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The supplementary material is organized as follows.

• Appendix A contains additional background on non-recurrence and spectral theory of
Koopman operators. Additionally, it contains a notation table.

• Proofs of theoretical results are found in Appendix B.
• Finally, Appendix C includes more details on the experimental section, as well as additional

experiments.

A Non-recurrence and Koopman Operator Theory

Remark 2 (Operator boundedness). Consider a forward complete system on a compact set X and
a continuous flow F t. It is well-known that a time-t Koopman operator Kt is then a contraction
semigroup on C(X) [1]. Due to forward completeness of the flow, we therefore obtain a Banach
algebra C(X) with a bounded semigroup {Kt}t≥0 ∈ B(C(X)).
Definition 2 (Non-recurrence). A non-recurrent domain is one where flow does not intersect itself.

Non-recurrence is commonly ensured by a choice of the time interval [0, T ] so no periodicity is
exhibited. Note that it does not mean the system’s behavior is not allowed the be periodic, but our
perception of it via data does. Effectively this prohibits the multi-valuedness of eigenfunctions –
allowing them to define an injective feature map. Thus, non-recurrence is a certain but general
condition that bounds the time-horizon T in which it is feasible to completely describe the nonlinear
system’s flow via an LTI predictor. It makes for a less-restrictive and intuitive condition compared
to existing RKHS approaches [2, 3] that rely on the self-adjointness and compactness of the actual
Koopman operator which is rarely fulfilled and hard to verify without prior knowledge.
Lemma 2 (Universality of Eigenfunctions). Consider an quantity of interest q ∈ C(X), a forward-
complete system flow F t(·) on a non-recurrent domain X0 (Definition 2) of a compact set X. Then,
the output trajectory y(t) = q(x(t)),∀t ∈ [0, T ] is arbitrarily closely described by the eigenpairs
{λj , ϕj}j∈N⊆(C×C(X)) of the Koopman operator semigroup {Kt}Tt=0

1 so that ∀ε > 0,∃D̄ ∈ N

|q(x(t))−
∑D̄

j=1 e
λjt ϕj(x0)| < ε,∀t ∈ [0, T ]. (1)

Proof 1 (Lemma 2). With continuous eigenfunctions for continuous systems proved valid in [5,
Lemma 5.1],[6, Theorem 1], the space of continuous functions over a compact set is naturally the
space of interest. On a non-recurrent domain, there exist uniquely defined non-trivial eigenfunctions
and, by [7, Theorem 3.0.2], the spectrum is rich – with any eigenvalue in the closed complex unit disk
legitimate [8]. Further, by [6, Theorem 2], this richness is inherited by the Koopman eigenfunctions
— making them universal approximators of continuous functions.

1Note that, compared to “Koopman Mode Decomposition”, we let the eigenfunctions absorb the spatial mode
coefficients (possible w.l.o.g.) as they correspond to eigenfunctions and not eigenvalues [4, Definition 9].
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Table 1: Summary of used notation

Notation Description

T time interval [0, T ]
H collection of points from discretizing the time interval T at times {t0, · · · tH}
X compact state-space set
X0 compact set of initial conditions that form a non-recurrent domain

xT /xH a continuous/discrete time state trajectory
XT /XH space of continuous/discrete-time state trajectories
yT /yH a continuous/discrete time output trajectory
YT /YH space of continuous/discrete-time output trajectories

Kt time-t Koopman operator
M/M̂ true/learned mode decomposition operator
K/K/k operator/matrix/scalar-valued kernels
λ/µ continuous/ discrete-time eigenvalue

Kλj/Kµj/kj operator/matrix/base kernel of the j-th Koopman eigenfunction
Hk RKHS of a scalar base kernel k
Hkµj RKHS of a scalar kernel kµj

Hµj RKHS of matrix valued kernelKµj induced by scalar kernel kµj

Hλ/Hµ continuous/discrete-time Koopman eigenfunction RKHS λ/µ ∈ C
H/H∆t continuous/discrete-time Koopman RKHS
IT
λ /IH

µ invariance transform for time/step length T /H and eigenvalue λ/µ ∈ C
D(·) dataset for an estimator (·)
DN dataset of N time-continuous sample trajectories pairs (x(i)

T , y
(i)
T )i∈[N ]

D∆t
N dataset of N time-discrete sample trajectories pairs (x(i)

H , y
(i)
H )i∈[N ]

B(·) set of bounded operators over a domain
Br(0) closed ball of radius-r in C
Γ extended observability matrix
ϕ̂(·) vector-valued function of learned Koopman eigenfunctions
RN (·) true forecast risk/generalization error of an estimator
R̂N (·) empirical forecast risk of an estimator based on N data samples
RN (·) true Rademacher complexity of of a hypothesis class based on N samples
R̂N (·) empirical Rademacher complexity of a hypothesis class based on N samples
L(·) loss function determining the metric for risk, e.g. squared error

Remark 3 (Choosing the spectral distribution λ ∼ ρ(µ)). The choice of our measure of integration
might seem arbitrary, and it indeed is. Since we, in general, do not assume knowledge of the spectrum
of the Koopman-semigroup, we have to make an approximation. To this end, an educated guess
on where the (point-) spectrum might be located is helpful. As elaborated above, the Hille-Yosida-
Theorem provides a convenient way to connect the practically attainable growth rates to bounds on the
spectrum. Why would sampling spectral features in a set enclosing the spectrum be enough to obtain
the spectral decomposition of the Koopman operator? Recalling that the spectral decomposition
consists of projections to eigenspaces, we state a well-known result. The Riesz projection operator
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Pλ : C 7→ {g ∈ C : Kg = λg} to an eigenspace of K can be represented by

Pλ =
1

2πi

∫
γλ

ds

s−K
,

where γλ is a Jordan curve enclosing λ and no other point in σ(K) [9]. Obviously⋃
λ∈σ(K) range(Pλ) = C, iterating on the fact that we can represent the operator T by its spectral

components. It becomes apparent that sampling from a set enclosing σ(λ) can be seen as sampling
curves, eventually enclosing sufficient spectral components. And as stated, one can choose arbitrary
measures on C as long as one ensures they enclose the spectrum. The preceding analysis sheds
light on the connection of our approach to the Laplace-Stieltjes transform and the spectral pollution
occurring in EDMD-type algorithms.

B Proofs of Theoretical Results

Proofs for Section 3 Koopman Kernel Regression

Proof 2 (Lemma 1). Due to the boundedness of finite-time trajectories of a forward complete system
and a continuous g∈ C(X0) we have well-defined Haar integral invariants [10]

ϕλ(xT ) =

∫ T

τ=0

e−λ(τ−t) Kτg(x(0))dτ =

∫ T

0

e−λ(τ−t) g(F τ (x0))dτ. (2)

Then, ϕλ : X0 7→ C(X0) [11, p. 64] is an invariant function for {e−λτ Kτ}Tτ=0 considering a
normalized measure dτ(T ) = 1 – fulfilling the Koopman-invariance condition. By simple algebraic
manipulation we verify that ϕλ indeed has LTI dynamics

ϕλ(xT ) =

∫ T

τ=0

e−λ(τ−t) g(F τ (x0))dτ

= eλt
∫ T

τ=0

e−λτ g(F τ (x0))dτ

= eλt ϕλ(x0). (3)

Proof 3 (Theorem 1). (i) Due to the one-to-one relationship between kernel functions and RKHS we
can examine Hλ by its kernel Kλ(·, ·). We notice that due to the property that pointwise converging
sequences of kernels are again kernels [12, Corollary 4.17]. Showing that Kλ is a kernel thus
reduces to showing that the double integral exists. Now, since our continuity assumptions on the
system ensure the convergence of the Haar-integrals [11, p. 64], we can conclude that any valid
integration scheme [13, Theorem A.1.5] induces a uniformly converging sequence of kernels.

(ii) We will prove the statement by showing that the universality of the base kernel for continuous
functions makes the Koopman eigenfunction RKHS Hλ universal for continuous Koopman-invariant
functions at eigenvalue λ ∈ C. It is clear that feature map of the kernel is {e−λτ Kτ}Tτ=0-invariant,
and we only need to prove the completeness part. Let X0 be a compact subset in X, and ϵ > 0. Then,
the non-recurrent domain defined by XT = ∪t∈[0,T ]F

t(X0) under the continuous map (t,x) 7→
F t(x) is also a compact set. By using a universal RKHS Hk, we know there exists f ∈ Hk so that

sup
x∈XT

|f(x)− ϕλ(x)| ≤ ϵ.
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Consider now a {e−λτ Kτ}Tτ=0-invariant group-averaged map fλ(x) =
∫ T

τ=0
e−λτ f (x(τ))) dτ

from the Koopman eigenfunction RKHS Hλ induced by Lemma 1. Then due to

sup
x∈X0

|fλ(x)− ϕλ(x)| = sup
x∈X0

∣∣∣∣∣
∫ T

τ=0

(
e−λτ f (x(τ))− e−λτ ϕλ (x(τ))

)
dτ

∣∣∣∣∣
(triangle inequality) ≤ sup

x∈X0

∫ T

τ=0

∣∣(e−λτ f (x(τ))− e−λτ ϕλ (x(τ))
)∣∣ dτ

≤
∫ T

τ=0

sup
x∈X0

∣∣(e−λτ f (x(τ))− e−λτ ϕλ (x(τ))
)∣∣ dτ

(Cauchy–Schwarz inequality) ≤
∫ T

τ=0

∣∣e−λτ
∣∣ sup
x∈X0

|f (x(τ))− ϕλ (x(τ))| dτ

≤ sup
τ ′∈[0,T ]

∣∣∣e−λτ ′
∣∣∣ ∫ T

τ=0

sup
x∈XT

|f (x)− ϕλ (x)| dτ

= max{1,
∣∣e−λT

∣∣}Tϵ,
we can approximate any Koopman eigenfunction ϕλ with a Koopman-invariant function fλ to
arbitrary accuracy.

(iii) With the knowledge of an explicit LTI feature representation from Lemma 1, we show that
Hλ satisfies Koopman-invariance along sampled trajectories {x(i)

T }Ni=1. For representing an open
eigenfunction over an initial condition, we choose an RKHS Hk of a universal kernel k(·, ·) : X×X 7→
R. As a consequence of Mercer’s theorem [14], there exists a feature map ξ : Rd 7→ Hk for every
kernel k(·, ·) such that

k(·, ·) = ⟨ξ(·), ξ(·)⟩Hk . (4)

Due to universality of k(·, ·) and continuity of eigenfunctions [5], there exists a parameter vector θ
so that

g(x
(i)
T (0)) = ⟨θ, ξ(x(i)

T (0))⟩Hk , ∀i = 1, . . . , N. (5)

To enforce Lemma 1 at data points we utilize an RKHS Hλ induced by IT
λ : Hk → Hλ. Due to

universality for arbitrary continuous Koopman eigenfunctions by (ii), there exists a parameter vector
α so that

fλ(x
(i)
T ) = ⟨α, IT

λ ξ(x
(i)
T (0))⟩Hλ , ∀i = 1, . . . , N. (6)

From (6) we recognize a modified feature map ψ(·) = IT
λ ξ(·), representing the eigenfunction flow at

x
(i)
T , i = 1, . . . , N , ∀t ∈ [0, T ]

fλ(xT ) = ⟨α,ψ(x(i)
T )⟩Hλ , ∀i = 1, . . . , N, (7)

inducing a kernel
Kλ(·, ·) = ⟨ψ(·),ψ(·)⟩Hλ . (8)

By exploiting inner product properties, we recognize

Kλ(·, ·) = ⟨IT
λ ξ(·), IT

λ ξ(·)⟩Hλ , (9)

leading to

Kλ(xT ,x
′
T ) = IT

λ (IT
λ )

∗⟨ξ(xT (0)), ξ(x
′
T (0)⟩Hk = IT

λ k(xT (0),x
′
T (0))IT ′

λ∗ . (10)

Finally, by applying the operators to the kernel, we obtain the induced “Koopman kernel”

Kλ(xT ,x
′
T ) =

∫ T

τ=0

∫ T

τ ′=0

k (xT (τ),x
′
T (τ

′)))

eλ(τ−t) eλ∗(τ ′−t)
dτdτ ′. (11)

fulfilling Lemma 1 along sampled trajectories x(i)
T , i, . . . , N .
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Proof 4 (Proposition 1). (i) We show that H is an RKHS by showing it is associated with a kernel
which is the limit of a pointwise converging sequence of kernels [12, Corrollary 4.17]. Since Kλ is a
finite sum, it is bounded by virtue of its elements being bounded, which is due to Theorem 1.

(ii) Universality of H is guaranteed by using eigenspace universality [6, Theorem 2] and applying
Theorem 1 (ii) component-wise. Our goal is to represent a function in terms of an LTI predictor,
the mode composition of the Koopman operator. Due to Proposition 1, we know the exact mode
decomposition M is countable so the contribution of neglected eigenspaces can be made arbitrarily
small by choosing D̄ large enough.

∥yT − M̂(xT )∥YT
= ∥M(xT )− M̂(xT )∥YT

= ∥1⊤[ϕλ1 · · ·ϕλD̄
](xT )− 1⊤[ϕ̂λ1 · · · ϕ̂λD

· · · ](xT )∥YT

= ∥ϕλ1
− ϕ̂λ1

+ · · ·+ ϕλD̄
− ϕ̂λD̄

+

∞∑
j=D̄+1

ϕλj
∥YT

≤ ∥ϕλ1
− ϕ̂λ1

∥YT
+ · · ·+ ∥ϕλD̄

− ϕ̂λD̄
∥YT

+ δ

Proposition 1 (ii)
≤ ϵ1 + · · ·+ ϵD̄ + δ

Now choosing D̄ such that δ < ϵ and ϵi =
ϵ−δ
D̄

, yields the assertion.
Proof 5 (Corollary 1). (i) By considering the integral equation (11) at H regular intervals ∆t so that
H = T/∆t with ∀t ∈ {tk}Hk=0 the integrals are replaced by sums. Due to considering normalized
measures of dτ(T ) and dτ ′(T ) in (11), each sum is normalized by the number of elements (H + 1).
All properties from Theorem 1 transfer straightforwardly using the same arguments as in Proof 3.

(ii) The construction of the kernel matrix sum directly follows directly follows the direct Hilbert
space sum

H̃∆t = Hµ1 ⊕ · · · ⊕ HµD̄ so that H∆t = range(S):={f1+ . . .+ fD̄ : f1∈Hµ1 , . . . , fD̄∈HµD̄}
(12)

All properties straightforwardly transfer from Proposition 1 using the same arguments as in Proof 4.
Proof 6 (Proposition 2). It is easily recognizable that the time-discretization of problem the functional
regressino problem reads

min
β⊤=[β1···βN ]

∑N
i=1 ∥y

(i)
H −K(x

(i)
H ,XH)βi∥2YH

+ γβ⊤
i K(x

(i)
H ,x

(i)
H )βi. (13)

with β the unique solution to the system of linear equations

(K(XH,XH) + γIH+1 ⊗ IN ) [β⊤
1 , . . . ,β

⊤
N ]⊤︸ ︷︷ ︸

β

= [y
(1)⊤

H , . . . , y
(N)⊤

H ]⊤︸ ︷︷ ︸
yH

, (14)

Due to being a particular case linear coregionalization models [15, 16], it follows that the approxi-
mations ϕ̂j(·) of Koopman eigenfunctions over trajectory samples are uniquely defined by

ϕ̂j(xH) =

N∑
i=1

(
kµj

(
xH,x

(i)
H

)
⊗ µ∗⊤

j

)
βi = k

µj

XHXH

(
IN ⊗ µ∗⊤

j

)
β. (15)

As a consequence of a non-recurrent domain, the time-discrete invariance transformation is a bijection
at time-instances of the trajectory. Therefore, a base kernel RKHS Hkj

is isometric to Hkµj with
isometry IH

µj
, it is guaranteed ∀xH ∈ D∆t

N | x0≡ xH(0)

ϕ̂j(x0) = ϕ̂j(xH), (16a)

kjX0X0
αj = k

µj

XHXH

(
IN ⊗ µ∗⊤

j

)
β. (16b)

Then via αj = k−1
X0X0

k
µj

XHXH

(
IN ⊗ µ∗⊤

j

)
β eigenfunctions are uniquely determined as

ϕ̂(x0) =
[
kjx0X0

αj

]D̄
j=1

, (17)

concluding the proof.
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Proof 7 (Proposition 3). Due to [7, Theorem 3.0.2], we consider, w.l.o.g., a dense set {µj}∞j=1

in B1(0) and a finite-rank kernel K̃ =
∑D

j=1K
µj (xH,xH

′). As the “oracle” kernel K =∫
µ∼ρ(B1(0))

Kµ(xH,xH
′) dµ is an operator norm limit of compact Riemann sums K̃ on a Hilbert

space YH, it is a compact operator. Thus, by [17, Theorem II (p. 374)], K̃ → K uniformly as
D → ∞.

Proof 8 (Theorem 2). Consider a universal Koopman kernelK. Consider the base kernel is Mercer
and recall the properties of the invariance transformation from Proof 5: the matrix-valued kernel
K is trace-class as IH

µ IH∗
µ is a bounded self-adjoint operator [18] and the base kernel is Mercer

[14]. With Proposition 1, the universal consistency is immediate via [19]. Thus, as N → ∞,
the mode decomposition is consistent ∥M − M̂∥YH → 0 and the same immediately follows for
individual eigenfunctions as the universality of summand RKHSs is unaffected so ∥ϕµj

−ϕ̂µj
∥YH

→ 0,
j = 1, . . . , D.

Proofs for Section 4 Generalization Gap: Uniform Bounds We use the seminal result of [20],
which we will restate here for completeness.

Theorem 4 (Rademacher Generalization Risk Bound, [20] – Theorem 8, 11). Consider a loss function
L : Y × A → [0, 1]. Let F be a class of functions with signature X → A and let {Xi, Yi}Ni=1
be independently selected according to the probability measure P. then, for any integer n and any
δ ∈ (0, 1), with probability at least 1− δ over samples of length n, every f ∈ F satisfies

E[L(Y, f(X))] ≤ ÊN[L(Y, f(X))] + 2L(L0)RN(F) +

√
8 log 2

δ

N
,

where L0(y, a) = L(y, a)− L̃(y, 0).

To apply it to our use-case, we need to quantify the Rademacher complexities of our hypothesis space
for which we make the following assumption.

Assumption 2 (Bounded RKHS Norm). The unknown function M has a bounded norm in the RKHS
H∆t attached to the Koopman kernelK(·, ·), i.e., ∥M∥H∆t ≤ B for some B ∈ R+.

An extension of classical results for operator-valued Rademacher complexities:

Lemma 3 (Rademacher Complexities of the Koopman Kernel). Consider the, Mercer, Koopman
kernel K and H∆t its RKHS as defined in Proof 5 and TKg =

∫
XH
K(·,xH)g(xH) dx̃H the

corresponding integral operator on L2(XH). Then under Assumption 2, the Rademacher complexities
of H∆t are upper bounded by

Asymptotic: RN(H∆t) ≤ B√
N

√
trace (TK) Non-Asymptotic: R̂N(H∆t) ≤ B

N

√
trace

(
TN
K

)
.

Proof 9 (Lemma 3). We derive an upper bound on the Rademacher complexities of the Koopman
kernel using a procedure similar to the one described in [20, Lemma 22]. Let Xi be random element
of (XH, ρD) and σ a vector of independent uniform random functions on {−1, 1}, then the n-th
Rademacher complexity of F is defined as

RN(F) = Eσ,ρD sup
f∈F

1

N

N∑
i=1

|⟨σi, f(Xi)⟩|
scalar
= Eσ,ρD sup

f∈F

1

N

N∑
i=1

σif(Xi).

The empirical case R̂n is similar to the expectation of σ. Now consider the Rademacher complexities
of the RKHS H∆t corresponding to the Koopman kernel for some fixed D, with respect to initial
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conditions x(i)
H drawn from (XH, ρD).

RN(H∆t
N ) = Eσ,ρD sup

M∈H∆t
N

1

N

N∑
i=1

|⟨σi,M(x
(i)
H )⟩|

≤

RN(H∆t) = Eσ,ρD sup
M∈H∆t

1

N

N∑
i=1

|⟨σi,M(x
(i)
H )⟩| Pre-RKHS property

≤ Eσ,ρD sup
M∈H∆t

1

N

N∑
i=1

∥σi∥2∥M(x
(i)
H )∥2 Hölder’s inequality

= EρD sup
M∈H∆t

1

N

N∑
i=1

∥M(x
(i)
H )∥2 property of Rademacher functions

≤ EρD sup
∥β∥≤B

1

N

N∑
i=1

∥K(x
(i)
H , ·)β∥2 by construction

≤ EρD

1

N

N∑
i=1

B∥K(x
(i)
H , ·)∥2 operator norm

= EρD

B

N

N∑
i=1

√
K(x

(i)
H ,x

(i)
H ) reproducing property

By applying concavity and the respective definition, it follows that

RN(H∆t) ≤ B√
N

√√√√ 1

N

N∑
i=1

EρDK(x
(i)
H ,x

(i)
H ) =

B√
N

√
trace (TK)

and

R̂N(H∆t) ≤ B

N

N∑
i=1

√
K(x

(i)
H ,x

(i)
H ) ≤ B

N

√
trace

(
TN
K

)
.

Note that the different exponent in n stems from the different definitions of the operator and matrix
trace.

Apart from the data density dependencies, the complexity of the hypothesis space is captured by the
trace of the integral operator, the Gramian, iterating on a well-known property of RKHS methods.
Naturally, this provides little insight asymptotically as the trace of an operator is not immediately
assessable. Treatment of the trace in the asymptotic case is provided in the following result on the
generalization gap of KKR, which we are now ready to state.

Theorem 3 (Generalization Gap of KKR). Let D∆t
N = {x(i)

H , y
(i)
H }Ni=1 be a dataset of time-discrete

trajectories consistent with a Lipschitz system on a non-recurrent domain. Then the generalization
gap of a model M̂ from Proposition 2 under Assumption 2 is, with probability 1− δ, upper bounded
by

|R(M̂)− R̂N (M̂)| ≤ 4RB

√
κH2

N
+

√
8 log 2

δ

N
∈ O

(
H√
N

)
, (18)

where R is an upper bound on the loss in the domain, and κ the supremum of the base kernel.

Proof 10 (Theorem 3). The statements follow by combining Theorem 4 with approximations of the
Rademacher complexities of the Koopman kernel RKHS provided in Lemma 3. In the asymptotic case,

7



the behaviour of trace (TK) is of interest. We employ the following upper bound.

trace (TK) =
∑
i

⟨TKei, ei⟩ by definition

=
∑
i

〈
T

1
2

Kei, T
1
2

K

⋆

ei

〉
trace-class property

=

∫
X
⟨K(·,xH),K(·,xH)⟩dxH kernel trick

=

∫
X
K(xH,xH) dxH reproducing property

=

∫
X

∫
ρµ

Kµ(xH,xH) dµdxH Koopman kernel

=

∫
X

∫
ρµ

C(µ,H)K0
µ(xH,xH) dµdxH Koopman kernel flow

≤ ∥C(µ,H)∥
∫
X

∫
ρµ

Kµ(xH,xH) dµdxH Fubini’s Theorem

≤ ∥C(µ,H)∥ sup
xH

[Kµ
0 ]H

∫
X

∫
ρµ

dxH dµ Gershgorin Circle Theorem

= ∥C(µ,H)∥κH
∫
X

∫
ρµ

dx dµ bounded kernel

= ∥C(µ,H)∥κH
∫
X
dx appropriate normalization

≤ 1HκH = κH2

∫
X
dx Gershgorin Circle Theorem (again)

WhereKµ = C(µ,H)K0
µ is the decomposition of the eigenfunction kernel into an evaluation at a

point in spaceK0
µ = Kµ|t=0 and its flow in time C(µ,H) = µk ⊗ µk ⋆ ∈ CH×H defined by the

outer product of the eigenfunction flow. Consequently, the last inequality follows from the fact that
exponential frequencies do not diverge within a finite number of steps H .

The last ingredient we need is an approximation of the Lipschitz constant L(L0). Consider the
Representation-Error ∥yT − M̂(xT )∥ ≤ R. On our non-recurrent domain of finite time yT does not
diverge, neither does M̂(xT ), since we solve a regularized problem. This entails the boundedness of
L by R. Thus, the squared error loss is Lipschitz with constant L = supx

∂
∂xL(x) = 2R.

We can now combine the preceding investigations with Theorem 4 and obtain our claim immediately.

C Numerical Evaluation Details and Additional Experiments

All of the experiments were performed on a machine with 2TB of RAM, 8 NVIDIA Tesla P100
16GB GPUs and 4 AMD EPYC 7542 CPUs.

The comparisons to PCR (EDMD) and RRR are done utilizing code accompanying [2] available at
https://github.com/csml-iit-ucl/kooplearn2. Signature kernels implementation is that of Sig-PDEs
accompanying [21], available at https://github.com/crispitagorico/sigkernel3. For forecasting with
Sig-PDE we fit a ridge regressor from observation time-delays and times to their successor. The
prediction is then concatenated to the history and used to forecast subsequent steps. To ensure that
Sig-PDE forecasts the same times in {0, . . . ,H∆t} we simulate the systems backwards in time and
train Sig-PDE with observations from the interval {−l∆t, . . . ,H∆t}.

2last accessed version "0.1.24" at https://github.com/csml-iit-ucl/kooplearn/tree/legacy_kooplearn from
April 25, 2023

3last accessed version from July 25, 2023
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Figure 1: Forecasting risks for the bi-stable system over a time-horizon H = 14. Left: Forecast
generalization gap for D ∈ {10 : , 41 : , 400 : } is depicted with a growing number of
data points. Right: Test risk behavior with an increasing amount of eigenspaces is shown for
N ∈ {19 : , 62 : , 200 : }, demonstrating the benefits of KKR.

C.1 Numerical Evaluation Details

Normalizing the invariance transform We normalize the invariance transformation of each eigen-
value by the norm of its pullback ∥ e−λt ∥T/ ∥µh∥H. Normalizing increases numerical stability
significantly as for discrete-time eigenvalues close to the origin the pullback µ−k go to infinity. Be-
yond mere numerical convenience, this also provides intuition on what the invariance transformation
does. Consider the aforementioned case µ → 0, then the eigenfunction decays infinitesimally fast:
the invariance transformation becomes an indicator at the final time δT (t).

Details on the bi-stable system experiment We chose N = 50 datapoints. For the base kernel
we utilize the radial basis function (RBF) kernel k(x,x′) = e

1
2ℓ2

∥x−x′∥2

with a length scale of
ℓ = 0.05, covering the whole state space, while allowing for sufficient distinction of trajectories
due the time-horizon H = 14 fulfilling our non-recurrence assumption. We trained models for
EDMD and KKR with predictor rank D in a range from 1 to 100 and chose the best performing for
each method. Unsurprisingly, KKR performs best with 100 eigenfunctions while EDMD attains its
minimizer at 10.

Van der Pol oscillator experiment detail We utilize RBF kernels with a length scale of ℓ = 0.1.

C.2 Additional Experiments

Eigenspace and sample cardinality dependence To provide more intuition on how our method,
and as a baseline EDMD, performs dependent on the number of samples and eigenfunctions used, we
provide parameterized versions of the experiments from the main text. Bite that the bi-stable system
experiment is here run with parameters a = 4, b = −16. Figure 1 depicts these dependencies for the
bi-stable system, while Figure 2 displays the same experiments for the Van der Pol oscillator. We
observe that KKR admits the sane property of increased excess and test performance with increasing
cardinality of eigenspaces D. It also becomes clear that, due to limited data, increase in the number
of eigenfunctions has, at some point, diminished returns for the test risk of KKR. Nevertheless,
additional eigenfunctions do not deteriorate the test risk, a salient feature or our approach compared
to EDMD that might yield worse performance on test data – as predicted by [2].

Validation of other theoretical results Using Monte-Carlo-Integration, we verify the convergence
of the discrete-time Koopman kernel in the misspecified case by Figure 3. We sample eigenvalues
from the uniform distribution on the complex unit disk. We use the kernel with D = 2× 105 as a
baseline and average the difference of the operator-valued kernel to the baseline with the Frobenius
norm. Results are averaged over N = 5 different points over 20 (i.i.d.) runs each with time-horizon
H = 14.
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Figure 2: Forecasting risks for the Van der Pol oscillator over a time-horizon H = 14. Left: Forecast
generalization gap for D ∈ {10 : , 50 : , 200 : } is depicted with a growing number of
data points. Right: Test risk behavior with an increasing amount of eigenspaces is shown for
N ∈ {19 : , 62 : , 200 : }, demonstrating the benefits of KKR.
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Figure 3: Norm difference of the sampled kernel to the specified kernel. Left: Norm difference of the
kernel for the Van der Pol oscillator is depicted with a growing number of eigenvalues. Right: Norm
difference of the kernel for the bi-stable system is depicted with a growing number of eigenvalues.

Kármán vortex street In fluid dynamics, a Kármán vortex street is a phenomenon that is observed
when a laminar flow is disturbed by a solid object. We consider a cylinder. After a settling phase, the
transient, periodically oscillating vortices behind the cylinder eventuate. This phenomenon occurs, for
example, in the airflow behind a car or a wind turbine. Therefore, predicting the effect of vortex streets
on velocity fields is highly relevant for engineers in the aero- and hydro-dynamic design of systems
since the frequency of oscillation might cause undesirable resonance. Fluid dynamics simulations
solving some variation of the Navier-Stokes equations, usually by discretizing space into a grid, are
employed to predict the aforementioned effects. However, integrating these simulations in complex
multi-physics simulations is challenging due to their relatively high computational complexity –
making fluid simulation a bottleneck. Thus, surrogate modelling of the effect of interest through
a faster-to-evaluate model is of great interest. Nevertheless, as the states of a fluid simulation are
usually velocities or other quantities at each grid point, the data available to train surrogate models is
high-dimensional and, thus, often challenging to handle.

To demonstrate that our method is capable of performing well with high dimensional data in the
context described above, we employ it to obtain a simplified representation – an LTI predictor – of
the measurements of a sensor in a Kármán vortex street under variation of the initial condition. The
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Figure 4: Observable trajectories of the simulated cylinder flow and the surrogate model Left:
Samples from the training data are depicted. Right: The test data is depicted.
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Figure 5: Velocity magnitudes in a developing Kármán vortex street behind a cylinder at different
times. Yellow color indicates high and blue low magnitude.

variation is a deviation in the cylinder placement. The setup is depicted in Figure 5. To obtain the
ground truth, we employ a solver based on the Lattice-Boltzmann Method [22] from an MIT-licensed
implementation available at https://github.com/Ceyron/machine-learning-and-simulation/tree/main/
english/simulation_scripts. We specify a Reynolds number of 40, a 100×50 grid and an inlet velocity
at (0, y) of 0.05m/s in x-direction. The cylinder position is varied by up to three grid points in each
direction around (20, 25), amounting to 49 different initial conditions, for which sample trajectories
are computed. We randomly split those into 44 training and five testing samples. Simulation yields
our state – the velocity magnitudes at each grid point d = 100× 50 = 5000 – over horizon length
H = 99. Therefore, a trajectory can be interpreted as a sequence of images. A sample trajectory
can be found next to this document in the supplemental. We place a virtual sensor at (80, 25), such
that the corresponding velocity magnitude is our observable. Using the knowledge that the Kármán
vortex street admits stable periodic behaviour, we select Koopman operator eigenvalues λ that are
purely imaginary, for the stable periodic manifold, or purely decaying, for the transient regime
[5, 23]: µ = eλ∆t, where λ ∼ ρλ = uniform ({±aj,−a|0 ≤ a ≤ 1}). We fit a KKR model with
D = 500 and an RBF base kernel with length scale ℓ = 30. The model enables us to forecast the
observable using an image of the velocity magnitudes – a 5000 dimensional vector – as input. In
Figure 4, our model’s prediction is compared to ground truth. We observe that training trajectories
are accurately reconstructed, with good performance on test data, despite the low number of training
samples N = 45. Notably, reproducing the dataset using KKR takes ≈ 0.05 seconds (average over
1000 calls), while simulating the ground tooth takes ≈ 1 second per run (average over 49 runs), both
using one GPU unit – demonstrating suitability for surrogate models.
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