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Abstract

Machine learning, data mining, and several related research areas are concerned
with methods for the automated induction of models and the extraction of inter-
esting patterns from empirical data. Automated knowledge acquisition of that kind
has been an essential aspect of artificial intelligence since a long time and has more
recently also attracted considerable attention in the fuzzy sets community. This pa-
per briefly reviews some typical applications and highlights potential contributions
that fuzzy set theory can make to machine learning, data mining, and related fields.
In this connection, some advantages of fuzzy methods for representing and mining
vague patterns in data are especially emphasized.

1 Introduction

As the conception of intelligence is inseparably connected with the ability to
learn from experience and to adapt to new situations, it is hardly astonish-
ing that machine learning has always been considered as an integral part of
the field of artificial intelligence (AI). In fact, the key role of learning and
adaptation is almost self-evident for the connectionist approach to AI, since
representing knowledge with (artificial) neural networks becomes possible only
by “training” such networks. However, in view of the fact that the “knowl-
edge acquisition bottleneck” turned out to be one of the key problems in
the design of intelligent and knowledge-based systems, the importance of au-
tomated methods for knowledge acquisition has also been realized for more
symbol-oriented approaches like rule-based systems (for which expert knowl-
edge could in principle be injected by hand). In any case, machine learning is
certainly one of the most important subfields of contemporary AI, regardless
of the particular facet.
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A research field closely related to machine learning is that of knowledge discov-

ery and data mining. As a response to the progress in digital data acquisition
and storage technology, along with the limited human capabilities in analyzing
and exploiting large amounts of data, this field has recently emerged as a new
research discipline, lying at the intersection of statistics, machine learning,
data management, and other areas. According to a widely accepted definition,
knowledge discovery refers to the non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable structure in data [25]. The
central step within this process is data mining, the application of computa-
tional methods and algorithms for extracting useful patterns from potentially
very large data sets. Meanwhile, knowledge discovery has established itself as
a new, independent research field, including its own journals and conferences.

As mentioned before, the fields of machine learning and data mining are closely
related, and a strict separation between them is neither reasonable nor desir-
able. A rough distinction that we shall make throughout the paper relates to
the distinction between the performance tasks of pattern discovery and model

induction. While we consider the latter to be the core problem of machine
learning, the former is more in the realm of data mining. A typical example
of model induction is learning a classifier from a set of training examples, i.e.,
a function C : X → Y that (hypothetically) assigns a class y = C(x) ∈ Y
to every potential input x from an underlying instance space X . One of the
most important criteria for this type of problem is generalization performance,
that is, the predictive accuracy of an induced model. According to our view,
data mining is of a more explorative nature, and patterns discovered in a data
set are usually of a local and descriptive rather than of a global and predic-

tive type. A typical example of such a pattern is an association rule, to be
discussed in more detail in Section 4. For pattern discovery methods, evalua-
tion criteria are more diverse and often more difficult to quantify; essentially,
patterns should be “interesting” or “useful” in one way or the other. Our dis-
tinction between machine learning and data mining can roughly be seen as a
“modern” or extended distinction between descriptive and inductive statistics.
Anyway, we repeat that this distinction is very rough and represents a quite
simplified view, which is not an opinio communis (for example, some people
prefer having an even more general view of data mining that includes machine
learning as a special case). Under the heading ML&DM we shall subsequently
subsume both machine learning and data mining, as well as related fields like
various forms of data analysis (distinguished by adjectives like multivariate,
exploratory, Bayesian, intelligent, ...).

In fuzzy set theory (FST), one of the cornerstones of soft computing, aspects
of knowledge representation and reasoning have dominated research for a long
time, at least in that part of the theory which lends itself to intelligent sys-
tems design and applications in AI. Yet, problems of automated learning and
knowledge acquisition have more and more come to the fore in recent years,
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and numerous contributions to ML&DM have been made in the meantime.
The aim of this paper is to convey an impression of the current status and
prospects of FST in ML&DM, especially highlighting potential features and
advantages of fuzzy in comparison with non-fuzzy approaches.

The remainder of the paper is organized as follows: 1 Section 2 presents a
collection of typical applications of FST in ML&DM; the examples given are
representative though not complete, and the section is definitely not a com-
prehensive review of the literature. In Section 3, we try to highlight in a more
systematic way the potential contributions that FST can make to machine
learning and data mining. One of the core advantages of fuzzy methods for
data mining, namely an increased expressiveness that contributes to repre-
senting and mining vague patterns in data, is discussed in more detail and
illustrated in the context of association analysis in Section 4. Section 5 com-
pletes the paper with some concluding remarks.

2 Typical Applications of Fuzzy Set Theory

The tools and technologies that have been developed in FST have the poten-
tial to support all of the steps that comprise a process of model induction or
knowledge discovery. In particular, FST can already be used in the data se-
lection and preparation phase, e.g., for modeling vague data in terms of fuzzy
sets [55], to “condense” several crisp observations into a single fuzzy one, or
to create fuzzy summaries of the data [38]. As the data to be analyzed thus
becomes fuzzy, one subsequently faces a problem of analyzing fuzzy data, i.e.,
of fuzzy data analysis [3].

The problem of analyzing fuzzy data can be approached in at least two princi-
pally different ways. First, standard methods of data analysis can be extended
in a rather generic way by means of an extension principle, that is, by “fuzzi-
fying” the mapping from data to models. A second, often more sophisticated
approach is based on embedding the data into more complex mathematical
spaces, such as fuzzy metric spaces [16], and to carry out data analysis in these
spaces [17].

If fuzzy methods are not used in the data preparation phase, they can still
be employed in a later stage in order to analyze the original data. Thus, it
is not the data to be analyzed that is fuzzy, but rather the methods used for
analyzing the data (in the sense of resorting to tools from FST). Subsequently,
we shall focus on this type of fuzzy data analysis (where the adjective “fuzzy”
refers to the term analysis, not to the term data), which is predominant in

1 Sections 2 and 3 closely correspond to parts of the related survey paper [35].
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ML&DM. 2 In the following, we focus on fuzzy extensions of some well-known
machine learning and data mining methods without repeating the original
methods themselves; thus, we assume basic familiarity with these methods.

2.1 Fuzzy Cluster Analysis

Many conventional clustering algorithms, such as the prominent k-means al-
gorithm, produce a clustering structure in which every object is assigned to
one cluster in an unequivocal way. Consequently, the individual clusters are
separated by sharp boundaries. In practice, such boundaries are often not
very natural or even counterintuitive. Rather, the boundary of single clusters
and the transition between different clusters are usually “smooth”. This is the
main motivation underlying fuzzy extensions to clustering algorithms [28]. In
fuzzy clustering, an object may belong to different clusters at the same time,
at least to some extent, and the degree to which it belongs to a particular clus-
ter is expressed in terms of a fuzzy membership. The membership functions
of the different clusters (defined on the set of observed data points) is usually
assumed to form a partition of unity. This version, often called probabilistic
clustering, can be generalized further by weakening this constraint as, e.g., in
possibilistic clustering [37]. Fuzzy clustering has proved to be extremely use-
ful in practice and is now routinely applied also outside the fuzzy community
(e.g., in recent bioinformatics applications [26]).

2.2 Learning Fuzzy Rule-Based Systems

The most frequent application of FST in machine learning is the induction
or the adaptation of rule-based models. This is hardly astonishing, since rule-
based models have always been a cornerstone of fuzzy systems and a central
aspect of research in the field, not only in ML&DM but also in many other
subfields, notably approximate reasoning and fuzzy control. (Often, the term
fuzzy system implicitly refers to fuzzy rule-based system.)

Fuzzy rule-based systems can represent both classification and regression func-
tions, and different types of fuzzy models have been used for these purposes.
In order to realize a regression function, a fuzzy system is usually wrapped in
a “fuzzifier” and a “defuzzifier”: The former maps a crisp input to a fuzzy one,
which is then processed by the fuzzy system, and the latter maps the (fuzzy)

2 By now, the analysis of fuzzy data is still hampered by the non-availability of
such data. It is likely to become more important in the future, once the enabling
data engineering technology, allowing to acquire, store, and process fuzzy data on
a large scale, has been established.
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output of the system back to a crisp value. For so-called Takagi-Sugeno models,
which are quite popular for modeling regression functions, the defuzzification
step is unnecessary, since these models output crisp values directly.

In the case of classification learning, the consequent of single rules is usually
a class assignment (i.e. a singleton fuzzy set). 3 Evaluating a rule base (à la

Mamdani-Assilian) thus becomes trivial and simply amounts to “maximum
matching”, that is, searching the maximally supporting rule for each class.
Thus, much of the appealing interpolation and approximation properties of
fuzzy inference gets lost, and fuzziness only means that rules can be activated
to a certain degree. There are, however, alternative methods which combine
the predictions of several rules into a classification of the query [12]. In methods
of that kind, the degree of activation of a rule provides important informa-
tion. Besides, activation degrees can be very useful, e.g., for characterizing the
uncertainty involved in a classification decision.

A plethora of strategies has been developed for inducing a fuzzy rule-based
system from the data given, and we refrain from a detailed exposition here.
Especially important in the field of fuzzy rule learning are hybrid methods
that combine FST with other (soft computing) methodologies, notably evolu-
tionary algorithms and neural networks. For example, evolutionary algorithms
are often used to optimize (“tune”) a fuzzy rule base or for searching the space
of potential rule bases in a (more or less) systematic way [13]. Quite interest-
ing are also neuro-fuzzy methods [43]. For example, one idea is to encode a
fuzzy system as a neural network and to apply standard methods (like back-
propagation) in order to train such a network. This way, neuro-fuzzy systems
combine the representational advantages of fuzzy systems with the flexibility
and adaptivity of neural networks.

2.3 Fuzzy Decision Tree Induction

Fuzzy variants of decision tree induction have been developed for quite a while
(e.g. [56,36]) and seem to remain a topic of interest even today [47–49] (see [44]
for a recent approach and a comprehensive overview of research in this field).
In fact, these approaches provide a typical example for the “fuzzification” of
standard machine learning methods. In the case of decision trees, it is primarily
the “crisp” thresholds used for defining splitting predicates (constraints), such
as size ≤ 181, at inner nodes that have been criticized: Such thresholds lead
to hard decision boundaries in the input space, which means that a slight
variation of an attribute (e.g. size = 182 instead of size = 181) can entail a
completely different classification of an object (e.g., of a person characterized

3 More generally, a rule consequent can suggest different classes with different de-
grees of certainty.
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by size, weight, gender, ...) Moreover, the learning process becomes unstable
in the sense that a slight variation of the training examples can change the
induced decision tree drastically.

In order to make the decision boundaries “soft”, an obvious idea is to apply
fuzzy predicates at the inner nodes of a decision tree, such as size ∈ TALL,
where TALL is a fuzzy set (rather than an interval). In other words, a fuzzy
partition instead of a crisp one is used for the splitting attribute (here size)
at an inner node. Since an example can satisfy a fuzzy predicate to a certain
degree, the examples are partitioned in a fuzzy manner as well. That is, an
object is not assigned to exactly one successor node in a unique way, but
perhaps to several successors with a certain degree. For example, a person
whose size is 181 cm could be an element of the TALL-group to the degree, say,
0.7 and of the complementary group to the degree 0.3.

The above idea of “soft recursive partitioning” has been realized in different
ways. Moreover, the problems entailed by corresponding fuzzy extensions have
been investigated. For example, how can splitting measures like information
gain (expressed in terms of entropy), originally defined for ordinary sets of
examples, be extended to fuzzy sets of examples [14]? Or, how can a new
object be classified by a fuzzy decision tree?

2.4 Fuzzy Association Analysis

The use of fuzzy sets in connection with association analysis, to be discussed
in more detail in Section 4.2.1, has been proposed by numerous authors (see
[10,15] for recent overviews), with motivations closely resembling those in the
case of rule learning and decision tree induction. Again, by allowing for “soft”
rather than crisp boundaries of intervals, fuzzy sets can avoid certain un-
desirable threshold effects [54], this time concerning the quality measures of
association rules (like support and confidence) rather than the classification of
objects. Moreover, identifying fuzzy sets with linguistic terms allows for a com-
prehensible and user-friendly presentation of rules discovered in a database.

Many standard techniques for association rule mining have been transferred
to the fuzzy case, sometimes in a rather ad-hoc manner. Indeed, publications
on this topic are often more concerned with issues of data preprocessing, e.g.,
the problem of finding good fuzzy partitions for the quantitative attributes,
rather than the rule mining process itself. Still, more theoretically-oriented
research has recently been started [22]. For example, the existence of different
types of fuzzy rules [24] suggests that fuzzy associations can be interpreted in
different ways and, hence, that the evaluation of an association cannot be in-
dependent of its interpretation. In particular, one can raise the question which
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generalized logical operators can reasonably be applied in order to evaluate
fuzzy associations, e.g., whether the antecedent part and the consequent part
should be combined in a conjunctive way (à la Mamdani rules) or by means of
a generalized implication (as in implication-based fuzzy rules) [29]. Moreover,
since standard evaluation measures for association rules can be generalized in
many ways, it is interesting to investigate properties of particular generaliza-
tions and to look for an axiomatic basis that supports the choice of specific
measures [22].

2.5 Fuzzy Methods in Case-Based Learning

The major assumption underlying case-based learning (CBL) is a common-
sense principle suggesting that “similar problems have similar solutions”. This
“similarity hypothesis” serves as a basic inference paradigm in various domains
of application. For example, in a classification context, it translates into the
assertion that “similar objects have similar class labels”. Similarity-based in-
ference has also been a topic of interest in FST, which is hardly astonishing
since similarity is one of the main semantics of fuzzy membership degrees
[51,53]. Along these lines, a close connection between case-based learning and
fuzzy rule-based reasoning has been established in [19,21]. Here, the aforemen-
tioned “similarity hypothesis” has been formalized within the framework of
fuzzy rules. As a result, case-based inference can be realized as a special type
of fuzzy set-based approximate reasoning.

A possibilistic variant of the well-known k-nearest neighbor classifier, which
constitutes the core of the family of CBL algorithms, has been presented
in [32]. Among other things, this paper emphasizes the ability of possibility
theory to represent partial ignorance as a special advantage in comparison to
probabilistic approaches. In fact, this point seems to be of critical importance
in case-based learning, where the reliability of a classification strongly depends
on the existence of cases that are similar to the query.

The use of OWA-operators as generalized aggregation operators in case-based
learning has been proposed in [57]. In fact, there are several types of ag-
gregation problems that arise in CBL. One of these problems concerns the
derivation of a global degree of similarity between cases by aggregating local

similarity degrees pertaining to individual (one-dimensional) attributes. (This
problem is indeed a fundamental one that appears in various guises, not only
in CBL. In fuzzy association analysis, for example, the problem of deriving
the degree of occurrence of an itemset in a transaction from the degrees of
occurrence of individual items is very similar.) Usually, this is done by means
of a simple linear combination, and this is where OWA-operators provide an
interesting, more flexible alternative. A second aggregation problem in CBL
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concerns the combination of the evidences in favor of different class labels
that come from the neighbors of the query case. In [33], it is argued that cases
retrieved from a case library must not be considered as independent informa-
tion sources, as implicitly done by most case-based learning methods. To take
interdependencies between the neighbored cases into account, a new inference
principle is developed that combines potentially interacting pieces of evidence
by means of the (discrete) Choquet-integral. This method can be seen as a
generalization of weighted nearest neighbor estimation.

2.6 Possibilistic Networks

So-called graphical models, including Bayesian networks [45] and Markov net-
works [39], have been studied intensively in recent years. The very idea of such
models is to represent a high-dimensional probability distribution (defined on
the Cartesian product of the domains of all attributes under consideration) in
an efficient way, namely by factorizing it into several low-dimensional condi-
tional or marginal distributions.

By their very nature, graphical models of the above kind provide a suitable
means for representing probabilistic uncertainty. However, they cannot easily
deal with other types of uncertainty such as imprecision or incompleteness.
This has motivated the development of possibilistic networks as a possibilis-
tic counterpart to probabilistic networks [5,6,8]. This approach relies upon
possibility theory as an underlying uncertainty calculus, which makes it par-
ticularly suitable for dealing with imprecise data (in the form of set-valued
specifications of attribute values). For example, the interpretation of possi-
bility distributions in [8] is based on the so-called context model [27], hence
possibility degrees are considered as a kind of upper probability.

3 Potential Contributions of Fuzzy Set Theory

In the following, we highlight and critically comment some potential contri-
butions that FST can make to machine learning and data mining.

3.1 Graduality

The ability to represent gradual concepts and fuzzy properties in a thorough
way is one of the key features of fuzzy sets. This aspect is also of primary
importance in the context of ML&DM. In machine learning, for example, the
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formal problem of concept learning has received a great deal of attention. A
concept is usually identified with its extension, that is a subset C of an under-
lying set (universe) U of objects. For example, C might be the concept “dog”
whose extension is the set of dogs presently alive, a subset of all creatures on
earth. The goal of (machine) learning is to induce an intensional description
of a concept from a set of (positive and negative) examples, that is a charac-
terization of a concept in terms of its properties (a dog has four legs and a
tail, it can bark, ...). Now, it is widely recognized that most natural concepts
have non-sharp boundaries. To illustrate, consider concepts like woods, river,
lake, hill, street, house, or chair. Obviously, these concepts are vague or fuzzy,
in that one cannot unequivocally say whether or not a certain collection of
trees should be called a wood, whether a certain building is really a house,
and so on. Rather, one will usually agree only to a certain extent that an
object belongs to a concept. Thus, an obvious idea is to induce fuzzy concepts,
that are formally identified by a fuzzy rather than a crisp subset of U . Fuzzy
concepts can be characterized in terms of fuzzy predicates (properties) which
are combined by means of generalized logical connectives. In fact, one should
recognize that graduality is not only advantageous for expressing the concept
itself, but also for modeling the qualifying properties. For example, a “firm
ground” is a characteristic property of a street, and this property is obviously
of a fuzzy nature (hence it should be formalized accordingly).

Likewise, in data mining, the patterns of interest are often vague and have
boundaries that are non-sharp in the sense of FST. To illustrate, consider the
concept of a “peak”: It is usually not possible to decide in an unequivocal way
whether a timely ordered sequence of measurements has a “peak” (a particular
kind of pattern) or not. Rather, there is a gradual transition between having a
peak and not having a peak. Taking graduality into account is also important if
one must decide whether a certain property is frequent among a set of objects,
e.g., whether a pattern occurs frequently in a data set. In fact, if the pattern is
specified in an overly restrictive manner, it might easily happen that none of
the objects matches the specification, even though many of them can be seen
as approximate matches. In such cases, the pattern might still be considered
as “well-supported” by the data (see also Section 4).

Unfortunately, the representation of graduality is often foiled in machine lear-
ning applications, especially in connection with the learning of predictive mo-
dels. In such applications, a fuzzy prediction is usually not desired, rather one
is forced to come up with a definite final decision. Classification is an obvious
example: Eventually, a decision in favor of one particular class label has to
be made, even if the object under consideration seems to have partial mem-
bership in several classes simultaneously. This is the case both in theory and
practice: In practice, the bottom line is the course of action one takes on the
basis of a prediction, not the prediction itself. In theory, a problem concerns
the performance evaluation of a fuzzy classifier: The standard benchmark data
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sets have crisp rather than fuzzy labels. Moreover, a fuzzy classifier cannot be
compared with a standard (non-fuzzy) classifier unless it eventually outputs
crisp predictions.

Needless to say, if a fuzzy predictor is supplemented with a “defuzzification”
mechanism (like a winner-takes-all strategy in classification), many of its mer-
its are lost. In the classification setting, for instance, a defuzzified fuzzy classi-
fier does again produce hard decision boundaries in the input space. Thereby,
it is actually reduced to a standard classifier. Moreover, if a classifier is solely
evaluated on the basis of its predictive accuracy, then all that matters is the
decision boundaries it produces in the input space. Since a defuzzified fuzzy
classifier does not produce a decision boundary that is principally different
from the boundaries produced by alternative classifiers (such as decision trees
or neural networks), fuzzy machine learning methods do not have much to of-
fer with regard to generalization performance. And indeed, fuzzy approaches
to classification do usually not improve predictive accuracy.

Let us finally note that “graduality” is of course not reserved to fuzzy me-
thods. Rather, it is inherently present also in many standard learning methods.
Consider, for example, a concept learner (binary classifier) c : X → [0, 1] the
output of which is a number in the unit interval, expressing a kind of “propen-
sity” of an input x to the concept under consideration. Classifiers of such
kind abound, a typical example is a multilayer perceptron. In order to extend
such classifiers to multi-class problems (involving more than two classes), one
common approach is to apply a one-against-all strategy: For each class y, a
separate classifier cy(·) is trained which considers that class as the concept to
be learned and, hence, instances of all other classes as negative examples. The
prediction for a new input x is then given by the class that maximizes cy(x).
Now, it is of course tempting to consider the cy(x) as (estimated) membership
degrees and, consequently, the collection {cy(x) | y ∈ Y} of these estimations
as a fuzzy classification.

3.2 Granularity

Granular computing, including FST as one its main constituents, is an emerg-
ing paradigm of information processing in which “information granules” are
considered as key components of knowledge representation [4]. A central idea
is that information can be processed on different levels of abstraction, and
that the choice of the most suitable level depends on the problem at hand.

As a means to trade off accuracy against efficiency and interpretability, gran-
ular computing is also relevant for ML&DM, not only for the model induction
or pattern discovery process itself, but also for data pre- and post-processing,
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such as data compression and dimensionality reduction [41]. For example, one
of the most important data analysis methods, cluster analysis, can be seen as
a process of information granulation, in which data objects are combined into
meaningful groups so as to convey a useful idea of the main structure of a
dataset.

3.3 Interpretability

A primary motivation for the development of fuzzy sets was to provide an
interface between a numerical scale and a symbolic scale which is usually
composed of linguistic terms. Thus, fuzzy sets have the capability to inter-
face quantitative patterns with qualitative knowledge structures expressed in
terms of natural language. This makes the application of fuzzy technology
very appealing from a knowledge representational point of view. For example,
it allows association rules discovered in a database to be presented in a lin-
guistic and hence comprehensible way. In fact, the user-friendly representation
of models and patterns is often emphasized as one of the key features of fuzzy
methods.

The use of linguistic modeling techniques does also produce some disadvan-
tages, however. A first problem concerns the ambiguity of fuzzy models: Lin-
guistic terms and, hence, models are highly subjective and context-dependent.
It is true that the imprecision of natural language is not necessarily harmful
and can even be advantageous. 4 A fuzzy controller, for example, can be quite
insensitive to the concrete mathematical translation of a linguistic model. One
should realize, however, that in fuzzy control the information flows in a re-
verse direction: The linguistic model is not the end product, as in ML&DM,
it rather stands at the beginning.

It is of course possible to disambiguate a model by complementing it with
the semantics of the fuzzy concepts it involves (including the specification of
membership functions). Then, however, the complete model, consisting of a
qualitative (linguistic) and a quantitative part, becomes cumbersome and will
not be easily understandable. This can be contrasted with interval-based mo-
dels, the most obvious alternative to fuzzy models: Even though such models
do certainly have their shortcomings, they are at least objective and not prone
to context-dependency.

Another possibility to guarantee transparency of a fuzzy model is to let a user
of a data mining system specify all fuzzy concepts by hand, including the fuzzy
partitions for all of the variables involved in the study under consideration.
This is rarely done, however, mainly for two reasons. Firstly, the job is of course

4 See Zadeh’s principle of incompatibility between precision and meaning [58].
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tedious and cumbersome if the number of variables is large. Secondly, much
flexibility for model adaptation is lost, because it is by no means guaranteed
that accurate predictive models or interesting patterns can be found on the
basis of the fuzzy partitions as pre-specified by the user. In fact, in most
methods the fuzzy partitions are rather adapted to the data in an optimal
way, so as to maximize the model accuracy or the interestingness of patterns.

A second problem with regard to transparency concerns the complexity of
models. A rule-based classifier consisting of, say, 40 rules each of which has
a condition part with 5-7 antecedents, will hardly be comprehensible as a
whole, even if the various ingredients might be well understandable. Now, since
models that are simple, e.g., in the sense of including only a few attributes or
a few rules, will often not be accurate at the same time, there is obviously a
conflict between accuracy and understandability and, hence, the need to find
a trade-off between these criteria [9].

In fact, this trade-off concerns not only the size of models, but also other
measures that are commonly employed in order to improve model accuracy.
In connection with rule-based models, for example, the weighing of individual
rules can often help to increase the predictive accuracy. On the other hand,
the interpretation of a set of weighted rules becomes more difficult.

3.4 Robustness

It is often claimed that fuzzy methods are more robust than non-fuzzy me-
thods. Of course, the term “robustness” can refer to many things, e.g., to the
sensitivity of an induction method toward violations of the model assump-
tions. 5 In connection with fuzzy methods, the most relevant type of robust-
ness concerns sensitivity toward variations of the data. Generally, a learning
or data mining method is considered robust if a small variation of the observed
data does hardly alter the induced model or the evaluation of a pattern.

A common argument supporting the claim that fuzzy models are in this sense
more robust than non-fuzzy models refers to a “boundary effect” which occurs
in various variants and is arguably an obvious drawback of interval-based
methods. This effect refers to the fact that a variation of the boundary points
of an interval can have a strong influence on a model or a pattern. In fact,
it is not difficult to construct convincing demonstrations of this effect: In
association analysis (cf. Section 2.4), for example, a small shift of the boundary
of an interval can have a drastic effect on the support of an association rule
if many data points are located near the boundary. This effect is alleviated
when using fuzzy sets instead of intervals.

5 This type of sensitivity is of special interest in robust statistics.
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Despite the intuitive persuasiveness of such examples, there is still no clear
conception of the concrete meaning of robustness. Needless to say, without
a formal definition of robustness, i.e., certain types of robustness measures,
one cannot argue convincingly that one data mining method is more robust
than another one. For example, it makes a great difference whether robustness
is understood as a kind of expected or a kind of worst-case sensitivity: It is
true that a shifting of data points can have a stronger effect on, say, the
support of an interval-based association rule than on the support of a fuzzy
association. However, if the data points are not located in the boundary region
of the intervals, it can also happen that the former is not affected at all,
whereas a fuzzy rule is almost always affected at least to some extent (since
the “boundary” of a fuzzy interval is much wider than that of a standard
interval). Consequently, if robustness is defined in terms of the average rather
than the maximal change, the fuzzy approach might not be more robust than
the non-fuzzy one.

3.5 Representation of Uncertainty

Machine learning is inseparably connected with uncertainty. To begin with,
the data presented to learning algorithms is imprecise, incomplete or noisy
most of the time, a problem that can badly mislead a learning procedure.
But even if observations are perfect, the generalization beyond that data, the
process of induction, is still afflicted with uncertainty. For example, observed
data can generally be explained by more than one candidate theory, which
means that one can never be sure of the truth of a particular model.

Fuzzy sets and possibility theory have made important contributions to the
representation and processing of uncertainty. In ML&DM, like in other fields,
related uncertainty formalisms can complement probability theory in a rea-
sonable way, because not all types of uncertainty relevant to machine learning
are probabilistic and because other formalisms are more expressive than prob-
ability.

To illustrate the first point, consider the problem of inductive reasoning as
indicated above: In machine learning, a model is often induced from a set
of data on the basis of a heuristic principle of inductive inference, such as
the well-known Occams’s razor. As one can never be sure of the truth of the
particular model suggested by the heuristic principle, it seems reasonable to
specify a kind of likelihood for all potential candidate models. This is done,
e.g., in Bayesian approaches, where the likelihood of models is characterized
in terms of a posterior probability distribution (probability of models given
the data). One can argue, however, that the uncertainty produced by heuristic
inference principles such as Occam’s razor is not necessarily of a probabilistic
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nature and, for example, that the derivation of a possibility distribution over
the model space is a viable alternative. This idea has been suggested in [31] in
connection with decision tree induction: Instead of learning a single decision
tree, a possibility distribution over the class of all potential trees is derived on
the basis of a possibilistic variant of Occam’s razor.

The second point, concerning the limited expressivity of probability distri-
butions, was already indicated in Section 2.5, where we mentioned that pos-
sibility distributions are more suitable for representing partial ignorance in
case-based learning. Similarly, possibility theory is used for modeling incom-
plete and missing data in possibilistic networks (cf. Section 2.6) as well as
other data analysis methods, such as formal concept analysis [18].

3.6 Incorporation of Background Knowledge

Roughly speaking, inductive (machine) learning can be seen as searching the
space of candidate hypotheses for a most suitable model. The corresponding
search process, regardless whether it is carried out in an explicit or implicit
way, is usually “biased” in various ways, and each bias usually originates
from a sort of background knowledge. For example, the representation bias

restricts the hypothesis space to certain types of input-output relations, such
as linear or polynomial relationships. Incorporating background knowledge is
extremely important, because the data by itself would be totally meaningless
if considered from an “unbiased” point of view [42].

As demonstrated by other application fields such as fuzzy control, fuzzy set-
based modeling techniques provide a convenient tool for making expert knowl-
edge accessible to computational methods and, hence, to incorporate back-
ground knowledge in the learning process. This can be done in various ways
and on different levels.

One very obvious approach is to combine modeling and learning in rule-based
systems. For example, an expert can describe an input-output relation in terms
of a fuzzy rule base (as in fuzzy control). Afterward, the membership functions
specifying the linguistic terms that have been employed by the expert can be
adapted to the data in an optimal way. 6 In other words, the expert specifies
the rough structure of the rule-based model, while the fine-tuning (“model
calibration”) is done in a data-driven way. Let us note that specifying the
structure of a model first and adapting that structure to the data afterward is
a general strategy for combining knowledge-based and data-driven modeling,

6 Here, the expert implements a kind of search bias, as it determines the starting
point of the search process and, hence, the first local optimum to be found.
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which is not reserved to rule-based models; it is used, for example, in graphical
models (cf. Section 2.6) as well.

An alternative approach, called constraint-regularized learning, aims at ex-
ploiting fuzzy set-based modeling techniques within the context of the regula-
rization (penalization) framework of inductive learning [34]. Here, the idea is
to express vague, partial knowledge about an input-output relation in terms
of fuzzy constraints and to let such constraints play the role of a penalty
term within the regularization approach. Thus, an optimal model is one that
achieves an optimal trade-off between fitting the data and satisfying the con-
straints.

Expert knowledge can also be exploited in the form of user feedback in inter-
active data analysis. Here, the idea is to let the user, to some extent, guide
the learning or data mining process, which can be especially beneficial in the
exploration of high-dimensional data spaces. A nice example for an approach
of that kind is the recent paradigm of knowledge-based clustering [46].

3.7 Aggregation, Combination, and Information Fusion

The problem to aggregate or combine partial or intermediary results frequently
occurs in inference processes of various kind, and is also relevant to ML&DM.
A simple example is the aggregation of the individual predictions of classifiers
in ensemble methods. Essentially, this can be considered as a problem of infor-
mation fusion [2]. Likewise, in nearest neighbor classification, each neighbor
provides a certain amount of evidence in favor of the class it belongs to. To
make a final decision, this evidence must be aggregated either way. Problems
of this kind call for suitable aggregation operators.

Aggregation operators, both logical and arithmetical, are also used by ML&DM
methods for representing relationships between attributes in models and pat-
terns. In decision tree induction, for example, each inner node represents an
equality or an inequality predicate, and these predicates are combined in a
conjunctive way along a path of a tree.

A large repertoire of generalized logical (e.g., t-norms and t-conorms) and
arithmetical (e.g., Choquet- and Sugeno-integral) operators have been devel-
oped in FST and related fields. These operators can be usefully applied to the
aforementioned problems (e.g., [11,2,57]).

Moreover, conventional learning methods can be extended in a straightfor-
ward way by replacing standard operators by their generalized versions. In
fact, several examples of this idea have been presented in previous sections.
The general effect of such generalizations is to make models more flexible.
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For example, while a standard decision tree can only produce axis-parallel
decision boundaries, these boundaries can become non-axis-parallel for fuzzy
decision trees where predicates are combined by means of a t-norm. Now,
it is well-known that learning from empirical data will be most successful if
the underlying model class has just the right flexibility, since both over- and
underfitting of a model can best be avoided in that case. Therefore, the ques-
tion whether or not a fuzzy generalization will pay off cannot be answered
in general: If the original (non-fuzzy) hypothesis space is not flexible enough,
the fuzzy version will probably be superior. On the other hand, if the former
is already flexible enough, a fuzzification might come along with a danger of
overfitting.

4 Mining Fuzzy Patterns in Data

This section will discuss in more detail one of the advantages of fuzzy methods
which is, in the author’s opinion, one of the key contribution of FST to data
mining. More specifically, it will be argued that the increased expressiveness
of fuzzy methods, which is mainly due to the ability to represent graded prop-
erties in an adequate way, is useful for both feature extraction and subsequent
dependency analysis. Here, we proceed from the standard representation of
data entities in terms of feature vectors, i.e., a fixed number of features or
attributes, each of which represents a certain property of an entity. For ex-
ample, if the data entities are employees, possible features might be gender,
age, and income. A common goal of feature-based methods in then to analyze
relationships and dependencies between the attributes.

4.1 Fuzzy Feature Extraction and Pattern Representation

Many features of interest, and therefore the patterns expressed in terms of
these features, are inherently fuzzy. As an example, consider the so-called
“candlestick patterns” which refer to certain characteristics of financial time
series. These patterns are believed to reflect the psychology of the market and
are used to support investment decisions. Needless to say, a candlestick pattern
is fuzzy in the sense that the transition between the presence and absence of
the pattern is gradual rather than abrupt; see [40] for an interesting fuzzy
approach to modeling and discovering such patterns.

To give an even simpler example, consider a discrete time series of the form

x =
(
x(1), x(2) . . . x(n)

)
,
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Fig. 1. Three exemplary time series that are more or less “decreasing at the begin-
ning”.

i.e., a timely ordered sequence of measurements. To bring one of the topi-
cal application areas of fuzzy data mining into play, one may think of x as
the expression profile of a gene in a microarray experiment, i.e., a timely or-
dered sequence of expression levels. For such profiles, the property (feature)
“decreasing at the beginning” might be of interest, e.g., in order to express
patterns like

P :
“A profile which is decreasing at the beginning

is typically increasing at the end.”
(1)

Again, the aforementioned pattern is inherently fuzzy, in the sense that a
time series can be more or less decreasing at the beginning. To begin with, it
is unclear which time points belong to the “beginning” of a time series, and
defining it in a non-fuzzy (crisp) way by a subset B = {1, 2 . . . k}, for a fixed
k ∈ {1 . . . n}, comes along with a certain arbitrariness and does not appear
fully convincing. Moreover, the human perception of “decreasing” will usually
be tolerant toward small violations of the standard mathematical definition,
which requires

∀ t ∈ B : x(t) ≥ x(t + 1), (2)

especially if such violations may be caused by noise in the data.

Fig. 1 shows three exemplary profiles. While the first one at the bottom is
undoubtedly decreasing at the beginning, the second one in the middle is
clearly not decreasing in the sense of (2). According to human perception,
however, this series is still approximately or, say, almost decreasing at the
beginning. In other words, it does have the corresponding (fuzzy) feature to
some extent.

By modeling features like “decreasing at the beginning” in a non-fuzzy way,
that is, as a Boolean predicate which is either true or false, it will usually
become impossible to discover patterns such as (1), even if these patterns are
to some degree present in a data set.
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Fig. 2. Left: Relative support of pattern (1) as a function of the level of noise (σ)
and various values of k. Right: Comparison with the relative support for the fuzzy
case.

To illustrate this point, consider a simple experiment in which 1,000 copies of
an (ideal) profile defined by x(t) = | t − 11 | , t = 1 . . . 21, are corrupted with
a certain level of noise. This is done by adding an error term to each value of
every profile; these error terms are independent and normally distributed with
mean 0 and standard deviation σ. Then, the relative support of the pattern
(1) is determined, i.e., the fraction of profiles that still satisfy this pattern in
a strict mathematical sense:

(∀ t ∈ {1 . . . k} : x(t) ≥ x(t + 1)) ∧ (∀ t ∈ {n − k . . . n} : x(t − 1) ≥ x(t))

Fig. 2 (left) shows the relative support as a function of the level of noise (σ)
and various values of k. As can be seen, the support drops off quite quickly.
Consequently, the pattern will be discovered only in the more or less noise-free
scenario but quickly disappears for noisy data.

Fuzzy set-based modeling techniques offer a large repertoire for generalizing
the formal (logical) description of a property, including generalized logical con-
nectives such as t-norms and t-conorms, fuzzy quantifiers such as FOR-MOST,
and fuzzy relations such as MUCH-SMALLER-THAN. Making use of these tools, it
becomes possible to formalize descriptions like “for all points t at the begin-
ning, x(t) is not much smaller than x(t + 1), and for most points it is even
strictly greater” in an adequate way:

F1(x)
df
=

(
∀̃ t ∈ B : x(t + 1) > x(t)

)
⊗

(
∀ t ∈ B : ¬ MS(x(t + 1), x(t))

)
, (3)

where B is now a fuzzy set characterizing the beginning of the time series, ∀̃ is
an exception-tolerant relaxation of the universal quantifier, ⊗ is a t-norm, and
MS is a fuzzy MUCH-SMALLER-THAN relation; we refrain from a more detailed
description of these concepts at a technical level.

In any case, (3) is an example for a fuzzy definition of the feature “decreasing at
the beginning” (we do by no means claim that it is the best characterization)
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and offers an alternative to the non-fuzzy definition (2). According to (3),
every time series can have the feature to some extent. Analogously, the fuzzy
feature “increasing at the end” (F2) can be defined. Fig. 2 (right) shows the
relative support

supp(P ) =
1

1000

∑

xi

suppxi
(P ) =

1

1000

∑

xi

F1(xi) ⊗ F2(xi) (4)

of the pattern P for the fuzzy case, again as a function of the noise level.
As can be seen, the relative support also drops off after a while, which is
an expected and even desirable property (for a high enough noise level, the
pattern will indeed disappear). The support function decreases much slower,
however, so the pattern will be discovered in a much more robust way.

The above example shows that a fuzzy set-based modeling can be very useful
for extracting certain types of features. Besides, it gives an example of in-
creased robustness in a relatively specific sense, namely robustness of pattern
discovery toward noise in the data. In this connection, let us mention that we
do not claim that the fuzzy approach is the only way to make feature extrac-
tion more adequate and pattern discovery more robust. For example, in the
particular setting considered in our example, one may think of a probabilistic
alternative, in which the individual support suppxi

(P ) in (4) is replaced by the
probability that the underlying noise-free profile does satisfy the pattern P in
the sense of (2). Apart from pointing to the increased computational complex-
ity of this alternative, however, we like to repeat our argument that patterns
like (1) are inherently fuzzy in our opinion: Even in a completely noise-free
scenario, where information is exact and nothing is random, human perception
may consider a given profile as somewhat decreasing at the beginning, even if
it does not have this property in a strict mathematical sense.

Finally, one may argue that our formalization, which involves the choice of
a fuzzy quantifier, a t-norm, and so on, is to some extent arbitrary. This is
indeed a valid argument. In general, however, this is unavoidable and a typical
property of model building. A model, whether fuzzy, probabilistic, or deter-
ministic, is always a simplified and approximate image of reality, and a fuzzy
model of the human conception of “decreasing at the beginning” is perhaps
not more arbitrary than a probabilistic model of, say, a certain ecological or
economic system. Besides, there are of course also means to calibrate a fuzzy
model. In our example, this could be done on the basis of a number of ex-
emplary judgments, that is, a number of times series x with associated values
F1(x). The parameters of the model could then be tuned so as to reproduce
these values as good as possible.
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4.2 Mining Gradual Dependencies

4.2.1 Association Analysis

As already mentioned in Section 2.4, association analysis [1,52] is a widely
applied data mining technique that has been studied intensively in recent
years. The goal in association analysis is to find “interesting” associations in a
data set, that is, dependencies between so-called itemsets A and B expressed
in terms of rules of the form A ⇀ B. To illustrate, consider the well-known
example where items are products and a data record (transaction) I is a
shopping basket such as {butter, milk, bread}. The intended meaning of an
association A ⇀ B is that, if A is present in a transaction, then B is likely
to be present as well. A standard problem in association analysis is to find all
rules A ⇀ B the support (relative frequency of transactions I with A∪B ⊆ I)
and confidence (relative frequency of transactions I with B ⊆ I among those
with A ⊆ I) of which reach user-defined thresholds minsupp and minconf,
respectively.

In the above setting, a single item can be represented in terms of a binary
(0/1-valued) attribute reflecting the presence or absence of the item. To make
association analysis applicable to data sets involving numerical variables, such
attributes are typically discretized into intervals, and each interval is con-
sidered as a new binary attribute. For example, the attribute temperature

might be replaced by two binary attributes cold and warm, where cold = 1
(warm = 0) if the temperature is below 10 degrees and warm = 1 (cold = 0)
otherwise.

A further extension is to use fuzzy sets (fuzzy partitions) instead of intervals
(interval partitions), and corresponding approaches to fuzzy association analy-
sis have been proposed by several authors (see e.g. [10,15] for recent overviews).
In the fuzzy case, the presence of a feature subset A = {A1 . . . Am}, that is, a
compound feature considered as a conjunction of primitive features A1 . . . Am,
is specified as

A(x) = A1(x) ⊗ A2(x) ⊗ . . . ⊗ Am(x),

where Ai(x) ∈ [0, 1] is the degree to which x has feature Ai, and ⊗ is a t-norm
serving as a generalized conjunction.

There are different motivations for a fuzzy approach to association rule mi-
ning. For example, again pointing to the aspect of robustness, several authors
have emphasized that, by allowing for “soft” rather than crisp boundaries of
intervals, fuzzy sets can avoid undesirable boundary effects (see e.g. [54]). In
this context, a boundary effect occurs if a slight variation of an interval boun-
dary causes a considerable change of the evaluation of an association rule, and
therefore strongly influences the data mining result.
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In the following, we shall emphasize another potential advantage of fuzzy
association analysis, namely the fact that association rules can be represented
in a more distinctive way. In particular, working with fuzzy instead of binary
features allows for discovering gradual dependencies between variables.

4.2.2 Gradual Dependencies between Fuzzy Features

On a logical level, the meaning of a standard (association) rule A ⇀ B is cap-
tured by the material conditional, i.e., the rule applies unless the consequent
B is true and the antecedent A is false. On a natural language level, a rule of
that kind is typically understood as an IF–THEN construct: If the antecedent
A holds true, so does the consequent B.

In the fuzzy case, the Boolean predicates A and B are replaced by corre-
sponding fuzzy predicates which assume truth values in the unit interval [0, 1].
Consequently, the material implication operator has to be replaced by a gen-
eralized connective, that is, a suitable [0, 1] × [0, 1] → [0, 1] mapping. In this
regard, two things are worth mentioning. Firstly, the choice of this connec-
tive is not unique, instead there are various options. Secondly, depending on
the type of operator employed, fuzzy rules can have quite different semantical
interpretations [24].

A special type of fuzzy rule, referred to as gradual rules, combines the an-
tecedent A and the consequent B by means of a residuated implication oper-
ator  . The latter is a special type of implication operator which is derived
from a t-norm ⊗ through residuation:

α β
df
= sup{ γ |α ⊗ γ ≤ β }. (5)

As a particular case, so-called pure gradual rules are obtained when using the
following implication operator: 7

α β =

{
1 if α ≤ β

0 if α > β
(6)

The above approach to modeling a fuzzy rule is in agreement with the following
interpretation of a gradual rule: “THE MORE the antecedent A is true, THE
MORE the consequent B is true” [50,23], for example “The larger a truck, the
slower it is”. More specifically, in order to satisfy the rule, the consequent must
be at least as true as the antecedent according to (6), and the same principle
applies for other residuated implications, albeit in a somewhat relaxed form.

7 This operator is the core of all residuated implications (5).

21



The above type of implication-based fuzzy rule can be contrasted with so-called
conjunction-based rules, where the antecedent and consequent are combined
in terms of a t-norm such as minimum or product. Thus, in order to satisfy a
conjunction-based rule, both the antecedent and the consequent must be true
(to some degree). As an important difference, note that the antecedent and
the consequent play a symmetric role in the case of conjunction-based rules
but are handled in an asymmetric way by implication-based rules.

The distinction between different semantics of a fuzzy rule as outlined above
can of course also be made for association rules. Formally, this leads to using
different types of support and confidence measures for evaluating the quality
(interestingness) of an association [29,20]. Consequently, it may happen that
a data set supports a fuzzy association A ⇀ B quite well in one sense, i.e.,
according to a particular semantics, but not according to another one.

The important point to notice is that these distinctions cannot be made for
non-fuzzy (association) rules. Formally, the reason is that fuzzy extensions of
logical operators all coincide on the extreme truth values 0 and 1. Or, stated
the other way round, a differentiation can only be made on intermediary truth
degrees. In particular, the consideration of gradual dependencies does not
make any sense if the only truth degrees are 0 and 1.

In fact, in the non-fuzzy case, the point of departure for analyzing and evaluat-
ing a relationship between features or feature subsets A and B is a contingency
table:

B(y) = 0 B(y) = 1

A(x) = 0 n00 n01 n0•

A(x) = 1 n10 n11 n1•

n•0 n•1 n

In this table, n00 denotes the number of examples x for which A(x) = 0 and
B(x) = 0, and the remaining entries are defined analogously. All common eval-
uation measures for association rules, such as support (n11/n) and confidence
(n11/n1•) can be expressed in terms of these numbers.

In the fuzzy case, a contingency table can be replaced by a contingency di-

agram, an idea that has been presented in [30]. A contingency diagram is a
two-dimensional diagram in which every example x defines a point (α, β) =
(A(x),B(x)) ∈ [0, 1] × [0, 1]. A diagram of that type is able to convey much
more information about the dependency between two (compound) features
A and B than a contingency table. Consider, for example, the two diagrams
depicted in Fig. 3. Obviously, the dependency between A and B as suggested
by the left diagram is quite different from the one shown on the right. Now,
consider the non-fuzzy case in which the fuzzy sets A and B are replaced by
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Fig. 3. Two contingency diagrams reflecting different types of dependencies between
features A and B.

crisp sets Abin and Bbin, respectively, for example by using a [0, 1] → {0, 1}
mapping like α 7→ (α > 0.5). Then, identical contingency tables are obtained
for the left and the right scenario (in the left diagram, the four quadrants con-
tain the same number of points as the corresponding quadrants in the right
diagram). In other words, the two scenarios cannot be distinguished in the
non-fuzzy case.

In [30], it was furthermore suggested to analyze contingency diagrams by
means of techniques from statistical regression analysis. Amongst other things,
this offers an alternative approach to discovering gradual dependencies. For
example, the fact that a linear regression line with a significantly positive slope
(and high quality indexes like a coefficient of determination, R2) can be fit to
the data suggests that indeed a higher A(x) tends to result in a higher B(x),
i.e., the more x has feature A the more it has feature B. This is the case, for
example, in the left diagram in Fig. 3. In fact, the data in this diagram sup-
ports an association A ⇀ B quite well in the sense of the THE MORE–THE
MORE semantics, whereas it does not support the non-fuzzy rule Abin ⇀ Bbin.

Note that a contingency diagram can be derived (and remains 2-dimensional)
not only for simple but also for compound features, that is, feature subsets
representing conjunctions of simple features. The problem, then, is to derive
regression-related quality indexes for all potential association rules in a system-
atic way, and to filter out those gradual dependencies which are well-supported
by the data in terms of these indexes. For corresponding mining methods, in-
cluding algorithmic aspects and complexity issues, we refer to [30]; see also [7]
for an alternative, non-parametric approach to mining fuzzy gradual depen-
dencies.

Before concluding this section, let us note that the two approaches for mod-
eling gradual dependencies that we have presented, the one based on fuzzy
gradual rules and the other one using statistical regression analysis, share
similarities but also show differences. In particular, the logical modeling of
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gradual dependencies via suitable implication operators does not assume a re-
lationship between A(x) and B(x) which is, say, indeed “strictly increasing”.
For example, if B(x) ≡ 1, then the rule A ⇀ B will be perfectly satisfied, even
though B(x) is constant and does not increase with A(x). In fact, more specif-
ically, the semantical interpretation of a gradual rule should be expressed in
terms of a bound on the degree B(x) rather than the degree itself: The more
x is in A, the higher is the guaranteed lower bound of the membership of x
in B. Seen from this point of view, the statistical approach is perhaps even
more in line with the intuitive understanding of a THE MORE–THE MORE
relationship.

5 Conclusions

The previous sections have shown that FST can contribute to machine learning
and data mining in various ways. Needless to say, for most of the issues that
were addressed, a fuzzy approach will not be the only solution. Still, FST
provides a relatively flexible framework in which different aspects of machine
learning and data mining systems can be handled in a coherent way. In this
regard, let us again highlight the following points:

1. FST has the potential to produce models that are more comprehensible, less
complex, and more robust; fuzzy information granulation appears to be an
ideal tool for trading off accuracy against complexity and understandability.

2. In data mining, fuzzy methods appear to be especially useful for representing
“vague” patterns, a point of critical importance in many fields of application.

3. FST, in conjunction with possibility theory, can contribute considerably to
the modeling and processing of various forms of uncertain and incomplete
information.

4. Fuzzy methods appear to be particularly useful for data pre- and post-
processing.

Despite the fact that substantial contributions have already been made to all
of the aforementioned points, there is still space for improvement and a high
potential for further developments. For example, concerning the first point,
we already mentioned that notions like “comprehensibility”, “simplicity”, or
“robustness” still lack an underlying formal theory including a quantification
of their intuitive meaning in terms of universally accepted measures. Likewise,
the fourth point has not received enough attention so far. In fact, even though
FST seems to be especially qualified for data pre- and postprocessing, e.g.,
for feature generation (cf. Section 4), data summarization and reduction, ap-
proximation of complex and accurate models, or the (linguistic) presentation
of data mining results, previous research has still more focused on the induc-
tive reasoning or data mining process itself. Therefore, we see a high potential
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for future work in this area, especially against the background of the current
trend to analyze complex and heterogeneous information sources that are less
structured than standard relational data tables.

Acknowledgments: The author thanks two anonymous reviewers for their
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[20] D. Dubois, E. Hüllermeier, and H. Prade. A systematic approach to the
assessment of fuzzy association rules. Data Mining and Knowledge Discovery,
13(2):167.
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[29] E. Hüllermeier. Implication-based fuzzy association rules. In Proc. PKDD–01,

5th European Conference on Principles and Practice of Knowledge Discovery

in Databases, pages 241–252, Freiburg, Germany, 2001.
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[34] E. Hüllermeier, I. Renners, and A. Grauel. An evolutionary approach to
constraint-regularized learning. Mathware and Soft Computing, 11(2–3):109–
124, 2004.
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