the F-measure can be distinguished, namely instance-wise, micro-
and macro-averaging. One should carefully distinguish these versions, since algorithms
optimized with a given objective are usually performing suboptimally for other (target)
evaluation measures (e.g., Dembczyński et al., 2012a; Luaces et al., 2012). In Section 7, we
present extensive experimental results to illustrate the practical usefulness of our findings.
More specifically, all examined methods are compared for a series of multi-label classifica-
tion problems. One particular data set originates from a recent data mining competition, in
which we obtained the second place using some of the algorithms presented in this article.
Let us anticipate that our experimental results will not determine a clear winner. This is
not at all surprising: while enjoying the advantage of consistency, our algorithm requires the
estimation of more parameters than existing approximate algorithms. As a consequence,
exact optimization is not necessarily superior to approximate optimization. Instead, the
relative performance of exact and approximate optimization depends on several factors,
such as the sample size, the length of Y , the shape of the distribution P , etc.

As mentioned above, we adopt a decision-theoretic point of view: assuming a prob-
abilistic model to be given, the problem of F-measure maximization is interpreted as an
inference problem. Before going into technical details, we like to stress that this is only
one way of looking at F-measure maximization. A second, somewhat orthogonal approach
is to optimize the F-measure during the training phase. This is sometimes referred to as
empirical utility maximization. In general, optimality in this framework is different from
our definition of optimality, but connections between the two paradigms have recently been
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discussed by Ye et al. (2012). These authors establish asymptotic equivalence results un-
der the assumption of independence and infinitely large vectors Y . They focus on binary
classification problems, for which such assumptions are realistic, because the vector Y then
represents an entire test set of i.i.d. observations. The same assumptions are made in an-
other recent work that provides an interesting theoretical analysis for binary classification
problems (Zhao et al., 2013). However, in structured output prediction and multi-label
classification, independence does not hold and the length of Y might be small, especially if
the instance-wise F-measure needs to be optimized.

Algorithms that optimize the F-measure during training will hence not be discussed
further in this article. Nevertheless, we briefly mention some of them here for the sake
of completeness. In binary classification, such algorithms are extensions of support vector
machines (Musicant et al., 2003; Joachims, 2005), logistic regression (Jansche, 2005) or
boosting (Kokkinos, 2010). However, the most popular methods, including that of Keerthi
et al. (2007), rely on explicit threshold adjustment. A few specific algorithms have also
been proposed for certain applications in structured output prediction (Tsochantaridis et al.,
2005; Suzuki et al., 2006; Daumé III et al., 2009) and multi-label classification (Fan and Lin,
2007; Zhang et al., 2010; Petterson and Caetano, 2010, 2011). During training, some of these
methods, especially those based on structured SVMs, need to solve an inference problem
that is closely related but not identical to (2). In a recent paper, we have presented a
theoretical and experimental comparison of approaches that optimize the F-measure during
training or inference, respectively, in the context of multi-label classification (Dembczyński
et al., 2013). Since we focus on the decision-theoretic point of view in this work, we do not
discuss the theoretical results obtained in that article, but for completeness we report some
experimental results.

Parts of this article have already been published in previous conference papers (Dem-
bczyński et al., 2011, 2013). Here, we summarize the results of these papers in a unifying
framework, provide a much more detailed theoretical analysis, and complement them by
additional formal results as well as novel experimental studies. The rest of the article is
organized as follows. Section 2 gives a formal definition of the notion of regret, which will
serve as a key element for showing that most existing algorithms are suboptimal. Sec-
tion 3 contains a regret analysis of algorithms that optimize other loss functions than the
F-measure. In Section 4, we perform a similar analysis for F-measure inference algorithms
that have been proposed in the literature. Subsequently, our own algorithm is presented
in Section 5. In Section 6, we test the inference algorithms on synthetic data, while prac-
tical considerations, applications and experimental results on benchmark data are further
discussed in Section 7. The proofs of all theorems in Sections 3 and 4 can be found in an
appendix.

2. Formal Presentation of our Mathematical Framework

In order to show formally that many existing algorithms are sub-optimal w.r.t. optimising
the F-measure, we will use a mathematical framework that is closely related to frameworks
encountered in classical machine learning papers. However, our analysis will slightly differ
from the analysis performed in such papers, as we are investigating inference algorithms
instead of training algorithms. Let us start with a formal definition of what we will call the
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regret of an inference algorithm.

Definition 2.1 Given a probability distribution P , the regret of a vector of predictions h
w.r.t. the F-measure is formally defined as

RF (h) = E
[
F (Y ,hF )− F (Y ,h)

]
=

∑
y∈{0,1}m

[
F (y,hF )− F (y,h)

]
P (y) ,

with hF the F-measure maximizer in (2).

The above definition of regret (aka excess risk in the statistical literature) can be con-
sidered as a classical tool in the framework of Bayes-risk consistency (Devroye et al., 1997;
Bartlett et al., 2006). However, let us emphasize that the theoretical analysis presented be-
low differs from traditional techniques for investigating the consistency of machine learning
algorithms. Typically, a training algorithm is considered consistent if its risk converges in
probability to the Bayes risk as the training sample grows to infinity. Since many training
algorithms optimize a convex and differentiable surrogate of the target loss of interest, such
an analysis is often performed by bounding the risk of the target loss as a function of the
surrogate φ-risk of the surrogate loss (e.g., Breiman, 2000; Steinwart, 2001; Zhang, 2004;
Bartlett et al., 2006; Tewari and Bartlett, 2007; Duchi et al., 2010; Gao and Zhou, 2013).

In this article, we start from a different perspective, since we are analyzing the Bayes-
optimality of inference algorithms. As such, we call a given loss a surrogate loss for the
F-measure if an inference algorithm optimizes this loss instead of the F-measure. This is
different from, for example, the above papers, which analyse the consistency of surrogate
losses during the training phase of a machine learning algorithm, using the surrogate loss as
the internal training loss, i.e., as a convex and differentiable approximation of the target loss
that is optimized during training. Furthermore, a second notable difference to other papers
is that sample size convergence is less important in our analysis, as we are starting from
a trained probabilistic model that is assumed to deliver consistent estimates. A similar
analysis to the one presented here has been performed for the subset 0/1 loss and the
Hamming loss in (Dembczyński et al., 2012a).

We will consider the regret of various types of loss functions and algorithms under
any arbitrary probability distribution P . By searching for probability distributions that
maximize the regret, we are mainly considering the worst-case scenario. In the case of
surrogate losses, we restrict this search to probability distributions that deliver unique risk
minimizers; the reasons for this restriction are of technical nature. Similar to the F-measure
maximizer, let us introduce the risk minimizer of a loss L : {0, 1}m × {0, 1}m → R+ as

hL = arg min
h∈{0,1}m

E [L(Y ,h)] = arg min
h∈{0,1}m

∑
y∈{0,1}m

P (y)L(y,h). (4)

This allows us to introduce the worst-case regret formally.

Definition 2.2 Let L : {0, 1}m × {0, 1}m → R+ be a loss, let P be the set of all probability
distributions over {0, 1}m, and let PuL be the subset of P that delivers unique solutions to
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(4). Then, the worst-case regret is defined as

sup
P∈Pu

L

E
[
F (Y ,hF )− F (Y ,hL)

]
, (5)

with hF and hL defined by (2) and (4), respectively.

Note that, in the above definition, we restrict the worst-case analysis to probability
distributions with a unique risk minimizer for L. Technically, the problem would otherwise
become more difficult, as it would require the comparison of the F-measure maximizer with
a set of risk minimizers HL instead of a unique minimizer hL. This could be done in
different ways, for example, by looking at the most favorable case for L, leading to

sup
P∈P

min
hL∈HL

E
[
F (Y ,hF )− F (Y ,hL)

]
,

or the least favorable one, leading to

sup
P∈P

max
hL∈HL

E
[
F (Y ,hF )− F (Y ,hL)

]
.

To avoid a more or less arbitrary decision, we prefer to exclude these cases from the be-
ginning. In any case, it is clear that the regret (5) provides a lower bound for any other
definition of regret that maximizes over the entire set P of distributions. Furthermore,
remark that non-uniqueness of the F-measure maximizer is unproblematic, since for the
definition of the regret, only the value of the F-measure is important, not the maximizer
itself.

Using classical notions such as Fisher consistency (Wu et al., 2010), one can say that a
sufficient condition for inconsistency is encountered if (5) does not evaluate to zero. How-
ever, since exact solutions or lower bounds will be derived, we are able to give much more
precise information on the degree of incorrectness.

3. The F-Measure and Related Loss Functions

Given the difficulty of maximizing the F-measure, we start our analysis by investigating a
few related loss functions that have been used as surrogates in some multi-label classification
and structured output prediction papers. We will analyze the Hamming loss, the subset
zero-one loss and the Jaccard index. For the former two loss functions, we perform a regret
analysis to show that optimizing these loss functions is not consistent if the F-measure is
our performance metric of interest. For the Jaccard index, we derive a simple upper bound
on the regret when optimizing the F-measure instead.

3.1 The Hamming Loss

The Hamming loss can be considered as the most standard loss for multi-label classification
problems (e.g., Schapire and Singer, 2000; Tsoumakas and Katakis, 2007; Hariharan et al.,
2010). It is also widely used in many structured output prediction methods (e.g., Taskar
et al., 2004; Daumé III et al., 2009; Finley and Joachims, 2008). Using the general notation
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that was introduced above, the Hamming loss simply corresponds to the error rate in binary
classification, and it can be formally defined as follows:1

LH(y,h) =
1

m

m∑
i=1

Jyi 6= hi(x)K . (6)

For the Hamming loss, the risk minimizer is

hH = arg min
h∈{0,1}m

E [LH(Y ,h)] = arg min
h∈{0,1}m

∑
y∈{0,1}m

P (y)LH(y,h). (7)

This is obtained by hH(x) = (hH,1, . . . , hH,m), where

hH,i(x) = arg max
b∈{0,1}

P (Yi = b) ∀i ∈ {1, . . . ,m}. (8)

Thus, in order to optimize the Hamming loss, one should select the marginal modes of P .
The following theorem presents our main result for the Hamming loss.

Theorem 1 Let hH be a vector of predictions obtained by minimizing the Hamming loss,
Then for m > 2 the worst-case regret is given by:

sup
P∈Pu

LH

(
E
[
F (Y ,hF )− F (Y ,hH)

])
= 0.5 ,

where the supremum is taken over all possible distributions P that result in a unique Ham-
ming loss minimizer.

In other words, the theorem indicates that optimizing the Hamming loss as a surrogate
for the F-measure results in a prediction that is far from optimal. This claim will be further
confirmed by experimental results in Sections 6 and 7.

3.2 The Subset Zero-One Loss

The next multi-label loss function we analyze is the subset 0/1 loss, which generalizes the
well-known 0/1 loss from the conventional to the multi-label setting:

Ls(y,h) = Jy 6= hK (9)

Admittedly, this loss function may appear overly stringent, especially in the case of many
labels. Moreover, since making a mistake on a single label is punished as hardly as a mistake
on all labels, it does not discriminate well between “almost correct” and “completely wrong”
predictions. Still, a lot of existing frameworks for multi-label classification and structured
output prediction optimize a convex upper bound on this loss in a direct or approximate
manner. For example, conditional random fields optimize the log-loss as a surrogate for the
subset zero-one loss (Lafferty et al., 2001), structured support vector machines consider the

1. We use JcK to denote the indicator function, equal to 1 if predicate c holds and 0 otherwise.
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Figure 1: Plot of the worst-case regret for the subset zero-one loss (11) as a function of the
number of labels m.

structured hinge loss as a surrogate of the subset 0/1 loss when no margin/slack rescaling is
performed (Tsochantaridis et al., 2005) and probabilistic classifier chains with logistic base
classifiers optimize the log-loss approximately by means of pseudo-likelihood maximization
(Dembczyński et al., 2010, 2012b). Moreover, maximum a posteriori (MAP) estimation
techniques in Bayesian statistics and graphical models are also known to minimize the
subset 0/1 loss.

As for any other 0/1 loss, the risk-minimizing prediction for (9) is simply given by the
mode of the distribution:

hs = arg max
y∈{0,1}m

P (y) (10)

Thus, unlike the Hamming loss, looking at marginal probabilities does not suffice to mini-
mize the subset 0/1 loss. When the independence assumption is violated, information about
the joint distribution over labels is needed, similar as for the F-measure. Our interest in
the subset 0/1 loss is primarily fueled by this connection. Summarized in the following
theorem, we perform a similar type of regret analysis as for the Hamming loss.

Theorem 2 Let hs be a vector of predictions obtained by minimizing the subset 0/1 loss,
then for m > 2 the worst-case regret is given by:

sup
P∈Pu

Ls

(
E
[
F (Y ,hF )− F (Y ,hs)

])
=

(−m− 2 + 2m2)m

(2m− 1)(4 +m+m2)
, (11)

where the supremum is taken over all possible distributions P .

Let us remark that the worst-case regret converges rapidly to one as a function of the
number of labels m, as illustrated in Figure 1. Similar to the result for the Hamming loss,
the above theorem confirms that using the subset zero-one loss as an alternative for the
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F-measure can potentially yield a high regret. Optimizing the subset zero-one loss might
hence be not a valid alternative. Our experimental results in Sections 6 and 7 will indeed
make clear that such an approach performs suboptimal for several data sets.

3.3 The Jaccard Index

The F-measure was originally defined by set operators, as a measure for expressing the
similarity of sets. In this literature, it is known as the dice coefficient (Dice, 1945). Another
well-known measure for expressing similarity of sets is the Jaccard index. The two measures
are very related, since both belong to a more general parametric family of similarity mea-
sures for sets (De Baets et al., 2009). The Jaccard index computes the ratio of intersection
to union:

J(y,h) =
|{i | yi = 1 ∧ hi = 1, i = 1, . . . ,m}|
|{i | yi = 1 ∨ hi = 1, i = 1, . . . ,m}|

(12)

Owing to a simple transformation, it can also be written as follows:2

J(y,h) =

∑m
i=1 yihi∑m

i=1 yi +
∑m

i=1 hi −
∑m

i=1 yihi
(13)

In recent years, the Jaccard index has gained popularity in the machine learning community.
In the context of kernel methods, it is often used as an alternative to the linear kernel for
binary feature vectors, such as fingerprints of molecules in cheminformatics and bioinfor-
matics. In these application domains, one often speaks of the Tanimoto kernel (Swamidass
et al., 2005).

As a utility function the Jaccard index is often considered in multi-label classification.
It remains an open question whether or not a closed-form solution for the risk minimizer
of the Jaccard similarity exists, but the maximization is far from straightforward. Under
the assumption of label independence, which allows one to transform many loss functions
to a contingency table, Quevedo et al. (2012) have recently proposed an exact algorithm
for maximizing the instance-wise Jaccard similarity, as well as other loss functions that
can be computed from such a contingency table. However, without this assumption, one
commonly believes that exact optimization is intractable (Chierichetti et al., 2010). Even
though the F-measure and the Jaccard are monotonically related, it is not the case that the
F-measure maximizer is necessarily also the Jaccard maximizer, because the summation in
(4) in general breaks the monotonicity property. As a result, the analysis that we report
for the Jaccard index differs from the one reported for the Hamming loss and the subset
0/1 loss. Given that the maximization of the Jaccard index is believed to be much harder,
it does not make sense to use this measure as a surrogate for the F-measure during opti-
mization. In contrast, one might think of maximizing the F-measure as a surrogate for the
Jaccard index. The following result characterizes what we can lose with such a strategy.

Theorem 3 Let hJ and hF be vectors of predictions obtained by maximizing the Jaccard
index and the F-measure, respectively. Let the utility of the F-measure maximizer be given

2. Similar as the F-measure, note that the denominator is 0 if yi = hi = 0 for all i = 1, . . . ,m. In this case,
the utility is 0 by definition.
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by

δ(P ) = max
h∈{0,1}m

E [F (Y ,h)] = max
h∈{0,1}m

∑
y∈{0,1}m

P (y)F (y,h).

The regret of the F-measure maximizer with respect to the Jaccard index is then upper
bounded by

E
[
J(Y ,hJ)− J(Y ,hF )

]
≤ 1− δ(P )/2

for all possible distributions P .

Notwithstanding that the above upper bound on the regret remains rather loose, the
observation is interesting because the upper bound on the regret decreases as a function of
the utility of the F-measure maximizer δ(P ). Due to this relationship, a high utility for the
F-measure implies that optimizing this measure as a surrogate for the Jaccard similarity
might be a reasonable thing to do. In other words, on data sets for which an F-measure
maximizing algorithm gets good results, one can expect that this algorithm will also get
good results in terms of the Jaccard index.

4. Existing Algorithms for F-Measure Maximization

The previous section revealed that optimizing more conventional loss functions as surrogates
for the F-measure might result in a poor predictive performance. In this section, we perform
a similar type of analysis for more specialized algorithms that intend to solve (2). These
algorithms make different types of assumptions to simplify the problem. First of all, the
algorithms operate on a constrained hypothesis space, sometimes justified by theoretical
arguments. Secondly, they only guarantee optimality for specific distributions P .

4.1 Algorithms Based on Label Independence

By assuming independence of the random variables Y1, ..., Ym, optimization problem (2) can
be substantially simplified. It has been shown independently in (Lewis, 1995) and (Jansche,
2007) that the optimal solution then always contains the labels with the highest marginal
probabilities, or no labels at all. As a consequence, only a few hypotheses h (m+1 instead
of 2m) need to be examined, and the computation of the expected F-measure can be per-
formed in an efficient way.

Theorem 4 [(Lewis, 1995)] Let Y1, Y2, . . . , Ym be independent Bernoulli variables with pa-
rameters p1, p2, . . . , pm respectively. Then, for all j, k ∈ {1, . . . ,m}, hF,j = 1 and hF,k = 0
implies pj ≥ pk.
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In addition, Lewis (1995) showed that the expected F-measure can be approximated by
the following expression under the assumption of independence:3

E [F (Y ,h)] '

{ ∏m
i=1(1− pi), if h = 0m
2
∑m

i=1 pihi∑m
i=1 pi+

∑m
i=1 hi

, if h 6= 0m

This approximation is exact for h = 0m, while for h 6= 0m, an upper bound of the error
can easily be determined (Lewis, 1995).

However, Chai (2005), Jansche (2007) and Quevedo et al. (2012) have independently
proposed exact procedures for computing the F-maximizer. To this end, independence is
assumed and marginal probabilities p1, p2, . . . , pm serve as input for the algorithms. The
method of Jansche runs in O(m4), while the other two approaches solve the same problem
more efficiently in O(m3).

As a starting point for explaining the three algorithms, notice that (2) can be solved via
outer and inner maximization. Namely, (2) can be transformed into an inner maximization

h(k) = arg max
h∈Hk

E [F (Y ,h)] , (14)

where Hk = {h ∈ {0, 1}m |
∑m

i=1 hi = k}, followed by an outer maximization

hF = arg max
h∈{h(0),...,h(m)}

E [F (Y ,h)] . (15)

The outer maximization (15) can be done by simply checking all m + 1 possibilities. The
main effort is then devoted to solving the inner maximization (14). According to Lewis’
theorem, to solve (14), one needs to check only one vector h for a given k, in which hi = 1
for the k labels with highest marginal probabilities pi. The remaining problem is the
computation of the expected F-measure in (14). This expectation cannot be computed
naively, as the sum is over exponentially many terms. But the F-measure is a function of
integer counts that are bounded, so it can normally only assume a much smaller number
of distinct values. It has been further shown that the expectation has a domain with a
cardinality exponential in m; but since the cardinality of its range is polynomial in m, it
can be computed in polynomial time. As a result, Jansche (2007) obtains an algorithm
that is cubic in m for computing (14), resulting in an overall O(m4) time complexity. He
also presents an approximate version of this procedure, reducing the complexity from cubic
to quadratic. This approximation leads to an overall complexity of O(m3), but it does no
longer guarantee optimality of the prediction.

As a more efficient alternative, the procedure of Chai (2005) is based on ordering the
labels according to the marginal probabilities. For h(k) ∈ Hk, thus hi = 1 for k labels with
the greatest marginal probabilities, he derives the following expression:

E
[
F (Y ,h(k))

]
= 2

m∏
i=1

(1− pi)I1(m) ,

3. We use 0m and 1m to denote m-element vectors of all zeros or ones, respectively.

3523



Waegeman et al.

where I1(m) is given by the following recurrence equations and boundary conditions:

It(a) = It+1(a) + rtIt+1(a+ 1) + rtJt+1(a+ 1)

Jt(a) = Jt+1(a) + rtJt+1(a+ 1)

Ik+1(a) = 0 Jm+1(a) = a−1

with ri = pi/(1− pi). These equations suggest a dynamic programming algorithm of space
O(m) and time O(m2) in computing the expected F-measure for given k. This yields an
overall time complexity of O(m3).

In a more recent follow-up paper, Ye et al. (2012) further improved the dynamic pro-
gramming algorithm to an O(m2) complexity by additional sharing of internal represen-
tations. The old and the new version of the algorithm both rely on Lewis’ theorem and
a factorization of the probability mass for constructing recurrence equations, hence leav-
ing few hope for extending the algorithm to situations where label independence cannot
be assumed. In another recent paper, Quevedo et al. (2012) propose a general inference
procedure that utilizes similar recurrence equations and dynamic programming techniques.
In contrast to Chai (2005), Jansche (2007) and Ye et al. (2012), the authors primarily ad-
dress multi-label classification problems, focusing on a wide range of loss functions that
can be computed from a contingency table in an instance-wise manner. As a result, the
instance-wise F-measure is maximized as a special case, while assuming label independence.

If the independence assumption is violated, none of the above methods is able to guar-
antee optimality. In the most general case, the F-maximizer needs to be computed by
analyzing the joint distribution. The above methods rely on modeling or ordering marginal
probabilities, which is not sufficient to compute the F-maximizer for many distributions.
This is illustrated by the following example, in which two joint distributions with identical
marginal probabilities have different F-measure maximizers:

y P (y)

0001 0.1
0010 0.2
0100 0.2
1000 0.5

y P (y)

0000 0.5
1001 0.1
1010 0.2
1100 0.2

The non-specified configurations have zero probability mass. For both distributions, we have
p1 = P (Y1 = 1) = 0.5, p2 = P (Y2 = 1) = 0.2, p3 = P (Y3 = 1) = 0.2, p4 = P (Y4 = 1) = 0.1,
but one can easily check that the F-measure maximizers are h = (1000) and h = (0000),
respectively. The regret is small for this simple example, but methods that assume indepen-
dence may produce predictions being far away from the optimal one. The following result
shows this concretely.

Theorem 5 Let hI be a vector of predictions obtained by assuming label independence as
defined in (3), then the worst-case regret is lower-bounded by:

sup
P

(
E
[
F (Y ,hF )− F (Y ,hI)

])
≥ 2q − 1,
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for all q ∈ [1/2, 1] satisfying
∑m

s=1

(
2m!

(m−s)!(s−1)!(m+s)q
m−s(1− q)s

)
− qm > 0 and the supre-

mum taken over all possible distributions P .

For increasing m, the condition is satisfied for q close to one (see the appendix for de-
tails). In such a scenario, the worst-case regret is lower bounded by Rq = 2q − 1, so that
limq→1,m→∞Rq = 1. As a consequence, the lower bound becomes tight in the limit of m
going to infinity, as summarized in the following corollary.

Corollary 1 Let hI be a vector of predictions obtained by assuming independence, then the
worst-case regret converges to 1 in the limit of m, i.e.,

lim
m→∞

sup
P

(
E
[
F (Y ,hF )− F (Y ,hI)

])
= 1,

where the supremum is taken over all possible distributions P .

Again we will show by means of experiments in Sections 6 and 7 that algorithms based
on label independence can be suboptimal on real-world data sets.

4.2 Algorithms Based on the Categorical Distribution

Solving (2) becomes straightforward in the case of a specific distribution in which the
probability mass is distributed over vectors y containing only a single positive label, i.e.,∑m

i=1 yi = 1, corresponding to the categorical distribution. This was studied by del Coz
et al. (2009) in the setting of so-called non-deterministic classification.

Theorem 6 [(del Coz et al., 2009)] Denote by y(i) a vector for which yi = 1 and all the
other entries are zeros. Assume that P is a joint distribution such that P (Y = y(i)) = pi.
The maximizer h of (2) consists of the k labels with the highest marginal probabilities, where
k is the first integer for which

k∑
j=1

pj ≥ (1 + k)pk+1;

if there is no such integer, then h = 1m.

The categorical distribution reflects the case of multi-class classification problems, as a
special case of multi-label classification problems. The above approach is only applicable
to such problems.

4.3 Algorithms that Use Both the Marginal and the Joint Distribution

Since all the methods so far rely on the fact that the optimal solution contains ones for the
labels with the highest marginal probabilities (or consists of a vector of zeros), one may
expect that thresholding on the marginal probabilities (hi(θ) = 1 for pi ≥ θ, and hi(θ) = 0
otherwise) will provide a solution to (2) in general. Practically, despite using marginal prob-
abilities for the thresholds, such a scenario does not assume label independence anymore,
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because also the joint probability distribution P must be provided.4 When the labels are
ordered according to the marginal probabilities, thus pi ≥ pi+1 for all i ∈ {1, ...,m−1}, this
approach resembles the following optimization problem:

hT = arg max
θ∈{1,p1,...,pm}

E [F (Y ,h(θ))] .

Thus, to find an optimal threshold θ, access to the entire joint distribution is needed. How-
ever, this is not the main problem here, since in the next section, we will show that only a
polynomial number of parameters of the joint distribution is needed. What is more inter-
esting is the observation that the F-maximizer is in general not consistent with the order of
marginal label probabilities. In fact, the regret can be substantial, as shown by the following
result.

Theorem 7 Let hT be a vector of predictions obtained by putting a threshold on sorted
marginal probabilities, then the worst-case regret is lower bounded by

sup
P

(
E
[
F (Y ,hF )− F (Y ,hT )

])
≥ max

(
0,

1

6
− 2

m+ 4

)
,

where the supremum is taken over all possible distributions P .

Finding the exact value of the supremum in the worst case is for the above formulation
an interesting open question. The statement is a surprising result in light of the existence
of many algorithms that rely on finding a threshold for maximizing the F-measure (Keerthi
et al., 2007; Fan and Lin, 2007; Zhang et al., 2010; Lipton et al., 2014)—remark that those
methods rather seek for a threshold on scoring functions instead of marginal probabilities.
While being justified by Theorems 4, 5 and 6 for specific applications, thresholding does
not yield optimal predictions in general. Let us illustrate this with an example for which
m = 12:

y P (y)

000000000000 0.21
100000000000 0.39
011111100000 0.2
010000011111 0.2

The non-specified configurations have zero probability mass. The F-measure maximizer is
given by (1000000000000); yet, not the first label but the second one exhibits the highest
marginal probability. The regret remains rather low in this case, but higher values can be
easily obtained by constructing more complicated examples from (41)—see the appendix.

4. In fact most thresholding methods that optimize the F-measure during training do not use the joint
distribution, and define a threshold based on marginals only. However, that is in practice the same as
assuming independence, and resembles the same conclusions as in Section 4.1. In contrast, the regret will
be lower when also the joint distribution is used to define the threshold. When the F-measure is optimized
in an inference phase, starting from a trained probabilistic model, access to the joint distribution is of
course needed.
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5. An Exact Algorithm for F-Measure Maximization

We now introduce an exact and efficient algorithm for computing the F-maximizer without
using any additional assumption on the probability distribution P . While adopting the
idea of decomposing the problem into an outer and an inner maximization, our algorithm
differs in the way the inner maximization is solved.5 For convenience, let us introduce the
following quantities:

sy =
m∑
i=1

yi, ∆ik =
∑

y:yi=1

2P (y)

sy + k
.

The first quantity gives the number of ones in the label vector y, while ∆ik is a specific
marginal value for i-th label, which for u = 1 corresponds to weighted true positives. Using
these quantities, we show that only m2 + 1 parameters of the joint distribution P (y) are
needed to compute the F-maximizer.

Theorem 8 The solution of (2) can be computed by solely using P (y = 0m) and the values
of ∆ik, for i, k ∈ {1, . . . ,m}, that constitute an m×m matrix ∆.

Proof. The inner optimization problem (14) can be formulated as follows:

h(k) = arg max
h∈Hk

E [F (Y ,h)] = arg max
h∈Hk

∑
y∈{0,1}m

P (y)
2
∑m

i=1 yihi
sy + k

.

The sums in arg max can be swapped, resulting in

∑
y∈{0,1}m

P (y)
2
∑m

i=1 yihi
sy + k

=

m∑
i=1

hi
∑

y∈{0,1}m

2P (y)yi
sy + k

=

m∑
i=1

hi
∑

y:yi=1

2P (y)

sy + k
.

Finally, we obtain

h(k) = arg max
h∈Hk

m∑
i=1

hi∆ik . (16)

As a result, one does not need the whole distribution to find the maximizer of the F-
measure, but the values of ∆ik, which can be given in the form of an m×m matrix ∆. For
the special case of k = 0, we have h(k) = 0m and Ey∼P (y) [F (y,0m)] = P (y = 0m). �

If the matrix ∆ is given, the solution of the F-measure maximization (2) is straight-
forward, since for each inner maximization the problem boils down to selecting the k labels
with the highest ∆ik. The resulting algorithm, referred to as General F-measure Maximizer
(GFM), is summarized in Algorithm 1 and its time complexity is analyzed in the following
theorem.

Theorem 9 Algorithm 1 solves problem (2) in time O(m2) assuming that the matrix ∆ of
m2 parameters and P (y = 0m) are given.

5. The description of the method slightly differs from the previous paper (Dembczyński et al., 2011), and
it is concordant with Dembczyński et al. (2013).
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Algorithm 1 General F-measure Maximizer

INPUT: matrix ∆ and probability P (y = 0m)

for k = 1 to m do

solve the inner optimization problem (14):

h(k) = arg max
h∈Hi

m∑
i=1

hi∆ik

by setting hi = 1 to k labels with the highest ∆ik (in case of ties take any k top labels),
and hi = 0 for the rest;

store a value of

E
[
F (Y ,h(k))

]
=

m∑
i=1

h
(k)
i ∆ik;

end for
define h(0) = 0m, and E [F (Y ,0m)] = P (y = 0m);

solve the outer optimization problem (15):

hF = arg max
h∈{h(0),...,h(m)}

E [F (Y ,h)] ;

return hF and E [F (Y ,hF )];

Proof. To solve (16), it is enough to find the top k elements (i.e., the elements with the high-
est values) in the k-th column of matrix ∆, which can be carried out in linear time (Cormen
et al., 2001). This step has to be repeated for all k. Therefore, the overall complexity of
the inner maximization is quadratic. The solution of the outer optimization problem (15)
is then straight-forward and requires linear time. �

In light of combining the inference algorithm with particular training algorithms, like
multinomial regression as we discuss it in Section 7.1.4, it could be reasonable to redefine
the formulation in the following way. Consider the probabilities

pis = P (yi = 1, sy = s), i, s ∈ {1, . . . ,m} , (17)

that constitute an m × m matrix P.6 Let us also introduce an m × m matrix W with
elements

wsk =
2

(s+ k)
, s, k ∈ {1, . . . ,m} . (18)

It can be easily shown that
∆ = PW, (19)

since

∆ik =
∑

y:yi=1

2P (y)

sy + k
=

m∑
s=1

2pis
s+ k

.

6. We use capital letters to denote matrices.

3528



On the Bayes-Optimality of F-Measure Maximizers

If the matrix P is taken as an input by the algorithm, then its complexity is dominated
by the matrix multiplication (19) that is solved naively in O(m3), but faster algorithms
working in O(m2.376) are known (Coppersmith and Winograd, 1990).7

Interestingly, the above results clearly suggest that the F-measure maximizer is more
affected by the number of 1s in the y-vectors than by the interdependence between particular
labels. In other words, modeling of pairwise or higher degree dependencies between labels is
not necessary to obtain an optimal solution, but a proper estimation of marginal quantities
(∆ik, or pis) that take the number of co-occurring labels into account.

In the reminder of this section, we discuss the properties of the GFM algorithm in com-
parison to the other algorithms discussed in Section 4. The methods presented by Chai
(2005); Jansche (2007) and Ye et al. (2012) all assume label independence and produce
exactly the same result, apart from small numerical instabilities that might always occur.
These methods, contrary to GFM, will not deliver an exact F-maximizer if the assumption
of independence is violated. On the other hand, the disadvantage of GFM is the quadratic
number of parameters it requires as input, while the other methods only need m parame-
ters. Since the estimation of a larger number of parameters is statistically more difficult,
it is a priori unclear which method performs better in practice. We are facing here a com-
mon trade-off between an approximate method on better estimates (we need to estimate
a smaller number of parameters from a given sample) and an exact method on potentially
weaker estimates. Nonetheless, if the joint distribution is concentrated on a small number
of different label combinations y, the estimates of ∆ or P can be as good as the estimates
of the marginal probabilities pi.

From the computational perspective, Jansche’s method is characterized by a much higher
time complexity, being respectively O(m4) and O(m3) for the exact and the approximate
versions. The method of Chai has a cubic complexity, and the enhanced version presented
in Ye et al. (2012) is more efficient, since it solves the problem in O(m2) time. The GFM
algorithm is quite competitive, as its complexity is of O(m2) or O(m3), depending on the
setting. Moreover, the cubic complexity of GFM, which follows from the matrix multi-
plication, can be further decreased if the number of distinct values of sy with non-zero
probability mass is smaller than m.

6. Simulations

In the previous sections, we gave theoretical results concerning the performance of different
inference methods in the worst case scenarios. Here, we verify the methods empirically
on synthetic data to check the difference in average performance on two large classes of
distributions. The first class assumes independence of labels, while the second class uses a
model with strong label dependencies.

We test four inference methods optimal for different performance measures. The first
one is suited for Hamming loss. It estimates the marginal probabilities by simple counting
from a given sample and gives empirical marginal modes as output. We denote this method
MM, since it estimates marginal modes. The second one is tailored for subset 0/1 loss. It

7. The complexity of the Coppersmith-Winograd algorithm (Coppersmith and Winograd, 1990) is more
of theoretical significance, since practically this algorithm outperforms the näıve method only for huge
matrices.
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seeks for the joint mode by checking the frequencies of label combinations appearing in the
sample. We refer to this method as JM, since it estimates the joint mode. The two remaining
methods are suited for F-measure maximization. We use the dynamic programming method
of Ye et al. (2012) that assumes label independence, denoted by FM, and the exact GFM
method described in the previous section, which performs exact inference. All parameters
required by these algorithms are also estimated from the sample by simple counting. We
verify the performance of the inference methods by using Hamming loss, subset 0/1 loss,
the Jaccard index, and the F-measure.

We run these simulations, as well as the other experiments described later in this paper,
on a Debian virtual machine with 8-core x64 processor and 5GB RAM.

6.1 Label Independence

The independent data are generated according to:

P (y) =
m∏
i=1

P (yi) ,

where the probabilities P (yi) are given by the logistic model:

P (yi = 1) =
1

1 + exp(−wi)
, where wi ∼ N(0, 3) .

In experiments we set the number of labels to 25 and vary the number of observations
using the following values {5, 10, 20, 30, 40, 50, 75, 100, 200, 500, 1000, 2000, 5000, 10000}. We
repeat the experiment for 30 different models, i.e., sets of values wi. For each model, we
use 50 different training sets of the same size, but to reduce the variance of the results we
use for testing one set of 100,000 observations. The results are given in Figure 2. The right
column presents the performance with respect to different measures as a function of the
number of training observations. The left column gives the same results, but zoomed to the
range from 5 to 100 training observations. We see from the plots that MM and JM get the
best results for Hamming loss and subset 0/1 loss. Since the labels are independent, the
marginal modes and joint mode are the same. Therefore, for large enough training samples,
these two algorithms converge to the same prediction that should be optimal for Hamming
and subset 0/1. However, JM converges much slower, since it directly estimates the joint
mode, by checking the frequencies of label combinations in the training set. FM and GFM
perform very similarly for each performance measure. Since the labels are independent,
FM and GFM should converge to the same prediction, being optimal for the F-measure.
GFM, however, may get slightly worse results for small sample sizes, since it needs to
estimate a larger number of parameters than FM. We also see that algorithms maximizing
the F-measure perform the best for Jaccard index.

6.2 Strong Label Dependence

We perform a similar experiment for a data model with strong label dependencies. The
data are generated by the chain rule of probability, i.e.,

P (y) =
m∏
i=1

P (yi | y1, . . . , yi−1),
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Figure 2: Performance of inference methods in case of label independence as a function of
the number of training observations. Left: the performance up to 100 training
observations. Right: the performance up to 10000 training observations. The
error bars show the standard error of the measured quantities.
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where the probabilities P (yi | y1, . . . , yi−1) are coming from a logistic model of the form:

P (yi | y1, . . . , yi−1) =
1

1 + exp(−
∑i−1

j=1 2wij(yj − 1
2)− wi0)

,

with all wij ∼ N(1, 3) and wi0 ∼ N(1, 3). This model tends to produce for a given label yi
a value that appeared more often on previous labels. The results are presented in Figure 3.
In this case, the marginal modes and the joint mode are not the same. Therefore MM
performs the best for Hamming loss and JM for subset 0/1 loss. More importantly, we can
see that FM performs suboptimally for F-measure, and a clear winner in this case is GFM.
This result confirms our theoretical analysis and shows the benefits of the GFM inference
method. Also GFM performs the best for the Jaccard index, followed by the JM. The FM
method in this case performs the worst. Similarly to the F-measure we might expect here
that methods that assume label independence will not get good results with respect to the
Jaccard index.

There is of course a price we have to pay for a good performance of GFM. Figure 4
presents running times of parameter estimation and inference of the algorithms as a func-
tion of the number of labels. GFM is the slowest method. The running times increase
quadratically with the number of labels. The inference time of FM grows also quadrat-
ically, but with a lower rate. Moreover, this algorithm needs only to estimate marginal
probabilities, therefore its estimation time is exactly the same as for the MM method.

7. Application to Multi-Label Classification Problems

The inference methods for F-measure maximization can be used whenever an estimation
of required parameters is possible. In this section, we focus on the application of the
inference methods in the multi-label setting. Thus, we consider a task of predicting a
vector y = (y1, y2, . . . , ym) ∈ {0, 1}m given another vector x = (x1, x2, . . . , xn) ∈ Rn as
input attributes. To this end, we use a training set {(xi,yi)}Ni=1 to estimate the required
parameters and perform inference for a given test vector x so as to deliver an optimal
prediction under the F-measure (1). Thus, we optimize the performance for each instance
individually (instance-wise F-measure), in contrast to macro- and micro-averaging of the
F-measure (Yang, 1999; Tsoumakas et al., 2010).

7.1 Learning Algorithms

The inference methods for F-measure maximization can be combined with many conven-
tional learning approaches. In the following, we mainly focus on algorithms in which the
final decision is made based on an empirical distribution, like in nearest-neighbors or deci-
sion trees. In these algorithms all parameters required by F-measure maximization methods
are estimated from the empirical distribution. At the end of this section we also discuss an-
other approach in which the parameters are obtained from a parametric model, for example,
from logistic regression. We present the algorithms with the GFM method for F-measure
maximization; however, it should be clear from the description how to obtain corresponding
variants of the algorithms for the methods that assume label independence.
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Figure 3: Performance of inference methods in case of label dependence as a function of
the number of training observations. Left: the performance up to 100 training
observations. Right: the performance up to 10000 training observations. The
error bars show the standard error of the measured quantities.
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Figure 4: Running times in milliseconds of the inference methods for label dependent data
as a function of the number of labels. Left plot shows estimation time of parame-
ters required by the method. Right plot shows the inference time. The error bars
show the standard error of the measured quantities.

7.1.1 Instance-Based Learning

Several instance-based methods for multi-label classification have been proposed in the past
(e.g., Zhang and Zhou, 2007; Cheng and Hüllermeier, 2009), but none of these methods is
tailored for optimizing the F-measure during an inference phase. Consider a query instance
x ∈ X and let {yj ,xj}lj=1 denote the l nearest neighbors of x with respect to a dis-
tance measure on X in the training set. The number l is a fixed parameter of the method.
Instance-based learning can be extended for maximizing the F-measure in a straight-forward
way, namely by replacing the distribution P (y) with the empirical distribution in the neigh-
borhood of the query. Correspondingly, the values ∆ and P (y = 0m) are estimated through
simple counting:

∆̂ik =
1

l

l∑
j=1

Jyik = 1K
syj

+ k
, P̂ (y = 0m) =

1

l

l∑
j=1

Jyj = 0mK.

By using these estimates in the GFM algorithm, we obtain an estimate of the F-measure
maximizer.

7.1.2 Decision Trees

Decision tree methods have been extensively studied in standard classification and regression
settings, and have also been generalized to multi-output problems like MLC and multivariate
regression (see e.g., Zhang, 1998; Lee, 2006). An adaptation of decision trees for maximizing
the F-measure is slightly more complicated than for instance-based learning. The method
we present here resembles the ideas used in predictive clustering trees (Vens et al., 2008).
For simplicity, we only consider binary trees. Moreover, since decision tree induction is
well-known in the machine learning field, we restrict our discussion to the main differences
to conventional (classification or regression) tree learning. In a decision tree, each leaf node
represents a (typically rectangular) part of the instance space X and is labeled with a local
model. Typically, a local model consists of a single prediction, namely the prediction that
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minimizes the average loss among the associated training examples (e.g., the mean value in
regression and the most frequent label in classification). Applying the same principle in the
case of the F-measure in MLC comes down to computing the maximizer of this measure over
the instances in a leaf node. This is similar to the case of instance-based learning, except
that the examples used for estimating ∆ and P (y = 0m) originate from a rectangular region
of the instance space X and not from the neighborhood of the query instance x.

The more demanding part is the induction of the tree, i.e., finding optimal splits with
respect to the F-measure. For a given node of the tree, we search over all attributes and
possible split points, just like in regular decision tree algorithms. Let us denote by N a set
of training examples {(yj ,xj)}lj=1 in a node. The task is then to find a split of N into two
subsets, NL and NR, that maximize some purity criterion. Our approach is analogous to
the one of conventional decision trees, but based on the F-measure:

Q =
#(NL)

#(N )
F (NL) +

#(NR)

#(N )
F (NR)

where #(A) is a cardinality of a set A, and

F (A) = max
h

1

#(A)

∑
yi∈A

F (yi,h).

In order to speed up computations of F (·), we notice that searching a split is usually
performed in an example-by-example manner, which means that we can easily update our
estimates of ∆ and P (y = 0m). Moreover, assuming that a given training example has
a lower number of relevant labels, we do not have to recompute the whole matrix ∆, but
only update some of its rows and columns. Finally, the search for the top k elements in
each column of ∆ can be made faster by checking local changes in the current rankings of
labels. We repeat the above step recursively until a stop condition is reached, for example
the F-measure becomes maximal or the number of examples in the leaf node falls below a
threshold. Of course, more sophisticated approaches are conceivable.

Let us also mention that it is possible to generalize bagging (Breiman, 1996) with these
decision trees. Then, GFM can easily be applied over the bootstrap sample of the weak
hypotheses returned by the trees.

7.1.3 Probabilistic Classifier Chains

Probabilistic classifier chains (PCCs) (Dembczyński et al., 2010) is an approach similar
to maximum entropy Markov models (McCallum et al., 2000) and to conditional random
fields (CRFs) (Lafferty et al., 2001; Ghamrawi and McCallum, 2005). All these approaches
estimate the joint conditional distribution P (y |x). PCC has an additional advantage that
one can easily sample from the estimated distribution. The underlying idea is to repeatedly
apply the product rule of probability to the joint distribution of the labels:

P (y |x) =
m∏
i=1

P (yi |x, y1, . . . , yi−1) (20)

Learning in this framework can be considered as a simple procedure. According to (20),
we decompose the joint distribution into a sequence of marginal distributions that depend
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on a subset of the labels. These marginal distributions can be learned by m functions
fi : X × {0, 1}i−1 → [0, 1] on an augmented input space X × {0, 1}i−1, taking y1, . . . , yi−1

as additional input attributes:

fi : (x, y1, . . . , yi−1) 7→ P (yi = 1 |x, y1, . . . , yi−1) (21)

By plugging the log-linear model into (20), it can be shown that pairwise dependencies
between labels yi and yj are modeled (see also (Kumar et al., 2013)).

The algorithm is mainly suitable for subset 0/1 loss. Exploration of the structure of the
chain in the inference phase boils down to search for the most probable label combination
in a resulting probabilistic binary tree. A greedy algorithm follows only one path choosing
always only the most probable label in each position in the chain (Read et al., 2009). This
algorithm, however, may lead to suboptimal results. It has been shown (Dembczyński et al.,
2012b), however, that an exact method based on a variant of uniform-cost search with a
cut-off list finds the joint mode in a linear time of 1/pmax, where pmax is the probability of
the joint mode. For reasonable values of pmax, this method works very fast.

To optimize the response of PCC for other loss functions, we need to obtain a sample
of observations from the conditional joint distribution P (y |x). To get a single observa-
tion, we can follow the chain and pick the value of label yi by tossing a biased coin with
probabilities given by the i-th classifier. Such a procedure is sometimes referred to as an-
cestral sampling (Bishop, 2006, Chapter 8). From the sample of such observations, we can
estimate all the parameters required by inference methods like GFM, similarly as in the
case of nearest neighbors and decision trees. More precisely, let {yj}nj=1 denote a set of
sampled observations for a given test example x. Then, the values ∆ and P (y = 0m) can
be estimated through simple counting:

∆̂ik =
1

n

n∑
j=1

Jyik = 1K
syj

+ k
, P̂ (y = 0m) =

1

n

n∑
j=1

Jyj = 0mK.

By plugging these estimates into the GFM algorithm, we obtain for a given x a prediction
optimized for the F-measure.

7.1.4 Parametric Models

Alternatively to the approaches described above, which estimate the parameters required
by the F-measure maximization methods on empirical distributions, we discuss here an
approach in which the parameters are efficiently obtained from a parametric model (Dem-
bczyński et al., 2013). Unfortunately, there is no easy way to estimate directly the matrix
∆, since the elements of this matrix do not correspond to a proper probability distribution.
However, we can estimate matrix P, defined in (17), which elements are probabilities:

pis = P (yi = 1, sy = s), i, s ∈ {1, . . . ,m} .

Multiplying the matrix P by a weight matrix W with elements (18) results in the estimate
of ∆, as shown in (19).

To estimate the elements of P we can use a simple reduction to m multi-class probability
estimation (i.e., multinomial regression) problems, each with at most m + 1 classes. We
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define one multinomial regression model for each row of matrix P. Let us observe that for
t = (Jyi = 1K · sy), t ∈ {0, . . . ,m}, we have:∑

t∈{0,...,m}

P (t |x) = 1 .

Therefore, we can define the i-th multinomial regression problem as:

fi : x 7→ P (t |x), for t ∈ {0, . . . ,m} . (22)

In a similar way, we can estimate P (y = 0m |x) by performing an additional reduction
to binary probability estimation with t = Jy = 0mK as an output variable:

f0 : x 7→ P (t |x) ,

and solving it via logistic regression.
The decomposition of the original problem into independent multinomial regression

tasks has computational advantages. Moreover, since the number of distinct values of sy is
usually small, the number of classes in a single multinomial regression task is much smaller
than m+ 1; only in the worst case, we end up with a quadratic complexity in the number
of labels m.

Let us, however, remark that the elements of matrix P estimated across different tasks
are not fully independent of each other (e.g., pim is the same for all i, since P (yi = 1, sy =
m) = P (y = 1m)). Consequently, learning on a finite training set may lead to conflicting
estimates that are not in agreement with any valid distribution. To avoid such conflicts,
one may include additional constraints in the learning problem or calibrate the estimates
afterwards. However, Dembczyński et al. (2013) have shown that with the sample size
growing to infinity this approach is statistically consistent.

To summarize this approach we notice that learning of the probabilistic model has a
time complexity that is at most quadratic in m. In the inference phase for a test instance
x, we first get estimates of P (0m |x) and P from the probabilistic model, again in at
most quadratic time. Then, we need to multiply matrices P and W to get ∆. Finally,
all the parameters are plugged into the GFM method. This approach has in the original
paper (Dembczyński et al., 2013) been referred to as Exact-F-measure-Plug-in classifier
(EFP).

Under the assumption of label independence, one can simplify this approach. Since
we only need marginal probabilities pi, it is enough to reduce the problem to m binary
probability estimation tasks that can be solved, for example, by logistic regression. Then,
for each test instance x, we obtain a vector of marginal probabilities pi, to which one might
apply, for example, the inference method of Ye et al. (2012). We refer to this approach as
Label-independence F-measure-Plug-in classifier (LFP), similarly as in (Dembczyński et al.,
2013).

7.2 Experimental Results

We test some of the algorithms described above on four commonly used multi-label bench-
mark data sets with known training and test sets. We take these data sets from the MU-
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LAN8 and LibSVM9 repositories. Table 1 contains basic statistics of these data sets. We
also relate the obtained results to the results of a variant of structured SVMs that moves
the effort of maximizing the F-measure to the training phase.

We run the experiments on the machine that was also used for the simulations described
earlier, i.e., on a Debian virtual machine with 8-core x64 processor and 5GB RAM.

data set #train #test m d

Scene 1211 1196 6 294
Yeast 1500 917 14 103
Enron 1123 579 53 1001
Mediamill 30993 12914 101 120

Table 1: Data sets and their properties. The number of training and test observations is
denoted by #train and #test, respectively, m is the number of labels, d is the
number of features.

7.2.1 Instance-Based Learning

We first present results of instance-based learning. We use a different number of nearest
neighbors, l ∈ {10, 20, 50, 100}. For each test example, we seek for its nearest neighbors
and apply different inference methods. We use exactly the same methods we applied in
our experiments on synthetic data given in Section 6. The first method, MM, estimates
the marginal modes, JM estimates the joint mode, FM approximates the F-measure by
assuming label independence, and the introduced GFM performs exact inference for the
F-measure. The nearest-neighbor search is performed by using the Weka (Hall et al., 2009)
and Mulan (Tsoumakas et al., 2011) implementation of instance-based learning.

The results are given in Table 2. Similarly as in Section 6, we report the performance
in terms of Hamming loss, subset 0/1 loss, F-measure and Jaccard index.

We can generally confirm our previous results on synthetic data: an inference method
tailored for a given performance measure obtains the best results. This is clear for Hamming
loss, for which MM has the smallest error throughout. JM performs the best for subset 0/1
loss on all data sets with some exceptions on Enron. Both methods tailored for F-measure
maximization, FM and GFM, substantially outperform MM and JM on this performance
criterion. FM seems to beat GFM on Enron, while the latter method produces better
results on the other data sets. There are, however, no clear results for the Jaccard index.

Let us underline that in the case of nearest neighbor methods, we are dealing with a
specific trade-off between the size of the neighborhood and its volume. In general, increasing
the sample size in the inference methods should improve the results. But in this case, by
increasing the number of neighbors, we simultaneously increase the volume of the space
that contains the neighbors. In other words, some of the neighbors can be far away from

8. This repository can be found at: http://mulan.sourceforge.net/datasets.html.
9. This repository can be found at: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

multilabel.html.
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Hamming Loss [%] Subset 0/1 Loss [%] F-measure [%] Jaccard [%]
10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100

Scene

MM 10.28 10.62 11.52 13.03 40.47 45.15 54.01 66.05 65.80 59.53 49.39 36.40 64.23 58.36 48.54 35.79
JM 11.19 10.99 11.97 12.28 36.54 36.29 39.13 40.05 68.26 68.73 65.89 64.97 67.06 67.47 64.63 63.71
FM 13.80 14.40 16.74 19.83 53.09 56.10 64.55 75.17 70.80 70.12 67.20 62.65 64.59 63.24 58.76 52.48
GFM 13.03 14.09 16.15 19.12 49.75 54.68 63.13 72.91 71.42 70.29 67.85 64.31 65.95 63.80 59.73 54.41

Yeast

MM 20.72 20.00 20.02 20.38 81.57 81.03 82.77 85.71 62.88 61.93 60.31 58.26 52.31 51.49 49.74 47.47
JM 23.09 21.78 21.84 22.04 76.66 76.23 77.54 78.30 59.14 60.53 60.97 60.68 49.75 51.06 51.20 50.72
FM 22.94 23.26 22.83 23.21 83.21 83.21 85.93 88.11 65.29 65.06 65.23 64.85 54.14 53.74 53.71 53.10
GFM 22.94 23.17 22.87 23.61 82.99 83.97 86.37 88.66 65.49 65.47 65.75 64.98 54.31 54.09 54.11 53.08

Enron

MM 5.73 5.94 6.28 6.46 88.08 88.60 89.46 89.64 35.56 27.91 23.23 23.71 28.70 22.97 19.36 19.60
JM 6.56 6.51 6.70 6.73 86.18 87.39 89.29 89.46 33.38 29.52 25.52 24.68 27.68 24.51 21.05 20.38
FM 6.51 6.23 6.34 6.48 87.56 88.60 87.22 88.26 47.50 47.01 42.10 37.86 37.31 36.82 33.65 30.17
GFM 6.61 6.28 6.54 6.63 88.08 86.87 88.43 89.29 44.43 42.45 34.76 29.27 35.12 34.10 27.93 23.70

Mediamill

MM 3.29 3.18 3.16 3.19 89.17 89.66 90.30 91.13 54.98 53.92 52.68 51.81 43.32 43.34 43.10 42.74
JM 4.17 4.03 3.93 3.91 88.93 88.82 89.24 89.05 48.87 48.58 47.32 47.07 43.55 43.66 43.30 42.80
FM 3.97 3.81 3.72 3.68 91.30 91.99 92.64 93.39 55.47 55.65 55.51 55.24 43.60 42.64 41.49 40.58
GFM 3.87 3.74 3.66 3.65 90.48 91.15 91.99 92.81 55.52 55.80 55.54 55.16 38.56 38.40 37.39 37.28

Table 2: Empirical results on 4 benchmark data sets. Instance-based methods are used
with a different number of neighbors (l ∈ {10, 20, 50, 100}) and with different
inference methods: MM—estimates marginal modes, JM—the joint mode, FM—
approximates the F-measure maximizer by assuming independence of labels, and
GFM—computes the exact F-measure maximizer over the nearest neighbors. Re-
sults are reported for Hamming loss, subset 0/1 loss, F-measure and Jaccard index.
The best results for a given number of neighbors and a performance measure are
marked in bold.
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Inference time [s] Inference time [s]
10 20 50 100 10 20 50 100

Scene Yeast

MM 7.622 8.110 9.078 10.064 MM 3.662 3.907 4.352 4.793
JM 7.519 8.052 9.093 10.010 JM 3.687 3.958 4.362 4.812
FM 7.488 8.023 9.106 10.126 FM 3.728 3.920 4.404 4.788
GFM 8.311 8.171 9.169 10.475 GFM 3.634 3.944 4.467 4.875

Enron Mediamill

MM 1.601 1.618 1.978 2.172 MM 336.550 374.207 435.171 499.977
JM 1.477 1.607 1.929 2.236 JM 338.855 373.297 431.354 492.079
FM 1.483 1.645 1.931 2.145 FM 339.704 375.230 433.660 493.424
GFM 1.518 1.681 2.022 2.228 GFM 347.402 382.663 442.356 502.060

Table 3: Computation time in seconds for the instance-based methods for different l =
{10, 20, 50, 100} and inference methods: MM, JM, FM, and GFM. Computation
time includes searching time and inference time

the test example, which usually deteriorates the quality of the estimates. This is usually the
case for high-dimensional problems. This may partially explain the results on the Enron
data set. The performance under the F-measure decreases substantially with the number of
neighbors. Also when comparing the instance-based methods with other methods, presented
later in this section, we see that the overall performance on this data set is much worse for
the former methods.

In Table 3 we present the computation time of the instance-based methods. The compu-
tation time includes both the search of nearest-neighbors and the inference. We can easily
observe that the nearest-neighbor search dominates inference in terms of computational
complexity, since there is only a small difference in computational times between the infer-
ence methods for a given data set and l. We do not present the inference times separately
here, since their characteristics are exactly the same as presented in Section 6.

7.2.2 Probabilistic Classifier Chains

In the next experiments, we use PCC. We train PCC by using linear regularized logistic
regression. We use the implementation of logistic regression from Mallet (McCallum, 2002).
We tune the regularization parameter for each base classifier independently by minimizing
the logistic loss, hoping to thereby produce better probability estimates. We use 5-fold
cross-validation and choose the regularization parameter from the following set of possible
values {10−4, 10−3, . . . , 103}. Similarly as in the previous experiments, we use four different
inference mechanisms. For MM, FM, and GFM methods, we obtain the estimates of the
required parameters by performing ancestral sampling from the conditional joint distribu-
tion of each test example x. The JM method, instead of estimating the joint mode from
the sample, applies the efficient exact search method (Dembczyński et al., 2012b).

Table 4 contains the results of the experiment. As before, we report the Hamming
loss, subset 0/1 loss, F-measure and the Jaccard index. We also give the training and
inference times. The training time concerns the entire procedure that consists of tuning
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of the regularization parameter in cross-validation and training of a model with the best
value of the regularization parameter. The results for MM, FM, and GFM are given for
sample size of 1000. From the results, we can clearly state that approaches tailored for the
F-measure obtain better results on this performance criterion. It seems that GFM obtains
slightly better results, but also needs a little bit more time. In Figure 5, we additionally
present the F-measure and inference times of FM and GFM as a function of the number of
observations obtained from ancestral sampling. These results are computed over 5 runs of
the inference methods to decrease the impact of the randomness of the sampling method.
The plots confirm our theoretical results concerning the predictive performance and time
complexity. However, the inference times reported here include all three steps: sampling,
estimation of parameters, and inference based on these parameters. As we can see in Table 4
and Figure 5 the differences between GFM, FM, and MM are not substantial here, since
sampling is the most expensive step. The exact method used for joint mode estimation
works much faster than the other methods based on sampling. From the other results in
Table 4 we can also observe that MM is the best for Hamming loss, and JM for the subset
0/1 loss. The results for the Jaccard index show that maximization of the F-measure can
be used as a proxy for this performance criterion, at least FM and GFM perform better
than MM.

7.2.3 Parametric Models

To complete the picture we also present the experimental results of parametric models
that have been previously published in (Dembczyński et al., 2013). We compare EFP and
its simplified variant LFP. We also include to the comparison the binary relevance (BR)
approach that learns and predicts for each label independently. Such a model should perform
well under the Hamming loss. All the methods use linear models and are trained, similarly
as PCC, by logistic regression. The regularization parameter and its tuning is exactly the
same as in the experiment with PCC.

The results are summarized in Table 5. We show the results for Hamming loss, F-
measure and report training and inference times. Not surprisingly, BR achieves the best
results for Hamming loss, but it is outperformed by all the other methods on the F-measure.
EFP is the best method in this regard.

BR is the most efficient in inference. Nevertheless, the inference times of LFP and
EFP are quite comparable to those of BR, despite their quadratic (for LFP) and cubic
(for EFP) complexity. Admittedly, however, the data sets used in the experiments only
contain a small to moderate number of labels (up to 100). For data sets with thousands of
labels, the difference is likely to become substantially larger. The training of BR and LFP
(these are exactly the same procedures) is the most effective. Training of EFP leads to m
multinomial regression models. One should note, however, that the number of classes in
each multinomial regression models can be much less than the highest possible value m+ 1.
Therefore, the training of EFP is still quite effective and takes only a few times longer than
the training of LFP. The training time includes here also the tuning time, similarly as in
the case of PCC.

3541



Waegeman et al.

Hamming Subset 0/1 F-Measure [%] Jaccard [%] Training Inference
Loss [%] Loss [%] Time [s] Time [s]

Scene

MM 9.89 42.69 62.73 61.37 39 1.839
JM 10.40 34.87 70.93 69.48 39 0.255
FM 12.83 50.44 72.78 66.71 39 1.858
GFM 12.74 49.86 72.78 66.89 39 1.927

Yeast

MM 19.56 81.98 61.78 51.32 32 7.120
JM 20.91 76.34 63.36 53.56 32 0.220
FM 22.31 84.22 65.53 54.29 32 7.161
GFM 22.54 84.73 65.63 54.32 32 7.513

Enron

MM 4.63 86.88 52.62 42.51 81 120.636
JM 4.81 82.56 55.67 45.80 81 1.974
FM 5.59 90.33 58.54 46.19 81 121.172
GFM 5.53 89.12 59.08 46.89 81 121.700

Mediamill

MM 3.18 92.44 51.21 39.60 6150 2226.455
JM 3.57 90.02 44.99 35.62 6150 28.856
FM 3.62 94.81 55.39 42.57 6150 2230.661
GFM 3.61 94.51 55.18 42.44 6150 2293.945

Table 4: Empirical results on 4 benchmark data sets. PCC is used with different inference
methods: MM - estimates marginal modes, JM - the joint mode, FM - approx-
imates the F-measure maximizer by assuming independence of labels, and GFM
- estimates the exact F-measure maximizer over the conditional distribution ob-
tained from the model. For MM, FM, and GFM, we sample 1000 observations
from the conditional joint distribution for each test example. Results are reported
for Hamming loss, subset 0/1 loss, F-measure and Jaccard distance. The best
results for a performance measure are marked in bold.
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Figure 5: Performance of FM and GFM inference methods used in PCC with different num-
ber of observations obtained from ancestral sampling. The results are averaged
over 5 runs of the inference methods to eliminate the randomness of sampling.
Left plots show F-measure, while right plots inference times. The inference time
includes sampling, estimation of parameters, and inference based on these param-
eters. The error bars show the standard error of the measured quantities.
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Hamming Loss [%] F-Measure [%] Training Time [s] Inference Time [s]

Scene

BR 10.51 55.73 29 0.241
LFP 12.18 74.38 29 0.270
EFP 12.22 74.44 72 0.399

Yeast

BR 20.03 60.59 26 0.128
LFP 22.24 65.02 26 0.146
EFP 22.82 65.47 101 0.367

Enron

BR 4.54 55.49 52 1.016
LFP 6.09 56.86 52 1.519
EFP 5.34 61.04 214 2.628

Mediamill

BR 3.19 51.21 3238 13
LFP 3.67 55.15 3238 20
EFP 3.63 55.16 24620 30

Table 5: Empirical results on 4 benchmark data sets of parametric models: BR, LFP, and
EFP. We report the Hamming loss, F-measure and training and inference times in
seconds. The best results for a performance measure are marked in bold.

7.2.4 Comparison with Structured Support Vector Machines

In this subsection we gather results of all F-measure maximization methods presented so
far and compare them with the results of a variant of structured SVMs (Tsochantaridis
et al., 2005) in which the effort of maximizing the F-measure is moved to the training
phase. Two methods of that kind, referred to as RML and SML, have been introduced by
Petterson and Caetano (2010, 2011). We present here only the results of RML, previously
published in (Dembczyński et al., 2013).10 Basically, this method trains one model for each
label, but in a way that the margin, appropriately rescaled by the F-measure, is maximized
jointly over all labels. RML uses a variant of the cutting-plane algorithm for optimization.
So, in each iteration a most violating constraint for each training example is generated.
This step has quadratic complexity in terms of the number of labels. In the prediction
phase the models are independently applied to corresponding labels. Surprisingly, this
method produces usually better results than the more complex SML method (Petterson and
Caetano, 2011), which additionally models pairwise label dependencies.11 In the experiment
the RML method uses a linear model. The regularization parameter is tuned in 5-fold cross-
validation using a range of values corresponding to the one used for PCC, EFP, and LFP.
The maximal number of iterations in the cutting-plane algorithm has been set to 1000.

10. The results were obtained by using the software available at http://users.cecs.anu.edu.au/

~jpetterson/.
11. The comparison of these two methods is given in (Petterson and Caetano, 2011) and Dembczyński et al.

(2013).

3544

http://users.cecs.anu.edu.au/~jpetterson/
http://users.cecs.anu.edu.au/~jpetterson/


On the Bayes-Optimality of F-Measure Maximizers

Table 6 present the results for F-measure, training and inference times. For instance-
based methods we report the variant with the number of neighbors which achieves the best
results for a given data set. Similarly for PCC, we take the number of sampled observations
which leads to the best performance. Observing the results we can say that in general the
methods that maximize the F-measure in the inference phase outperform the structured
SVM approach. RML is only competitive on the Scene data set, on which it wins against
instance-based methods and PCC, but loses from EFP and LFP. On Yeast and Medi-
amill it achieves the worst performance. On the latter data set the difference is the most
substantial. On Enron it wins only against the instance-based method. As we already
pointed out, on this data set all variants of nearest neighbors perform weakly, probably
because of the high-dimensional feature space.

The comparison of the running times between RML and the other methods should be
interpreted with caution, due to the use of different programming languages (RML is imple-
mented in C++, while the other algorithms in Java) and differences in the implementations
(different data structures). Therefore, the evaluation times may not be fully comparable.
For example, the inference times for BR (Table 5) and RML should basically be very simi-
lar, as in both cases there is a single linear model for each label. Yet, the implementation
of RML is much more efficient. Nevertheless, we are still able to derive several important
conclusions.

Not surprisingly RML is the most efficient in inference. However, the cutting-plane
algorithm and the constraint generation step therein slow down significantly the training
of RML. This also makes tuning very costly. For PCC, EFP and LFP, the tuning can be
performed independently for each base classifier. In that way we hope to obtain a good
probabilistic model and there is no need to perform neither a costly training nor inference.
Unfortunately, this is not the case of RML. For example, tuning on the Mediamill data
set has not finished in reasonable time. The F-measure result reported in the table is the
best one among those obtained on the test set for different values of the regularization
parameter.

Each of the methods maximizing the F-measure in the inference phase has its advantages
and disadvantages. By comparing the results, we see that parametric models get the best
results on Scene and Enron followed by PCC. On Yeast and Mediamill all the methods
perform very similarly, but the best is the instance-based learning here. Learning of EFP
is the most costly. PCC and LFP train a single model for each label, but in the case of
the former algorithm the feature space is enhanced by the preceding labels, therefore, the
training time is longer for this procedure. We do not report training time for instance-
based methods, as in the simplest case there is no learning in this kind of methods. In
general, however, one should consider the time needed for tuning the number of neighbors
and optionally learning the metric, which we have not performed here. From the inference
point of view, LFP seems to be the most efficient. As we already discussed in the previous
subsection, EFP is still quite competitive in comparison with LFP, but for data sets with
a large number of labels this difference shall be more substantial. Instance-based methods
are also very efficient for data sets with a small number of training examples. Because of
the sampling procedure applied for each testing examples, PCC is the most time demanding
procedure. However, we can see from Figure 5 that the good performance with respect to
the F-measure can be obtained with a smaller number of sampled observations. In many
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applications a set of 100 observations should be sufficient, resulting in a sample generation
that is approximately 10 times faster. The main advantage of PCC is that once we have
a trained model we can apply inference for many different performance measures without
any additional training.

F-Measure [%] Training Time [s] Inference Time [s]

Scene

IB FM (l = 10) 70.80 - 3.746
IB GFM (l = 10) 71.42 - 3.749
PCC FM (n = 1000) 72.78 39 1.858
PCC GFM (n = 1000) 72.77 39 1.927
LFP 74.38 29 0.270
EFP 74.44 72 0.399

RML 73.92 73 0.118

Yeast

IB FM (l = 10) 65.29 - 1.518
IB GFM (l = 50) 65.75 - 1.795
PCC FM (n = 1000) 65.53 39 7.161
PCC GFM (n = 1000) 65.63 39 7.513
LFP 65.02 26 0.146
EFP 65.47 101 0.367

RML 64.78 206 0.056

Enron

IB FM (l = 10) 47.50 - 0.787
IB GFM (l = 10) 44.43 - 0.810
PCC FM (n = 500) 58.75 81 75.677
PCC GFM (n = 500) 59.19 81 76.056
LFP 56.86 52 1.519
EFP 61.04 214 2.628

RML 57.69 3897 0.143

Mediamill

IB FM (l = 20) 55.65 - 164
IB GFM (l = 20) 55.80 - 167
PCC FM (n = 1000) 55.39 6150 2230
PCC GFM (n = 1000) 55.18 6150 2293
LFP 55.15 3238 20
EFP 55.16 24620 30

RML 49.35 - 7

Table 6: Comparison of RML, a variant of structured SVMs for F-measure maximiza-
tion, with other F-measure maximization methods given in the previous tables:
instance-based methods (IB), PCC, LFP and EFP. We present here the best vari-
ant of instance-based methods and PCC for a given data set. The number l of
nearest neighbors for the best variant of IB is given in parentheses. Similarly
the number of sampled observations in PCC is also given in parentheses. The
F-measure, training and inferences time in seconds are reported. The best results
are marked in bold.
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7.3 Results in the JRS 2012 Data Mining Competition

We used the algorithms maximizing the F-measure in the inference phase in our solution for
the JRS 2012 Data Mining Competition (Janusz et al., 2012).12 This competition considered
topical classification of bio-medical articles. In essence, it consisted of a multi-label learning
problem, where the objective was to optimize the instance-based F-measure. We decided
to participate in this competition to showcase the practical relevance of our theoretical
findings regarding the F-measure maximization. Similar to many of our competitors, our
final predictions in the competition were produced by a blend of several methods, and they
achieved a very satisfactory result, namely the second place in the competition with more
than 100 participants. In this paragraph, we briefly explain the methodology that led to
this result.

Our solution was mainly based on PCC with FM and GFM inference methods and the
LFP algorithm. The methods were tuned and run in a similar way as described in the pre-
vious experiments (with small differences: we used 10-fold cross validation, and considered
a wider range for the regularization parameter, namely {10−5, 10−4, . . . , 105}). At this time
the EFP algorithm was not yet developed. We used neither instance-based nor decision
tree methods. Our preprocessing on the competition data was quite straightforward. We
simply deleted all the empty columns (i.e., zero vectors) in the training data, then the
corresponding columns in the test data. The values of features were normalized to [0, 1].

The results of the methods are presented in Table 7. The F-measure is computed
over the entire test set delivered by the organizers after the competition. This is a minor
difference in comparison to the competition results, which are computed over 90% of test
examples. The remaining 10% of test examples constitute a validation set that served for
computing the scores for the leader board during the competition. The results of PCC we
show for different sizes of samples generated from the conditional joint distribution of a
given test example. In the last row in the table, we also give a result of the final method we
used in the competition. It relies on averaging over all predictions we computed during the
competition. These predictions were results of different parameterization of PCC and BR.
In total we gathered 16 predictions that we aggregated via voting. In this voting procedure,
we tested different thresholds on the validation set and selected the best one. The solution
is described in more detail in (Cheng et al., 2012).

From the results we can see that there is no big difference among the methods. The
voting procedure improves only slightly over LFP and PCC with the GFM inference. The
results of these methods would be enough to obtain at least the third place in the compe-
tition. It shows that a quite simple model, without any blending, but with an appropriate
inference method suited for a given performance measure is enough for solving complex
tasks. Interestingly, LFP performs here better than PCC with GFM, which suggests in-
dependence of the labels. However, one can also observe that PCC with FM loses against
other methods. This may suggest that PCC with the sampling procedure has problems
with accurate estimation of marginal probabilities. Increasing the sample size improves the
results (for both, FM and GFM), but it still seems that LFP is the most appropriate method
in this case. It is the most cheapest one, since it does not require additional sampling in the
inference step as PCC does, and gives results only slightly worse than the voting method

12. More info can be found at: http://tunedit.org/challenge/JRS12Contest.
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Method F-measure

PCC FM (n = 50) 0.48650
PCC FM (n = 200) 0.51979
PCC FM (n = 1000) 0.52995
PCC GFM (n = 50) 0.52286
PCC GFM (n = 200) 0.53005
PCC GFM (n = 1000) 0.53146
LFP 0.53279
Voting (final submission) 0.53327

Table 7: The results on the JRS 2012 Competition data set. The number n in parentheses denotes
the number of sampled observations in PCC.

that averages over many predictions. As we already said before, there is no clear answer
which of the two inference methods, GFM or FM, will get better results on a given data
set. GFM provides an exact solution, but needs to estimate more parameters, so FM may
get better results, particularly in the case of no or weak label dependencies.

8. Discussion

In contrast to other performance measures commonly used in experimental studies, such
as error rate, squared loss, and AUC, the F-measure has been investigated less thoroughly
from a theoretical point of view, and only few papers have been devoted to that kind of
analysis so far (e.g. Lewis (1995); Chai (2005); Jansche (2007); Dembczyński et al. (2011);
Ye et al. (2012); Zhao et al. (2013)). In this paper, we analyzed the problem of optimal
predictive inference from the joint distribution under the F-measure. While partial results
were already known from the literature, we completed the picture by presenting the solution
for the general case without any distributional assumptions and by analyzing the relations
between F and other performance measures. Our GFM algorithm requires only a polynomial
number of parameters of the joint distribution and delivers the exact solution in polynomial
time. From a theoretical perspective, GFM should be preferred to existing approaches,
which typically perform threshold maximization on marginal probabilities, often relying
on the assumption of (conditional) independence of labels. Focusing on optimizing the
instance-wise F-measure, empirical results on synthetic and real-world multi-label data sets
show a competitive performance for our approach.

The algorithms discussed here optimize the F-measure in the inference phase. Alter-
natively, one can move the effort of maximizing the F-measure to the training phase, as
in structured SVMs (Tsochantaridis et al., 2005), SEARN (Daumé III et al., 2009), or in
a specific variant of CRFs (Suzuki et al., 2006). These algorithms, however, are usually
based on additional assumptions, and their original formulation does not directly concern
multi-label problems. In the experiments, we performed a comparison to the adaptation
of structured SVMs to the multi-label setting introduced by Petterson and Caetano (2010,
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2011). This algorithm also maximizes the F-measure, but produces worse results than the
approaches based on the GFM inference. However, its prediction time is much faster, giving
an interesting alternative in time-critical applications.

Let us also mention that the GFM algorithm can be easily tailored for maximizing
the instance-wise F-measure in structured output prediction problems. If the structured
output classifier is able to model the joint distribution, from which we can easily sample
observations, then the use of the algorithm is straight-forward. An application of this kind
is planned as future work.

The GFM algorithm could also be considered for maximizing the macro F-measure, for
example, in a similar setting as in (Zhang et al., 2010), where a specific Bayesian on-line
model is used. In order to maximize the macro F-measure, the authors sample from the
graphical model to find an optimal threshold. The GFM algorithm may solve this problem
optimally, since, as stated by the authors, the independence of labels is lost after integrating
out the model parameters. Theoretically, one may also consider a direct maximization of
the micro F-measure with GFM, but the computational burden is rather high in this case.
We would also like to emphasize that maximization of instance-based F-measure leads to
suboptimal results for the micro F-measure. Despite being related to each other, these two
measures coincide only in a specific case when

∑m
i=1(yi+hi) is constant for all test examples.

The discrepancy between these measures strongly depends on the nature of the data and
the classifier used. For high variability in

∑m
i=1(yi + hi), a significant difference between

the values of these two measures is to be expected. Surprisingly, experimental results are
quite often reported in terms of micro F-measure, although the algorithms maximize the
instance-wise F-measure on the training set.

The use of the GFM algorithm in binary classification seems to be superfluous, since in
this case, the assumption of label independence is rather reasonable. The algorithm of Ye
et al. (2012) seems to be an interesting alternative for probabilistic classifiers. Thresholding
methods (Keerthi et al., 2007; Ye et al., 2012; Zhao et al., 2013) or learning algorithms
optimizing the F-measure directly (Musicant et al., 2003; Joachims, 2005; Jansche, 2005;
Ye et al., 2012) are also appropriate solutions here.
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Appendix A. Proofs of Theorems

Theorem 1 Let hH be a vector of predictions obtained by minimizing the Hamming loss,
Then for m > 2 the worst-case regret is given by:

sup
P∈Pu

LH

(
E
[
F (Y ,hF )− F (Y ,hH)

])
= 0.5 ,

where the supremum is taken over all possible distributions P that result in a unique Ham-
ming loss minimizer.

Proof. For a fixed Hamming loss minimizer hH it follows from (8) that any probability
distribution P ∈ PuLH

should satisfy the following constraint for all i ∈ {1, ...,m}:∑
y∈{0,1}m:yi 6=hH,i

P (y) ≤ 0.5− ε

with ε > 0. Practically, we will choose ε arbitrarily close to zero, implying that its con-
tribution vanishes in the limit, but this construction allows to rewrite the constraint in
traditional mathematical programming form. Let us also define

ηy(h,hH) = F (y,h)− F (y,hH)

for all y ∈ {0, 1}m. Finding the supremum over all probability distributions then becomes
equivalent to solving the following mixed integer nonlinear program:

max
h,hH ,P∈Pu

LH

∑
y∈{0,1}m

ηy(h,hH)P (y) (23)

subject to


∑

y∈{0,1}m P (y) = 1 ,

∀i ∈ {1, ...,m} :
∑

y∈{0,1}m:yi 6=hH,i
P (y) ≤ 0.5− ε ,

∀y ∈ {0, 1}m : 0 ≤ P (y) ≤ 1 ,
h,hH ∈ {0, 1}m

By definition, the solution h for which the maximum is obtained corresponds to the F-
measure maximizer in (2).

To reduce the number of integer variables in the optimization problem, we introduce
the following equivalence classes for the indices of labels:

A = {i ∈ {1, ...,m} : hi = 1 ∧ hH,i = 0} ,
B = {i ∈ {1, ...,m} : hi = 0 ∧ hH,i = 1} ,
C = {i ∈ {1, ...,m} : hi = 1 ∧ hH,i = 1} ,
D = {i ∈ {1, ...,m} : hi = 0 ∧ hH,i = 0} .

We also adopt the shorthand notation a = |A|, b = |B|, c = |C|, d = |D| and

sy =

m∑
i=1

yi , sAy =
∑
i∈A

yi , sBy =
∑
i∈B

yi , sCy =
∑
i∈C

yi , sDy =
∑
i∈D

yi . (24)
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The coefficients in (23) can then be simplified to:

ηy(h,hH) = ηy(a, b, c, d) =
2sAy (sy + b+ c)− 2sBy (sy + a+ c) + 2sCy (b− a)

(sy + a+ c)(sy + b+ c)
. (25)

As a consequence, only four integer variables remain present in the optimization problem,
which is for simplicity converted to a minimization problem in standard mixed-integer linear
program form:

min
a,b,c,d,P

−
∑

y∈{0,1}m
ηy(a, b, c, d)P (y)

subject to



∑
y∈{0,1}m P (y) = 1 ,

∀i ∈ {1, ...,m} :
∑

y∈{0,1}m:yi 6=hH,i
P (y) ≤ 0.5− ε ,

∀y ∈ {0, 1}m : 0 ≤ P (y) ≤ 1 ,
a+ b+ c+ d = m,
a, b, c, d ∈ N .

This new optimization problem is a relaxation of (23), since the F-maximizer of the prob-
ability distribution found as solution will not necessarily comply with the definition of the
sets A, B, C and D. However, this will not cause any trouble, because the oracle solution
that is derived below will obey this additional constraint.

One arrives at a standard linear program formulation by keeping the four integer vari-
ables fixed. As the key element of our proof, we show that for every allowed value of
(a, b, c, d) a solution of the linear program is given by the following probability distribution:

PA(y) =


0.5− ε if y = yA

0.5− (2d− 1)ε if y = yBCD

2ε if y ∈ ΩD
m

0 otherwise

,

where yA is defined as a vector containing ones at positions i ∈ A and zeros at all other
positions. Similarly, yBCD contains zeros at positions i ∈ A and ones at all other positions:

yAi = 1 + yBCDi = 1, ∀i ∈ A ,
yAi = 1− yBCDi = 0, ∀i ∈ B ∪ C ∪D .

The set ΩD
m is defined as:

ΩD
m = {y ∈ {0, 1}m |

∑
i∈A

yi = 0 ∧
∑

i∈B∪C
yi = b+ c ∧

∑
i∈D

yi = d− 1} ,

so this set contains d vectors, which differ only in one position with yBCD.
We verify the Karush-Kuhn-Tucker (KKT) conditions to prove that the above prob-

ability distribution yields the optimum of the linear program for every (a, b, c, d). For
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linear programs, which represent a specific case of optimizing an invex function, the KKT-
conditions are not only necessary but also sufficient for optimality (Hanson, 1981). Let us
define the primal Lagrangian as:

Lp = −
∑

y∈{0,1}m
ηy(a, b, c, d)P (y) + ν

∑
y∈{0,1}m

(
P (y)− 1

)
+

m∑
i=1

µi
[ ∑
y∈{0,1}m:yi 6=hH,i

P (y)− 0.5 + ε
]

−
∑

y∈{0,1}m
λ−y P (y) +

∑
y∈{0,1}m

λ+
y (P (y)− 1) .

with ν, µi, λ
+
y and λ−y Lagrange multipliers. For the above-mentioned probability distribu-

tion, the complementary slackness conditions imply that λ+
y = 0 for all y ∈ {0, 1}m and

λ−y = 0 for all y contained in ΩD
m ∪ {yA,yBCD}. Hence, the zero-gradient condition results

in the following system of equations:

ηy(a, b, c, d) = ν +
∑

i:yi 6=hH,i

µi , ∀y ∈ ΩD
m ∪ {yA,yBCD} ,

ηy(a, b, c, d) = ν +
∑

i:yi 6=hH,i

µi − λ−y , ∀y /∈ ΩD
m ∪ {yA,yBCD} .

First, we show that a solution always exists for this system, and additionally, we check the
dual feasibility conditions µi ≥ 0, λ+

y ≥ 0 and λ−y ≥ 0. For all y /∈ ΩD
m ∪ {yA,yBCD},

the equations have an individual variable λ−y , which only occurs in one equation, so these
equations do not impose any further restrictions, apart from the non-negativity constraint on
the respective Lagrange multipliers. Furthermore, since the sum over µi is always positive,
we have enough degrees of freedom to ignore those equations. For the other equations, one
arrives at a new system of equations by solving for ν:∑

i:yi 6=hH,i

µi −
∑

j:y′j 6=hH,j

µj = ηy(a, b, c, d)− ηy′(a, b, c, d) ,

∀y,y′ ∈ ΩD
m ∪ {yA,yBCD} .

We continue by writing out this system of equations more explicitly, resulting in four cases.
For the pair corresponding to y = yA and y′ = yBCD we obtain∑

i∈A∪B∪C
µi −

∑
i∈D

µi = ηy(a, b, c, d)− ηy′(a, b, c, d) . (26)

For all pairs having y = yA and y′ ∈ ΩD
m, so d pairs in total with j ∈ D, we obtain∑

i∈A∪B∪C
µi −

∑
i∈D\{j}

µi = ηy(a, b, c, d)− ηy′(a, b, c, d) . (27)

For all pairs having y = yBCD and y′ ∈ ΩD
m, so again d pairs with i ∈ D, we obtain

µi = ηy(a, b, c, d)− ηy′(a, b, c, d) . (28)
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For all pairs having y,y′ ∈ ΩD
m, so d(d− 1) pairs with i, j ∈ D, we obtain

µi = µj . (29)

Let us observe that the d equations (27) and the d equations (28) are equivalent due to
(26). Moreover, the d(d − 1) equations in (29) are trivially satisfied, resulting in a system
that can be reduced to d+ 1 equations and m variables. Hence, a solution always exists if
the dual feasibility conditions are satisfied. Plugging (25) into (28) yields for i ∈ D:

µi =
2c(b− a)

(m+ c)(2b+ 2c+ d)
− 2b

2b+ 2c+ d

− 2c(b− a)

(m+ c− 1)(2b+ 2c+ d− 1)
+

2b

2b+ 2c+ d− 1

≥ 2cb(m− 2)

(m+ c)(m− 1 + c)(2b+ 2c+ d)
.

So, µi ≥ 0 as soon as m > 1. Due to the denominator it is also required that 2b+2c+d > 1.
For the µi having i /∈ D we find:∑

i∈A∪B∪C
µi ≥ ηy(a, b, c, d)− ηy′(a, b, c, d)

=
2a

2a+ c
+

2b

2b+ 2c+ d

− 2c(b− a)

(m+ c)(2b+ 2c+ d)

≥ 2mb

(m+ c)(2b+ 2c+ d)
≥ 0 .

In other words, these are the conditions that remain for the µi for which i ∈ D. From
the inequality it follows that the individual µi can be made greater than zero in this case,
implying that also the active Lagrange multipliers λ−y can be chosen in such a way that
they are greater than zero.

Consequently, when m > 1, all KKT conditions are satisfied for the oracle solution that
we provide. Let us compare the value of the objective function for all allowed values of the
four integer variables a, b, c and d. By omitting ε-dependent terms, which vanish when ε
approaches zero, we obtain:∑

y∈ΩD
m∪{yA,yBCD}

ηy(a, b, c, d)P (y) =
a

(2a+ c)
− ca

(m+ c)(2b+ 2c+ d)

− mb

(m+ c)(2b+ 2c+ d)
.

This function is decreasing in b and c, it is constant in a as soon as c = 0 and a > 0. It is
constant in d when b+ c = 0, thus its maximum of 0.5 is not unique. This maximum is for
example obtained for (a = 1, b = 0, c = 0, d = m− 1) and it corresponds to the worst-case
regret mentioned in the theorem. Remark as well that the solution imposes as additional
constraint m > 2, as a result of the previous constraint 2b + 2c + d > 1. Two cases were
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excluded from our analysis: (a = m, b = 0, c = 0, d = 0) and (a = m−1, b = 0, c = 0, d = 1).
These cases do not deserve further attention, since they lead to a worst-case regret that is
always upper bounded by 0.5. �

Theorem 2 Let hs be a vector of predictions obtained by minimizing the subset 0/1 loss,
then for m > 2 the worst-case regret is given by:

sup
P∈Pu

Ls

(
E
[
F (Y ,hF )− F (Y ,hs)

])
=

(−m− 2 + 2m2)m

(2m− 1)(4 +m+m2)
,

where the supremum is taken over all possible distributions P .

Proof. It follows from (9) that optimization problem (4) has a unique solution for the
subset zero-one loss if and only if the underlying probability distribution has a unique
mode. Translating this requirement into a mathematical programming formulation implies
that any probability distribution P ∈ PuLs

should satisfy the following constraint:

P (y) + ε ≤ P (hs) ,

for all y ∈ {0, 1}m \ hs and any ε > 0. Practically, the contribution of ε will again vanish
by choosing it arbitrarily close to zero.

As a result, the supremum can be interpreted as the solution of a mixed integer nonlinear
program:

max
h,hs,P

∑
y∈{0,1}m

(F (y,h)− F (y,hs))P (y) (30)

subject to


∑

y∈{0,1}m P (y) = 1 ,

∀y ∈ {0, 1}m \ hs : P (y) + ε ≤ P (hs) ,
∀y ∈ {0, 1}m : 0 ≤ P (y) ≤ 1 ,
hs,hF ∈ {0, 1}m ε ≥ 0 .

Recall that by construction the solution for h again coincides with the F-measure maxi-
mizer in (2). The mixed integer nonlinear program contains 22m integer variables and 2m

real variables. In what follows, we assume that ε is arbitrarily close to zero, so that all
ε-dependent terms cancel out, while guaranteeing unique risk minimizers. The only conse-
quence of this decision is that the presented solution acts as a supremum (the maximum is
not reached).

Despite a similar formulation as the previous theorem, our proving techniques will be
quite different, because, unlike the previous theorem, it is impossible to derive an oracle
solution for the entire mixed integer nonlinear program. Alternatively, we will look for a
solution of the optimization problem that emerges when ε-dependent terms become zero.
The only practical problem with this solution is the non-uniqueness of the corresponding
subset zero-one loss minimizer, but we will show that this solution can be approximated by
an arbitrarily close solution with a unique subset zero-one loss minimizer. This technique
will suffice to prove the theorem. However, let us remark that the same technique would not
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work to prove Theorem 1, because there it would not be possible to approach the solution
of the optimization problem without ε-terms by an ε-approximate extension with unique
Hamming loss minimizer. This explains why the proving techniques of Theorem 1 and 2
are different.

We start by providing an oracle solution for the linear program that is obtained by fixing
the integer variables to hF = 1m and hs = 0m. The first part of the proof is a bit similar
to a proof given for the regret of the subset 0/1 loss minimizer w.r.t. the Hamming loss
(Dembczyński et al., 2012a). While omitting ε-dependent terms, optimization problem (30)
can be reformulated in standard linear program form as:

min
P

∑
y∈{0,1}m

−η(y)P (y)

subject to


∑

y∈{0,1}m P (y)− 1 = 0 ,

∀y ∈ {0, 1}m \ 0m : P (y)− P (0m) ≤ 0 ,
∀y ∈ {0, 1}m : −P (y) ≤ 0 ,
∀y ∈ {0, 1}m : P (y)− 1 ≤ 0 ,

with

η(y) =

{
2sy
sy+m if y 6= 0m ,

−1 if y = 0m .

In the next paragraphs we will show that the following probability distribution corre-
sponds to the solution of the linear program:

PA(y) =

{ 2
m2+m+4

if d(y,0m) ≥ m− 2 ∨ y = 0m ,

0 otherwise ,

where dH(y,y′) =
∑m

i=1 |yi−y′i| denotes the Hamming distance. This solution represents a
case where the subset zero-one loss minimizer is not unique, but it could be easily extended
to an ε-approximate solution with unique subset zero-one loss minimizer:

PA(y) =


2

m2+m+4
+ m2+m+2

m2+m+4
ε if y = 0m ,

2
m2+m+4

− 2
m2+m+4

ε if d(y,0m) ≥ m− 2 ,

0 otherwise ,

We verify the KKT conditions to prove that the above probability distribution is indeed
the solution of the optimization problem. The primal Lagrangian of the linear program can
be defined as:

Lp = −
∑

y∈{0,1}m
η(y)P (y) + ν

∑
y∈{0,1}m

(
P (y)− 1

)
+
∑

y 6=0m

λ2
y

(
P (y)− P (0m)

)
−

∑
y∈{0,1}m

λ0
yP (y) +

∑
y∈{0,1}m

λ1
yP (y) ,
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with ν, λ0
y, λ

1
y and λ2

y Lagrange multipliers. The stationarity condition for optimality leads
to the following system of linear equations:

−η(y) + ν + λ1
y − λ0

y + λ2
y = 0 ∀y 6= 0m , (31)

1 + ν + λ1
y − λ0

y −
∑

y 6=0m

λ2
y = 0 y = 0m (32)

Other conditions that need to be satisfied are dual feasibility

∀y : λ0
y ≥ 0 , (33)

∀y : λ1
y ≥ 0 , (34)

∀y : λ2
y ≥ 0 , (35)

and the complementary slackness conditions of our oracle solution PA(y):

∀y ∈ Ωu ∪ {0m} : λ0
y = 0 ,

∀y : λ1
y = 0 ,

∀y /∈ Ωu : λ2
y = 0 ,

where Ωu = Ω(m) ∪ Ω(m − 1) ∪ Ω(m − 2) and Ω(t) = {y ∈ {0, 1}m | dH(0m,y) = t}.
Plugging the latter three conditions into (31) and (32) yields

−η(y) + v − λ0
y = 0 , ∀y /∈ Ωu ∪ {0m} ,

−η(y) + v + λ2
y = 0 , ∀y ∈ Ωu ,

v =
∑

y 6=0m
λ2
y − 1 .

Solving the last equation for v results in

v =
(−m− 2 + 2m2)m

(2m− 1)(4 +m+m2)
.

Subsequently, one can verify that this solution for v obeys the non-negativity conditions for
all λy. The non-negativity of λ2

y turns out to be most restrictive for the equivalence class
y ∈ Ω(m− 2). In this case we obtain:

λ2
y =

2m− 4

2m− 2
− v =

2(3m2 − 10m+ 4)

(m− 1)(2m− 1)(4 +m+m2)
. (36)

Analyzing this function more thoroughly reveals that it is strictly positive in the interval
[+3,+∞[. Similarly, we find that the most restrictive condition on λ0

y is obtained for the
elements in the equivalence class y ∈ Ω(m− 3), leading to the following equality:

λ0
y = v − 2m− 6

2m− 3
=

−9m2 + 2m3 + 56m− 24

(2m− 3)(2m− 1)(4 +m+m2)
. (37)

This function is also strictly positive in the interval [+3,+∞[, so all non-negativity condi-
tions are satisfied. Plots of the functions are shown in Figure 6.
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Figure 6: Plots of the functions λ2
y and λ0

y as defined by equations (36) and (37).

One can observe that PA(y) yields the regret mentioned in the theorem. Thus, what
we found so far is a lower bound on the worst-case regret. The tightness of the bound is
further proven by showing that the supremum is always obtained by hs = 0m and hF = 1m
as soon as m > 2. Since it is impossible to enumerate all solutions for the 22m possible
values of the integer variables, we analyse the properties of the objective function to prove
that the optimum is obtained for hs = 0m and hF = 1m. Similar to the previous theorem,
let us introduce

A = {i ∈ {1, ...,m} : hi = 1 ∧ hs,i = 0} ,
B = {i ∈ {1, ...,m} : hi = 0 ∧ hs,i = 1} ,
C = {i ∈ {1, ...,m} : hi = 1 ∧ hs,i = 1} ,
D = {i ∈ {1, ...,m} : hi = 0 ∧ hs,i = 0} .

and the shorthand notations a = |A|, b = |B|, c = |C|, d = |D|, sy, sAy , sBy , sCy , sDy , as defined
in (24).

Optimization problem (30) can then be relaxed to the following standard mixed-integer
nonlinear program form:

min
a,b,c,d,P

−
∑

y∈{0,1}m
ηy(a, b, c, d)P (y)

subject to



∑
y∈{0,1}m P (y) = 1 ,

∀y ∈ {0, 1}m \ hs : P (y)− P (hs) ≤ 0 ,
∀y ∈ {0, 1}m : 0 ≤ P (y) ≤ 1 ,
a+ b+ c+ d = m,
a, b, c, d ∈ N ,
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writing down the coefficients of the objective function as:

ηy(h,hs) = ηy(a, b, c, d) =
sAy + sCy
sy + a+ c

−
sBy + sCy
sy + b+ c

.

Recall that the relaxation again originates from the fact that the solution not necessarily
complies with the definitions of the sets A, B, C and D.

Now observe that the objective function of the mixed-integer nonlinear program is
strictly decreasing in b, independent of the other variables, so we can fix b = 0. Sub-
sequently, observe that for b = 0 the objective function is also strictly decreasing in c,
independent of the other variables, so we also fix c = 0. As a result, the coefficients can be
further simplified to:

ηy(h,hs) = ηy(a, b, c, d) =

{
sAy
sy+a if y 6= 0m ,

−1 if y = 0m .
(38)

To complete the proof we show by contradiction that the optimum is obtained for a = m.
In order to construct the recurrence equations below let us introduce q ∈ {1, ...,m− 1} and
let

Ω0
q = {y ∈ {0, 1}m | yq+1 = 0 ∧ y 6= 0m} ,

Ω1
q = {y ∈ {0, 1}m | yq+1 = 1 ∧ y 6= 01

q+1} ,

where 01
q+1 denotes a vector of m − 1 zeros apart from a single one at position q + 1.

Furthermore, let us introduce the mapping Ψq : {0, 1}m → {0, 1}m, which, in any binary
vector of length m, toggles the bit at position q + 1: a zero at that position becomes a
one and vice versa. The mapping Ψq hence defines a unique correspondence between any
element in Ω0

q and its sister element in Ω1
q . For a = q, the objective function can then be

written as:

δq(P ) =
∑

y∈{0,1}m
ηy(a, b, c, d)P (y) = −P (0m)

+
∑
y∈Ω0

q

2sAy
sy + q

P (y) +
∑
y∈Ω1

q

+
2sAΨq(y)

sΨq(y) + q + 1
P (y)

while for a = q + 1, it can be written as:

δq+1(P ) =
∑

y∈{0,1}m
ηy(a, b, c, d)P (y) = −P (0m) +

2

a+ 1
P (01

q+1)

+
∑
y∈Ω0

q

2sAy
sy + q + 1

P (y) +
∑
y∈Ω1

q

+
2sAΨq(y) + 2

sΨq(y) + q + 2
P (y)

Let us assume that the global optimum is obtained for a < m. Furthermore, let P q(y) be
the probability distribution that delivers this optimum for (a = q, d = m−q). We construct
a new probability distribution P q+1(y) as follows:

P q+1(y) =

{
P q(Ψq(y)) if (y ∈ Ω1

q ∧ P q(y) > P q(Ψq(y))) ∨ (y ∈ Ω0
q ∧ P q(y) < P q(Ψq(y))) ,

P (y) otherwise ,
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If P q(y) is feasible, then P q+1(y) is feasible, too. It follows from

2sAΨq(y) + 2

sΨq(y) + q + 2
≥

2sAΨq(y)

sΨq(y) + q
, ∀y ∈ {0, 1}m

that δq+1(P q+1) ≥ δq(P q) for all q. This is a contradiction. Consequently, the global
optimum of the optimization problem is given by PA. �

Side note about the difference in proving technique for Theorems 1 and 2. In this paragraph
we give some additional explanation why the proving techniques for Theorems 1 and 2
are different. The proof of Theorem 2 cannot proceed with ε-terms because we are not
able to derive an oracle solution for the mixed integer linear program when ε-terms are
considered. However, for Theorem 2 this is not needed because we are able to find a
probability distribution that has unique risk minimizers, while being arbitrarily close to the
oracle solution that we present. The claim of the theorem then immediately follows from
taking the limit when ε approaches zero. Let us consider the example of m = 4, for which
we obtain the following probability distribution:

y P (y)

0000 1/12
1100 1/12
1010 1/12
1001 1/12
0110 1/12
0101 1/12
0011 1/12
1110 1/12
1011 1/12
1101 1/12
0111 1/12
1111 1/12

The subset zero-one loss minimizer is not unique in this case, but let us choose 0000 as
subset zero-one loss minimizer. The F-measure maximizer is 1111. The regret should then
be 13/24 - see fraction in Theorem 2. We can easily extend this to an ε-case with unique
subset zero-one loss minimizer:
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y P (y)

0000 1/12 + 11ε
1100 1/12− ε
1010 1/12− ε
1001 1/12− ε
0110 1/12− ε
0101 1/12− ε
0011 1/12− ε
1110 1/12− ε
1011 1/12− ε
1101 1/12− ε
0111 1/12− ε
1111 1/12− ε

So, this suffices as a mathematically correct proof. However, the same trick cannot be
used for Theorem 1. If we would omit the ε-terms in the Lagrangian there, we would end
up with a solution that cannot be ε-approached by a probability distribution with unique
risk minimizer. As an example, let us again consider the case m = 4 and the following
probability distribution:

y P (y)

1000 .5
0111 .5

One of the risk minimizers for Hamming loss is vector 0000 with zero F-measure. Another
vector, 1110, which is also a Hamming loss minimizer, gets an F-measure of 0.5833. This is
a regret that is higher than the supremum mentioned in Theorem 1, but it is a value that
cannot be ε-approached when restricting to unique Hamming loss minimizers.

Theorem 3 Let hJ and hF be vectors of predictions obtained by maximizing the Jaccard
index and the F-measure, respectively. Let the utility of the F-measure maximizer be given
by

δ(P ) = max
h∈{0,1}m

E [F (Y ,h)] = max
h∈{0,1}m

∑
y∈{0,1}m

P (y)F (y,h).

The regret of the F-measure maximizer with respect to the Jaccard index is then upper
bounded by

E
[
J(Y ,hJ)− J(Y ,hF )

]
≤ 1− δ(P )/2

for all possible distributions P
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Proof. The proof follows immediately from the following double inequality:∑m
i=1 yihi(x)∑m

i=1 yi +
∑m

i=1 hi(x)
≤∑m

i=1 yihi(x)∑m
i=1 yi +

∑m
i=1 hi(x)−

∑m
i=1 yihi(x)

≤

2
∑m

i=1 yihi(x)∑m
i=1 yi +

∑m
i=1 hi(x)

,

which results in
F (y,hF )

2
≤ J(y,hF ) ≤ F (y,hF ) ,

for all y,h ∈ {0, 1}m. �

Theorem 5 Let hI be a vector of predictions obtained by assuming label independence as
defined in (3), then the worst-case regret is lower-bounded by:

sup
P

(
E
[
F (Y ,hF )− F (Y ,hI)

])
≥ 2q − 1,

for all q ∈ [1/2, 1] satisfying
∑m

s=1

(
2m!

(m−s)!(s−1)!(m+s)q
m−s(1− q)s

)
− qm > 0 and the supre-

mum taken over all possible distributions P .

Proof. To analyze the potential regret of methods that assume independence, it is sufficient
to compare the F-maximizers and their corresponding F-measures for a joint distribution
defined on independent random variables and a second joint distribution having the same
marginal distributions, but no independence. Below, we analyze two families of probability
distributions that are parameterized by a single parameter q, which is defined as q = P (Yi =
0) for all i = 1, ...,m. The first family resembles the case of independent random variables,
for which the joint distribution is defined as the product of marginal probabilities:

PA(y) = qm−s(1− q)s where s =
m∑
i=1

yi . (39)

The second family of distributions captures one particular case of a very strong stochastic
dependence:

PB(y) =


q if y = 0m

1− q if y = 1m
0 otherwise

,

If q > 0.5, then the F-measure maximizer of PB is given by 0m and its corresponding F-
measure is q. It is less straightforward to find the F-measure maximizer of PA. Let us first
introduce the equivalence classes

Ωm(s) = {y ∈ {0, 1}m |
m∑
i=1

yi = s} ,

Ωm(s, l) = {y ∈ {0, 1}m |
m∑
i=1

yi = s ∧ yl = 1} ,
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with s, l ∈ {1, ...,m}. The cardinality of these equivalence classes is given by

|Ωm(s)| =
(m
s

)
=

m!

(m− s)!s!
,

|Ωm(s, l)| =
(m− 1
s− 1

)
=

(m− 1)!

(m− s)!(s− 1)!
.

Let hk be a series of predictions such that
∑m

i=1 hi = k. Without loss of generality, we
can fix hk to a vector of k ones that are followed by m− k zeros, because the distributions
that we analyze are fully symmetric (i.e., all index permutations of {1, ...,m} in the label
vectors yield the same values in probability mass). As a result, we can write the expected
F-measure of hk with k > 0 as:

EY ∼PA
[F (Y ,hk)] =

∑
y∈{0,1}m

F (y,hk)PA(y) (40)

=
∑

y∈{0,1}m

∑k
i=1 2yi
sy + k

PA(y)

=
m∑
s=1

∑
y∈Ωm(s)

∑k
i=1 2yi
s+ k

PA(y)

=

m∑
s=1

k∑
i=1

∑
y∈Ωm(s)

2yi
s+ k

qm−s(1− q)s

=
m∑
s=1

k∑
i=1

∑
y∈Ωm(s,i)

2

s+ k
qm−s(1− q)s

=

m∑
s=1

(m− 1)!

(m− s)!(s− 1)!

2k

s+ k
qm−s(1− q)s

This is an increasing function of k, which implies that the F-measure maximizer consists of
a vector of solely ones (or solely zeros) for PA. In addition, the expected F-measure for a
prediction vector of zeros is given by

EY ∼PA
[F (Y ,0m)] = qm .

Let us define δm as

δm = EY ∼PA
[F (Y ,1m)− F (Y ,0m)]

=

m∑
s=1

( (m− 1)!

(m− s)!(s− 1)!

2m

m+ s
qm−s(1− q)s

)
− qm .

Then, assuming independence delivers the wrong maximizer for PB as soon as δm > 0. �

Corollary 1 Let hI be a vector of predictions obtained by assuming independence, then the
worst-case regret converges to 1 in the limit of m, i.e.,

lim
m→∞

sup
P

(
E
[
F (Y ,hF )− F (Y ,hI)

])
= 1,
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where the supremum is taken over all possible distributions P .

Proof. For increasing m, the condition is satisfied for q close to one. The easiest way to
observe this is computing the limit

lim
m→∞

qm = 0 ,

which implies

lim
m→∞

m∑
s=1

m!

(m− s)!s!
qm−s(1− q)s = 1 .

From this last limit and
2m

m+ s
≥ m

s

it follows that:

lim
m→∞

m∑
s=1

(m− 1)!

(m− s)!(s− 1)!

2m

m+ s
qm−s(1− q)s ≥ 1 .

By definition, (40) cannot exceed the upper bound of one, so this inequality must hold as
an equality. In such a scenario, the worst-case regret is lower bounded by Rq = 2q − 1, so
that limq→1,m→∞Rq = 1. As a consequence, the lower bound becomes tight in the limit of
m going to infinity.

�

Theorem 7 Let hT be a vector of predictions obtained by putting a threshold on sorted
marginal probabilities, then the worst-case regret is lower bounded by

sup
P

(
E
[
F (Y ,hF )− F (Y ,hT )

])
≥ max

(
0,

1

6
− 2

m+ 4

)
,

where the supremum is taken over all possible distributions P .

Proof. To analyze the regret of thresholding approaches, we have to construct a counterex-
ample for which the F-measure is not consistent with the order of the marginal probabilities.
The following family of distributions is such a counterexample:

P (y) =


1/2− ε if y1 = 1 ∧

∑m
i=1 yi = 1

(1/2 + ε)/(2m− 4) if y2 = 1 ∧ 1 +
∑m/2+1

i=3 yi =
∑m

i=3 yi = m/2
(1/2 + ε)/(2m− 4) if y2 = 1 ∧ 1 +

∑m
i=m/2+2 yi =

∑m
i=3 yi = m/2

0 otherwise

(41)

where we consider for simplicity thatm is even and ε ∈ [0, 1/2] represents a positive constant.
For ε close to zero, one can easily show that the F-measure maximizer is given by a vector of
predictions consisting of only zeros, apart from a single one at position one. The expected
F-measure of this prediction vector is 1/2 − ε. However, this prediction vector can never
be returned by a method that relies on thresholding over marginal probabilities, because
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P (Y2 = 1) > P (Y1 = 1) in this particular case. By enumerating all candidate solutions
examined by thresholding, one will find instead a prediction vector h11 consisting of zeros,
apart from a one at the first two positions. The expected F-measure of this prediction
vector is

E [F (Y ,h11)] = (1/2− ε)(2/3) + (1/2 + ε)(2/(2 + (m/2))) .

As a consequence, this results in the above-mentioned regret when ε approaches zero. �
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