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Abstract
Multiple criteria decision aiding (MCDA) and preference learning (PL) are established
research fields, which have different roots, developed in different communities – the
former in the decision sciences and operations research, the latter in AI and machine
learning – and have their own agendas in terms of problem setting, assumptions, and
criteria of success. In spite of this, they share the major goal of constructing practically
useful decision models that either support humans in the task of choosing the best,
classifying, or ranking alternatives from a given set, or even automate decision-making
by acting autonomously on behalf of the human. Therefore, MCDA and PL can com-
plement and mutually benefit from each other, a potential that has been exhausted only
to some extent so far. By elaborating on the connection between MCDA and PL in
more depth, our goal is to stimulate further research at the junction of these two fields.
To this end, we first review both methodologies, MCDA in this part of the paper and
PL in the second part, with the intention of highlighting their most common elements.
In the second part, we then compare both methodologies in a systematic way and give
an overview of existing work on combining PL and MCDA.

Keywords Preference learning · Preference modelling · Multiple criteria decision
aiding · Multiple criteria decision making · Machine Learning

Mathematics Subject Classification 68T05 · 90B50 · 90B32 · 91B06 · 91B08

B Eyke Hüllermeier
eyke@lmu.de

Roman Słowiński
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1 Introduction

The notion of “preference” has a long tradition in various scientific disciplines, includ-
ing economics and the social sciences, operations research and the decision sciences,
psychology, and philosophy. Over the past decades, it has also been studied intensively
in artificial intelligence (AI), where preferences provide ameans for specifying desires
in a declarative and intelligible way, a point of critical importance for effective knowl-
edge representation and reasoning. To this end, suitable representation formalisms and
modeling languages have been developed (Rossi et al. 2011).

Before preferences can be used for any sort of reasoning or inference, they have to be
acquired and formalized in one way or the other. Preference acquisition is not an easy
task, however, especially in domains with many and possibly complex sets of alterna-
tives. This may easily lead to a knowledge acquisition bottleneck. As an alternative to
the manual specification of preferences, preference learning (PL) builds on machine
learning methodology to support and partly automate the design of preference mod-
els in a data-driven way. Roughly speaking, preference learning is concerned with
the automated acquisition of preference models from observed (stated or revealed)
preference information, that is data from which (possibly uncertain) preference rep-
resentations can be inferred in a direct or indirect way (Fürnkranz and Hüllermeier
2010). Meanwhile, preference learning has established itself as an independent branch
of machine learning research. It attracted renewed attention with the recent advent of
generative AI systems such as ChatGPT OpenAI (2022), which seek to create artifacts
of high quality, complying as much as possible with the preferences of the user.

Methods for eliciting preferences and constructing preference models from explicit
or implicit preference information and feedback have also been studied in other fields,
notably in multiple criteria decision aiding1 (MCDA). The latter aims at helping a
decision maker to choose the best alternative, or to rank or classify alternatives on
the basis of their performances on multiple criteria (Greco et al. 2016a). To this end,
MCDA has developed a wide variety of decision models, most of which aggregate
the evaluations on individual criteria into an overall assessment of an alternative.
MCDA differs from PL in various ways. For example, while MCDA mostly focuses
on a single decision maker (an individual or a group of well-identified stakeholders), a
model in PL typically refers to an entire population of individuals and seeks to optimize
performance “on average”. Moreover, the interaction between the decision maker and
the decision analyst (facilitator) is at the core of MCDA, while being less emphasized
in PL. Correspondingly, preference data is sparser but also less corrupted in MCDA,
compared to PL, where training data is commonly assumed to be more massive but
also afflicted with noise and various sorts of inaccuracies. Besides, with the goal of
learning a presumably existing “ground truth” (the data-generating process), PL is
inductive in nature, whereas MCDA does not assume such a ground truth and should
rather be thought of as a constructive process (cf. Sect. 2.3). The two frameworks are
sketched in Fig. 1.

1 An alternative name to MCDA is multiple criteria decision making (MCDM), however, in this paper, we
will use the name MCDA as it better underlines the supporting role of the considered methodology.
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Preference learning and multiple criteria decision… 181

Fig. 1 Simplified illustration of the frameworks of preference learning (above) andmultiple criteria decision
aiding (below)

This being said, both MCDA and PL do share the major goal of constructing prac-
tically useful decision models, i.e., mathematical models that either support humans
in the task of choosing the best among a set of alternatives, classifying them into pre-
defined and preferentially ordered decision classes, or ranking these alternatives from
the best to the worst, or even automating decision making by acting autonomously on
behalf of the human. Therefore, in spite of differences in their objectives and research
agenda, or rather because of them, we argue that PL and MCDA can cross-fertilize
and mutually benefit from each other, and indeed, several interesting contributions
at the junction of PL and MCDA have been made in the recent past. While this is
a welcome development, we believe that the potential is far from exhausted. This is
the main motivation for the current paper, which, by elaborating on the connection
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between PL and MCDA in more depth, will hopefully stimulate further research in
that direction.

Our paper comes in two parts. This first part continues with a brief survey of the
state-of-the-art in MCDA. The survey focuses on MCDA based on constructive pref-
erence modeling from holistic preference information, also referred to as decision
examples. This is because this methodology of MCDA is the closest to PL. A similar
survey of PL comes in the second part. In the latter, both methodologies are also com-
pared with each other, and their differences but also commonalities are presented and
discussed in a systematic way. Moreover, we elaborate on existing work on combining
PL and MCDA.

2 Multiple criteria decision aiding

2.1 Decision aiding

Before we pass to Multiple Criteria Decision Aiding (MCDA), we should stress the
Decision Aiding (DA) aspect of the methodology. The aim of DA is to analyze the
decision-making context by identifying the problem with its actors, possible alterna-
tives and their consequences, as well as the stakes (Roy 2000). Among the actors,
there are stakeholders (actors concerned by the decision), single or multiple decision
makers (users), and an analyst (facilitator). For DA it is important how the decision-
making process will unfold, increasing consistency between the values underlying
the objectives, and the quality of recommendations based on results from models and
computational procedures designed with respect to some working hypotheses. Deci-
sion problems considered within DA involve a setA of alternatives (actions, solutions,
objects, etc.) evaluated frommultiple points of view. The following threemain problem
statements are considered in DA:

• Choice of the best alternative, with multiobjective optimization as a particular
case.

• Classification (called also sorting) of alternatives into pre-defined and preference-
ordered classes.

• Ranking of alternatives from the best to the worst.

The above decision problems involve, in general, multiple evaluation criteria (multiple
objectives). A decision-maker (DM) seldom has a single clear criterion in mind. Sel-
dom is there a common unit for all scales of criteria, which are rather heterogeneous.
That is why it may be very difficult to define a priori a unique criterion able to take into
account all relevant points of view. Formally, the criterion is a real-valued function
gi defined on A, reflecting a value of each alternative from a particular point of view,
such that in order to compare any two alternatives a, b ∈ A from this point of view, it
is sufficient to compare two values: gi (a) and gi (b), called performances. It is worth
stressing that criteria may have ordinal evaluation scales, where a difference of per-
formance does not have the meaning of intensity, or cardinal evaluation scales, where
a difference of performance has the meaning of intensity, of either interval or ratio
type. The type of criterion scale determines the allowed arithmetic operations on the
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performances. For example, additions of (weighted) performances on ordinal scales
have no meaning. In the rest of this section, we assume by default that criteria are of
the gain-type, i.e., the greater the performance, the better, unless explicitly specified
that they are of the cost-type.

Building a family of criteria G = {g1, . . . , gn} for a decision problem at hand is
the preliminary step of MCDA. According to Roy (1996), the family G should be
exhaustive, monotonic, and non-redundant. With the exception of trivial cases, the
evaluation criteria are in conflict in the sense that, improving an alternative on one
criterion causes deterioration on other criteria, thus, in set A, there is no alternative
being the best on all criteria. The only objective information that stems from amultiple
criteria evaluation of alternatives is the dominance relation in set A. The meaning of
the dominance relation is the following: alternative a dominates alternative b if a is not
worse than b on all criteria and on at least one criterion, it is strictly better. It is clear
that such a binary relation is a weak partial order. As such, the dominance relation
leaves many alternatives incomparable. Incomparability prevents the formulation of
an unambiguous recommendation in the best choice, classification, or ranking. This
is why the main preoccupation of MCDA consists of aggregating the multiple criteria
into a preference model making the alternatives more comparable in light of users’
preferences.

2.2 The three-stepmethodology of decision aiding

In this way, we arrived at the point where the MCDA methodology should try to
“enrich” the dominance relation using preference information elicited from the deci-
sion makers (DMs). Thus, the steps of MCDA that go beyond this point are the
following:

• Get preference information from DMs revealing their value system confronted
with the multiple criteria evaluation of alternatives from set A.

• Learn or build a preference model that aggregates the vector evaluations of alter-
natives. The preference model induces a preference relation in set A, making
comparable a larger number of alternatives than the dominance relation.

• Exploit the preference relation in setA to work out a recommendation in terms of
choice, classification, or ranking.

This three-step methodology loops in the case of interactive methods.

2.3 Preference handling in MCDA andMCDM

Dealing with DM’s preferences is at the core of MCDA. However, they are rarely
clearly structured and known a priori. Hence, the questions of an analyst and the use
of dedicated methods should be oriented toward shaping these preferences. In fact,
MCDA proceeds by progressively forming a conviction and communicating about
the foundations of these convictions. The models, procedures, and provided results
constitute a communication and reflection tool. Indeed, they allow the participants
of the decision process to carry forward their process of thinking, discover what is
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important to them, and learn about their values. Such elements of responses obtained
by the DMs contribute to recommending and justifying a decision, that increases the
consistency between the evolution of the process and the objectives and value systems
of the stakeholders. Thus, Decision Aiding should be perceived as a constructive
learning process, as opposed to machine discovery of an optimum, of a pre-existing
preference system, or a truth that exists outside the involved stakeholders.

The above remark highlights the subtle difference between the two schools known
asMCDA(MultipleCriteriaDecisionAiding) andMCDM(MultipleCriteriaDecision
Making). As the research area of both schools is the same, they often meet under the
label Multiple Criteria Decision Analysis (Ehrgott et al. 2010).

MCDA underlines the “aiding” in a process, involving the DMs in the co-
construction of their preferences (Roy 2005). It assumes that preferences of the DM
with respect to considered alternatives do not pre-exist in the DM’s mind. This implies
that the concepts, models and methods proposed by MCDA must not be considered
as a means of discovering a pre-existing truth. They have to be seen as keys to doors
giving access to elements of knowledge contributing to the acceptance of a final rec-
ommendation.

MCDM relies on normative and prescriptive Decision Analysis, including tools for
identifying, representing, and formally assessing important aspects of a decision, for
prescribing a recommended course of action maximizing the utility (Bell et al. 1988).
Decision Analysis assumes an ideal rationality and aims at giving an “objectively”
best recommendation.

It is important to note that the methodology of MCDA/MCDM has evolved over
the past 50 years with the advancement of computing technology. The most affected
part of this methodology has been the modeling of preferences. Recently, due to an
abundance of data about human choices a “knowledge-driven” approach is prevailing,
i.e., holistic preference information is knownfirst and then themodel is built explaining
the past decisions and predicting future ones. The knowledge-driven trend makes
the preference modeling in MCDA similar to Preference Learning according to the
Machine Learning paradigm. This is why in MCDA the term Preference Learning is
now often used in the sense of model building from holistic preference information.
This observation clearly motivates the present paper.

The issue of preference handling inMCDAandMCDMis considered in the first two
steps of the three-step DAmethodology described in Sect. 2.2. Below, we first charac-
terize the preference models, and then the ways of obtaining preference information
used to build these models.

2.4 Preferencemodels

The preference model aggregates the multiple criteria evaluations of alternatives. This
aggregation should take into account the preferences of the DM so that the resulting
preferencemodelwould induce a preference relation in setA richer than the dominance
relation.

One can distinguish three families of preference models based on specific ways of
aggregation:
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• Multiple Attribute Utility Theory (MAUT) (KeeneyandRaiffa 1976) using a value
function assigning to each alternative a ∈ A a real value, e.g., the weighted sum
of performances U (a) = ∑n

i=1 ki × gi (a), where ki are weights interpreted as
substitution rates among criteria, or a more general additive function U (a) =∑n

i=1 ui [gi (a)], where ui are marginal value functions, or non-additive integrals
handling interactions among criteria, like Choquet integral for cardinal criteria,
and Sugeno integral for ordinal criteria (Grabisch 1996).

• Outranking methods (Roy 2005) using a system of binary relations, e.g., the
outranking relation S = {∼,�w,�s}, where ∼ means indifference, �w weak
preference, and �s strong preference; relation aSb reads: “alternative a is at least
as good as alternative b”.

• Decision rule models (Greco et al. 2001) composed of logical statements relating
conditions on particular criteria and a decision, e.g., “if gi (a) � ri & g j (a) � r j &
…gk(a) � rk , then a → Class t or better” for classification, and “if gi (a) �≥h(i)

gi (b) & g j (a) �≥h( j) g j (b) & …gp(a) �≥h(p) gp(b), then aSb” for choice or
ranking, where � is a weak preference relation, ri , r j , . . . , rk are threshold values
on selected criteria {gi , g j , . . . , gk} ⊆ G induced from data, �≥h(·) is a weak
preference relation with intensity in degree at least h(·), and h(i), h( j), . . . , h(p)
are degrees of intensity of preference on cardinal criteria {gi , g j , . . . , gp} ⊆ G,
also induced from data.

The above preference models have different capacities for representing DM’s prefer-
ences. Comparison of these models at the axiomatic level shows that the decision rule
model requires the weakest axioms of all three, which means that the value function
model or the outranking model is able to represent particular preferences if and only
if the rule model is able to (Słowiński et al. 2002). Another thorough comparison of
these models, acknowledging the above claim was performed by Greco et al. (2004).

The classification rules having the syntax exemplified above are called dominance-
based rules because, in the condition part, they involve a simple dominance relation
between a partial performance profile of an alternative and a vector of threshold val-
ues, usually inferred by induction from data (Greco et al. 2016b). The rules are the
aggregation operators distinguished by the following features:

• they account for the most complex interactions among criteria,
• they are non-compensatory because the conditions on particular criteria are con-
sidered individually,

• they accept ordinal evaluation scales and do not convert ordinal evaluations into
cardinal ones, because the dominance relation only uses order.

Moreover, rules identify values that drive DM’s decisions–each rule is an intelligible
scenario of a causal relationship between performances on a subset of criteria and a
comprehensive judgment.

2.5 Elicitation of preference information

Preference elicitation can be either direct or indirect. In the case of direct elicitation,
the DM is expected to provide parameters related to a supposed form of the prefer-
ence model. Experience indicates that direct elicitation of numerical values of model
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parameters by DMs demands much of their cognitive effort. For example, defining
weights ki , i = 1, . . . , n, of a weighted sum model requires specification of substi-
tution rates ki/k j between all pairs of criteria {gi , g j } ⊂ G. These substitution rates
must be, moreover, constant in the whole range of criteria scales. In the case of hetero-
geneous criteria, it is not easy to say how much gain in performance on one criterion
compensates for a loss of performance on another criterion. The same difficulty con-
cerns the determination of relative importance weights of criteria having different
semantics than the weights of the weighted sum. Other preference model parameters,
like indifference, preference, and veto thresholds on particular criteria are not easier
to elicit directly. A long time ago, Fishburn (1967) listed and classified twenty-four
methods of estimating additive utilities. Such a large number ofmethods for estimating
parameters of the additive value function proves the difficulty of direct elicitation.

For this reason, indirect preference elicitation through holistic judgments, i.e., deci-
sion examples, gained importance in MCDA. Decision examples are relatively “easy”
preference information. Decisions can also be observed without the active participa-
tion of DMs. For example, the choices made by people on the Internet provide rich
information about their preferences. Finally, psychologists confirm that DMs are more
confident exercising their decisions than explaining them (Slovic et al. 1977; March
1978).

Decision examplesmay either be provided by theDMon a set of real or hypothetical
alternatives, or may come from observation of DM’s past decisions. Methods based
on indirect preference information are considered more user-friendly than approaches
based on direct elicitation of preferences. Moreover, the preference model constructed
using decision examples aims to be compatible with the preference information, i.e.,
to reproduce the holistic judgments observed in decision examples. For this, the DMs
can verify if the preference model represents faithfully enough their preferences and
what is the impact of the provided preference information on the recommendation
produced by the method. This makes the whole decision-aiding process more trans-
parent, increasing the DM’s confidence in the final recommendation. As noted by
Stewart (2005), MCDA includes a comprehensive process involving a rich interplay
between human judgment, data analysis, and computational processes. Indeed, trans-
parency and explainability of the decision-aiding process are necessary for an efficient
interplay.

Decision examples elicited in the indirect approach may have different forms
depending on the problem statement and the wishes of stakeholders. These may be: (i)
pairwise comparisons of some real or fictitious alternatives, (ii) assignments of some
alternatives to decision classes, as their typical examples, (iii) intensity of preference
expressed on some quadruples of alternatives, e.g., a is preferred to z more than c is
preferred to d, (iv) rank related preferences, e.g., alternative f should be among 5%
of the best ones.

The MCDAmethods based on the indirect preference information having the form
of decision examples are called ordinal regression methods. They were first proposed
for the additive value function preference model in the method called UTA (Jacquet-
Lagrèze and Siskos 1982). In UTA, the preference information consists of a set of
pairwise comparisons of so-called reference alternatives AR = {a∗, b∗, . . .}. Usually,
AR ⊆ A, and these alternatives are relatively well-known to the DM, so that they are
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able to say for some a∗, b∗ ∈ AR , that a∗ � b∗ or b∗ � a∗ or a∗ ∼ b∗. A compat-
ible additive value function, reproducing as far as possible the pairwise comparisons
of reference alternatives, is found as a result of solving a linear programming (LP)
problem where variables are marginal values in the breakpoints of piecewise-linear
marginal value functions. While the UTA method and its many variants gained a high
popularity witnessed by many applications (Siskos et al. 2005), it suffers from the
problem of non-uniqueness of LP solutions. In other words, the LP solution identifies
a single compatible value function, while there may exist many instances of compati-
ble value functions that reproduce the pairwise comparisons of reference alternatives
equally well. Different compatible instances may, however, compare non-reference
alternatives differently, making the recommendation ambiguous.

The issue of ambiguity has been resolved by Greco et al. (2008) using the approach
called Robust Ordinal Regression (ROR) (Greco et al. 2010d). In ROR, the preference
data are the same as in UTA, however, the ordinal regression finds the whole set of
compatible instances of the value function. The reconstruction of the DM’s judgments
by the ordinal regression in terms of compatible instances of the value function is
a preference learning step. As ROR works in a loop with incremental elicitation of
preferences, it is called constructive learning (Corrente et al. 2013a). In constructive
learning themodel aims to reconstruct as faithfully as possible the preference informa-
tion of the DM,while the DM learns from the consequences of applying all compatible
instances of themodel on thewhole set of alternatives. Constructive learning is ‘robust’
because it tells the truth about preferences based on partial, not exhaustive, preference
information. For example, it does not require information about all possible pairwise
comparisons, like the AHP method (Saaty 2005).

As ROR has the most in common with PL, we will characterize this approach in
more detail in the next subsection.

2.6 Robust ordinal regression (ROR)

A typical scenario of the ROR approach is the following (Greco et al. 2010d). Suppose
a DM wants to rank countries with respect to their trend for innovation. Three criteria
are used to evaluate the countries: innovation performance, direct innovation inputs,
and innovation environment. The preference model chosen to rank the countries is a
value function. In order to build a value function representing the preferences of the
DM, one needs to know some preference information elicited by theDM.Typically, the
DM is sure of some pairwise comparisons between countries that do not dominate each
other. These countries constitute a set of reference alternatives AR = {a∗, b∗, . . .}. The
pairwise comparisons have the form a∗ � b∗, b∗ � e∗, c∗ ∼ d∗, and so on, but they
do not need to be exhaustive. Moreover, the DM may want to distinguish between
intensities of preference between some pairs of reference alternatives, telling, for
example, that the intensity of preference of a∗ over b∗ is not smaller than that of b∗ over
e∗. This preference information is a starting point for the search for a preferencemodel,
i.e., the value function. If there is no instance of the preference model reproducing
the provided holistic judgments expressed on reference alternatives, the DM could
either decide to work with the inconsistency or revise some pieces of preference
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information impeding the incompatibility. Then, using ROR, i.e., solving a series of
special optimization problems, one obtains two preference relations in the set of all
countries, called necessary and possible. While the first is true for all instances of
the value function compatible with the DM’s preference information, the other is true
for at least one such compatible instance of the value function. Moreover, ROR can
provide extreme ranks of particular countries and a representative compatible instance
of the value function. Analyzing the two outcomes of ROR, as well as the form of the
displayed representative preferencemodel, theDMgains insights into their preferences
at the current stage of interaction. This stimulates a reaction of the DM who may add
a new or revise the old preference information. Such an interactive process ends when
the necessary preference relation, extreme ranks, and/or a representative ranking yields
a recommendation which, according to the DM, is decisive and convincing.

Before moving to the survey of ROR applied to MCDA with various preference
models, let us mention the interesting adaptation of ROR to decisions under risk and
uncertainty. This is possible after reformulation of decision under risk and uncer-
tainty in terms of MCDA where criteria are some meaningful quantiles of gain or loss
(Corrente et al. 2016b).

Moreover, ROR has been adapted to multiple criteria group decision (Greco et al.
2012). In this case, several DMs cooperate in a decision problem to make a collective
decision. DMs share the same “description” of the decision problem (the same set
of alternatives, family of criteria, and performance matrix). Each DM provides their
own preference information, composed of pairwise comparisons of some reference
alternatives. The collective preference model accounts for the preference expressed by
each DM. Two approaches for handling preferences of multiple DMs are considered:

• DMs have similar expertise and compass the whole, rather small set A. Then, the
preferences of different DMs are interrelated, and the examination of necessary
relations obtained for eachDMpermits the identificationof the spaces of agreement
and disagreement between the DMs, which helps in negotiations.

• DMs have different expertise and express their opinions on different parts of rather
big setA. Then, knowledge of allDMs is combined into preference information of a
single fictitiousDM, and examination of necessary relations obtained for coalitions
of DMs permits the identification of the spaces of agreement and disagreement
between the coalitions.

2.7 RORwith value function preferencemodel

Let us formulate the ordinal regression problem based on the above-mentioned pref-
erence information. In order to model the DM’s preference information, we are using
in this subsection a general additive value function:

U (a) =
n∑

i=1

ui (gi (a)) (1)

where indices of criteria, i = 1, . . . n, form set J , the marginal value functions
ui , i ∈ J , are monotone, non-decreasing and normalized so that the additive value
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(1) is bounded within the interval [0, 1]. Note that for simplicity of notation, we
write ui (a), i ∈ J , instead of ui (gi (a)). Consequently, the basic set of constraints
defining general additive value functions compatible with the preference information
composed of pairwise comparisons and comparisons of intensities of preferences, has
the following form:

U (a∗) ≥ U (b∗) + ε, if a∗ � b∗, for {a∗, b∗} ∈ AR

U (a∗) = U (b∗), if a∗ ∼ b∗, for {a∗, b∗} ∈ AR

U (a∗) −U (b∗)≥U (c∗) −U (d∗)+ε, if (a∗, b∗) �∗ (c∗, d∗), for {a∗, b∗ c∗, d∗}∈ AR

U (a∗) −U (b∗) = U (c∗) −U (d∗), if (a∗, b∗) ∼∗ (c∗, d∗), for {a∗, b∗ c∗, d∗} ∈ AR

ui (xhi ) − ui (x
(h−1)
i ) ≥ 0, h = 2, . . . ,mi (AR),

ui (x1i ) = 0,
∑n

i=1 ui (x
mi (AR )
i ) = 1,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

E AR

BASE

where (a∗, b∗) �∗ (c∗, d∗) means a∗ is preferred to b∗ more than c∗ is preferred to
d∗, (a∗, b∗) ∼∗ (c∗, d∗) means a∗ is preferred to b∗ as much as c∗ is preferred to d∗,
mi (AR) is the number of different performances of reference alternatives on criterion

i ∈ J , x1i , . . . , x
mi (AR)
i are the ordered performances of reference alternatives on

criterion i ∈ J , xhi < xh+1
i , h = 1, . . . ,mi (AR)−1. The first four constraints repre-

sent pairwise comparisons of reference alternatives, as well as comparisons between
pairs of reference alternatives, and the last two are monotonicity and normalization
constraints.

General monotonic marginal value functions defined in this way do not involve
any arbitrary or restrictive parametrization (Greco et al. 2010d). On the contrary,
the majority of existing methods employ marginal value functions that are linear or
piecewise linear (Siskos et al. 2005). Note that piecewise linear functions require
specification of the number of characteristic points which is not easy for most DMs.

In order to verify that the set of value functions UAR compatible with preference
information provided by the DM is not empty, the following LP problem has to be
solved:

Maximize : ε, s.t. E AR

BASE . (2)

Let us denote by ε∗ the maximal value of ε obtained from the solution of the above LP
problem, i.e., ε∗ =max ε, s.t. E AR

BASE . It corresponds to a margin of the representation

error. One concludes that UAR is not empty, if E AR

BASE is feasible and ε∗ > 0. In
such a case, all pieces of preference information can be properly reproduced by at
least one instance of the value function. On the contrary, when E AR

BASE is infeasible or
the margin of the representation error is not greater than zero, some pieces of DM’s
preference on the set of reference alternatives AR are conflicting, and thus, some
pairwise comparisons or comparisons between pairs cannot be reproduced by any
additive value function. In the latter case, the DM can choose one of three options:

• revise some pairwise comparisons or comparisons between pairs that make the
reproduction by an additive value function impossible; the “troublesome” items
of preference information can be identified by solving an integer LP problem
(Mousseau et al. 2003),
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• continue to work with a set of non-perfectly compatible value functions UAR that
reproduce the preference information with an error not greater than ε∗,

• replace the additive value function by a more complex model, e.g., the Choquet
integral (Angilella et al. 2010), or an additive value function augmented by com-
ponents modeling positive and negative interactions between some criteria without
requiring that all criteria are expressed on the same scale (Greco et al. 2014).

The consequence of considering many instances of the preference model is a univo-
cal recommendation. In the constructive learning perspective, where the aim is not to
predict, but rather to construct the preferences from scratch, the user has an interest in
investigating what are the consequences of using all instances from UAR on the set of
alternativesA. Obviously, the final recommendation in terms of ranking, best choice,
or classification may vary substantially depending on which compatible instance is
selected. Remark also that ROR does not consider a probability distribution on the set
of all compatible instances of the value function, assigning to all of them the same
credibility.

When comparing a pair of alternatives (a, b) ∈ A×A in terms of the recommenda-
tion that is provided by any compatible (or non-perfectly compatible) value function
from set UAR , it is reasonable to verify whether a is weakly preferred to b or vice
versa, for all or at least one compatible instance of the value function. Answering these
questions, ROR methods (Greco et al. 2008) produce two preference relations in the
set of alternatives A:

• a necessary weak preference relation �N holds for a pair of alternatives (a, b) ∈
A × A, in case U (a) ≥ U (b) for all compatible instances of the value function,

• a possible weak preference relation �P holds for a pair of alternatives (a, b) ∈
A × A, in case U (a) ≥ U (b) for at least one compatible instance of the value
function.

Thus defined, the necessary relations specify themost certain recommendationworked
out on the basis of all compatible instances of the value function, while the possible
relations identify a recommendation provided by at least one compatible instance of
the value function. Consequently, the necessary outcomes can be considered robust
regarding the available preference information, as they guarantee that a definite relation
is the same whichever compatible instance of the preference model would be used. To
verify the truth of the necessary and possible weak preference relations the following
linear programs need to be solved (Corrente et al. 2013a):

Maximize :ε

s.t.

U (b) −U (a) ≥ ε

E AR

BASE

}

EN (a, b),

and

Maximize :ε
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s.t.

U (a) −U (b) ≥ 0

E AR

BASE

}

EP (a, b).

We conclude that a �N b, if EN (a, b) is not feasible or ε∗ = max ε, s.t. EN (a, b),
is not greater than 0, and that a �P b, if EP (a, b) if feasible and ε∗ = max ε, s.t.
EP (a, b), is greater than 0.

Let us remark that preference relations �N and �P are meaningful only if there
exists at least one compatible instance of the value function. Observe also that in this
case, for any a∗, b∗ ∈ AR , a∗ � b∗ ⇒ a∗ �N b∗ and a∗ � b∗ ⇒ ¬(b∗ �P a∗).
In fact, if the DM says for a∗, b∗ ∈ AR that a∗ � b∗, then for any compatible
instance of the value function U (a∗) ≥ U (b∗), and, therefore, a∗ �N b∗. Moreover,
if a∗ � b∗, then for any compatible instance of the value function U (a∗) > U (b∗),
and, consequently, there is no compatible instance of the value function such that
U (b∗) ≥ U (a∗), which means ¬(b∗ �P a∗).

The necessary weak preference relation �N is a partial preorder (i.e., it is reflexive
(a �N a, since for all a ∈ A, U (a) = U (a)), and transitive (for all a, b, c ∈ A, if
a �N b and b �N c, then a �N c). Possible weak preference relation�P is a strongly
complete binary relation (i.e., for all a, b ∈ A, a �P b or b �P a), and negatively
transitive (i.e., ∀a, b, c ∈ A, if ¬(a �P b) and ¬(b �P c), then ¬(a �P c)).

Moreover, for any pair (a, b) ∈ A × A, a �N b ⇒ a �P b, i.e., �N⊆�P , and
for all (a, b) ∈ A × A, a �N b or b �P a.

ROR with a general additive value function preference model has also been
applied to multiple criteria classification problems (Greco et al. 2010c; Köksalan and
Ozpeynirci 2009). Within ROR for multiple criteria classification one can also handle
additional preference information about the intensity of preference, in a way similar
to (Figueira et al. 2009).

Since different compatible instances of the value function may order a given alter-
native from set A at different positions in the ranking, or classify this alternative to
different classes, Kadziński et al. (2012) proposed to identify the extreme ranks, or
classes, for each alternative, as well as the interval of scores it can attain. This proce-
dure, based on mixed-integer LP, is known in ROR as Extreme Ranking Analysis.

Although richer than the dominance relation, the necessary preference relation �N

may still leave some pairs of alternatives incomparable, i.e., a �P b and b �P a. To
get an estimate of the probability that a randomly selected compatible instance of the
value function ranks alternative a higher than b, or vice versa, one can perform the
Stochastic Multiobjective Acceptability Analysis (SMAA) (Kadziński and Tervonen
2013). It consists of using a Hit & Run sampling of compatible instances of the value
function within constraints E AR

BASE , and checking the frequency with which:

• a � b, which gives pairwise winning index p(a, b),
• a gets position h in the ranking, which gives rank acceptability index rha .

In SMAA, all compatible instances of the value function are equiprobable. In (Cor-
rente et al. 2016a), it has been proposed to induce the probability distribution on
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compatible instances of the value function from additional uncertain preference infor-
mation of the type: a � b is more credible than b � a. The procedure is composed of
three steps:

• sampling a number (sv) of instances of the value function Ut ∈ UAR , t =
1, . . . , sv, compatible with the certain part of preference information provided
by the DM,

• inducing a probability distribution
{
wt (Ut ) ∈ [0, 1] : ∑sv

t=1 wt (Ut ) = 1
}
on the

sample of instances generated in the previous step, taking into account the uncertain
part of preference information via LP,

• sampling probability distributions compatible with uncertain preference informa-
tion, and taking a barycenter distribution as a representative one for the final
ranking.

Yet anotherwayof dealingwithmultiple compatible value functions in theUTA-like
approach has been presented by Bous et al. (2010) as ACUTA method. It is based on
the computation of the analytic center of a polyhedron formed by compatible additive
value functions for the selection of the representative value function.

2.8 RORwith non-additive value functions

When interactions among criteria appear in the user’s preferences, the general additive
model is not able to represent them. Interactions may be either negative (negative
synergy) if the importance weight of a subset of criteria is smaller than the sum of
importanceweights of all criteria belonging to the subset, or positive (positive synergy)
if, conversely, the importance weight of a subset of criteria is greater than the sum of
importance weights of all criteria belonging to the subset.

To cope with interactions among criteria, one can use non-additive integrals as
preference models, such as Choquet integral for cardinal criteria with an interval scale,
and Sugeno integral for ordinal criteria (Grabisch 1996). It should be noted, however,
that these non-additive integrals require that the evaluations on all criteria are expressed
on the same scale, which is hard to satisfy in real-world MCDA (Roy 2009). Another
popular nonlinear aggregation function able to handle interactions among criteria
expressed on ratio scales is the multilinear model characterized recently by Pelegrina
et al. (2020). Differently from the Choquet integral, the multilinear model does not
need the commensurability assumption and is obtained as the linear interpolation using
all vertices of the hypercube [0, 1]n (Grabisch 2016).

The commensurability assumption has also been abandoned in the UTAGMS-INT
method (Greco et al. 2014). The authors proposed to aggregate interacting criteria with
heterogeneous scales using a value function composed not only of the sum of marginal
non-decreasing value functions ui (a), i = 1, . . . , n, but also of sums of functions:

syn+
i1,i2

: [xmin
i1 , xmax

i1 ] × [xmin
i2 , xmax

i2 ] → [0, 1],
syn−

i1,i2
: [xmin

i1 , xmax
i1 ] × [xmin

i2 , xmax
i2 ] → [0, 1], for all (i1, i2) ∈ J × J , i1 > i2,
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where xmin
i1

, xmax
i1

and xmin
i2

, xmax
i2

are the worst (min) and the best (max) performances

on criteria i1, i2 ∈ J , respectively. Functions syn+
i1,i2

(xi1 , xi2) and syn−
i1,i2

(xi1 , xi2),
are non-decreasing in both their two arguments, for all pairs of (possibly) interacting
criteria (i1, i2) ∈ J × J , such that i1 > i2. They represent positive and negative
interactions, respectively, and augment or decrease the additive component of the
value function. In other words, they are bonus and penalty functions with respect to
the main additive component. Obviously, a pair of interacting criteria can either be
in positive or negative synergy, which means that syn+

i1,i2
(·, ·) and syn−

i1,i2
(·, ·) are

mutually exclusive.
For an alternative a ∈ A, the value function is defined as:

Uint (a) =
n∑

i=1

ui (a) +
∑

(i1,i2)∈J×J ,i1>i2

syn+
i1,i2

(gi1(a), gi2(a))

−
∑

(i1,i2)∈J×J ,i1>i2

syn−
i1,i2

(gi1(a), gi2(a)).

Uint takes into account all possible positive and negative interactions between
pairs of criteria, which makes it similar to the 2-additive Choquet integral, however,
the capacity of representation of preferences is greater for the former than for the latter
(Greco et al. 2014). In practical applications, theUint model is even too general, thus
a limited number of pairs of interacting criteria is advised for consideration. One can
easily identify a minimal set of pairs of criteria for which there is either positive or
negative interaction using a procedure presented by Greco et al. (2014).

2.9 RORwith outranking relation preferencemodel

The value function model is a complete and transitive preference relation with a
compensatory logic. In many real-life decision situations, when modeling users’
preferences it is reasonable to consider: (i) incomparability between alternatives, (ii)
intransitive indifference and intransitive preference, and (iii) non-compensatory mul-
tiple criteria aggregation.

MCDA methods based on a preference model in the form of a valued binary rela-
tion called outranking relation, such as ELECTRE and PROMETHEE, answer these
needs (Greco et al. 2016a). Outranking relation S groups three basic preference rela-
tions: indifference (∼), weak preference (�w) and strong preference (∼s). aSb reads:
“alternative a is at least as good as alternative b”. As this relation is constructed for all
ordered pairs of alternatives {a, b} ∈ A×A, one can conclude the following relations
between a and b:

• aSb ∧ bSa ⇔ a ∼ b (indifference),
• aSb ∧ ¬(bSa) ⇔ a �w b ∨ a �s b (large preference),
• ¬(aSb) ∧ ¬(bSa) ⇔ a ? b (incomparability).

S is an incomplete and intransitive relation on set A, constructed via concordance
and discordance tests (Figueira et al. 2013). Outranking methods assume that evalua-
tion criteria from family G are pseudo-criteria equipped with comparison thresholds.
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A pseudo-criterion is a real-valued function gi ∈ G associated with two threshold
functions, qi (·) and pi (·), whose arguments are performances of the alternatives.
By convention, the thresholds are functions of the worst performance of the two
alternatives being compared. They are called indifference and preference thresh-
olds, respectively. The thresholds satisfy the following condition: for all ordered
pairs of alternatives (a, b) ∈ A × A, such that gi (a) ≥ gi (b), gi (a) + pi (g j (b))
and gi (a) + qi (gi (b)) are non-decreasing monotone functions of gi (b), such that
pi (gi (b)) ≥ qi (gi (b)) ≥ 0 for all a, b ∈ A. In this definition, the thresholds
are functions of the performance, but they can also be defined as constant values
pi ≥ qi ≥ 0, i ∈ J . Their meaning is the following: indifference threshold qi is
the maximum difference of performances of the compared alternatives allowing them
to be considered equivalent with respect to criterion gi ; preference threshold pi is
the minimum difference of performances of the compared alternatives switching the
DM’s preference with respect to criterion gi from weak to strict.

The concordance test checks if the coalition of criteria concordant with the hypoth-
esis aSb is strong enough. This strength is measured by the concordance index:

C(a, b) =
∑n

i=1 wi × Ci (a, b)
∑n

i=1 wi
,

wherewi , i ∈ J , are weights of criteria which do not have the meaning of substitution
rates, like weights ki , i ∈ J , of the weighted sum, because the former weights are
not multiplied by performances on the corresponding criteria, but by 0–1 individual
concordance coefficients Ci (a, b) defined as:

Ci (a, b) =
⎧
⎨

⎩

1 if gi (a) − gi (b) ≥ −qi ,
gi (a)−gi (b)+pi

pi − qi
if − pi < gi (a) − gi (b) < −qi ,

0 if gi (a) − gi (b) ≤ −pi .

Thus, the aggregation is not compensatory and weights wi , i ∈ J , indicate a voting
power of gi ∈ G. The concordance test is positive if C(a, b) ≥ λ, where λ ∈ [0.5, 1]
is a cutting level (concordance threshold).

The discordance test checks if among criteria discordant with the hypothesis aSb
there is a strong opposition against aSb. Criterion gi ∈ G opposes strongly to the
assertion aSb if gi (b) − gi (a) ≥ vi , where vi ≥ pi is called the veto threshold of gi .
In this situation, criterion gi makes a veto to the assertion aSb.

In conclusion, outranking relation aSb is true if and only if C(a, b) ≥ λ and there
is no criterion strongly opposed (making veto) to the hypothesis. In this way, for each
ordered pair (a, b) ∈ A×A one obtains relation S being true (1) or false (0), presented
as a directed outranking graph where the nodes correspond to alternatives and there
is an arc from node a to node b if aSb. To choose the best alternative of A, one
can exploit the outranking relation by searching for a kernel of the outranking graph.
When the graph has no cycles, its kernel is unique and includes alternatives that do
not mutually outrank; each alternative from outside the kernel is outranked by at least
one alternative from the kernel. Thus, the kernel is composed of the best incomparable
alternatives.
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The many parameters to be fixed by the DM in the outranking method can be
avoided in the ROR approach. Then, the DM provides preference information in terms
of holistic pairwise comparisons of some reference alternatives: a∗Sb∗ or a∗Scb∗ for
some a∗, b∗ ∈ AR ⊆ A, where Sc is a negation of the outranking relation. Moreover,
according to Greco et al. (2011), where ROR was adapted to ELECTRE methods, the
DMhas a possibility to specify [qi∗, q∗

i ] and [pi∗, p∗
i ], being the ranges of indifference

and preference thresholds, respectively, allowed by the DM.
Assuming

∑n
i=1 wi = 1, one can substitute C(a, b) = ∑n

i=1 wiCi (a, b) by
C(a, b) = ∑n

i=1 �i (a, b), where marginal concordance functions �i (a, b), i ∈ J ,

are non-decreasing functions of gi (a) − gi (b):

�i (a, b) =
⎧
⎨

⎩

�i (βi , αi ) if gi (a) − gi (b) ≥ −qi ,
gi (a)−gi (b)+pi

pi − qi
if − pi < gi (a) − gi (b) < −qi ,

0 if gi (a) − gi (b) ≤ −pi ,

and αi , βi are, respectively, the worst and the best-observed performances on criterion
gi , i = 1, . . . , n.

The outrankingmodel compatible with preference information provided by the DM
is a set of marginal concordance functions �i (a, b), cutting levels λ, indifference qi ,
preference pi , and veto thresholds vi , i = 1, . . . , n, reproducing the DM’s preference
information concerning pairs (a∗, b∗) ∈ AR × AR .

In this case, the ordinal regression compatibility constraints E AR
are:

If a∗Sb∗, for (a∗, b∗) ∈ AR × AR :
(i) C(a∗, b∗) = ∑n

i=1 �i (a∗, b∗) ≥ λ,

(ii) gi (b∗) − gi (a∗) + ε ≤ vi , i = 1, . . . , n.

If a∗Scb∗, for (a∗, b∗) ∈ AR × AR :
(iii) C(a∗, b∗) = ∑n

i=1 �i (a∗, b∗) + ε ≤ λ + M0(a∗, b∗),
(iv) gi (b∗) − gi (a∗) ≥ vi − δMi (a∗, b∗), i = 1, . . . , n,

(v) Mi (a∗, b∗) ∈ {0, 1}, i = 0, 1, . . . , n,

(vi)
∑n

i=0 Mi (a∗, b∗) ≤ n.

(vii) 0.5 ≤ λ ≤ 1,
(viii) vi ≥ p∗

i + ε, i = 1, . . . , n,

(ix) ε ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E AR

BASE

where δ is a big constant value. Here, constraints (i) and (ii) ensure positive concor-
dance and non-discordance tests, respectively. For a∗Scb∗, either the concordance test
or the non-discordance test should be negative, which corresponds to constraints (iii)
or (iv)–(vi), respectively. Remark that for Mi = 0, the corresponding constraint (iii)
or (iv) is satisfied, which means that either concordance C(a∗, b∗) is below cutting
level λ or difference gi (b∗) − gi (a∗) is exceeding veto threshold vi .

Given a pair of alternatives (a, b) ∈ A, alternative a possibly outranks alternative
b (written as aSPb) if and only if ε∗ > 0, where (Greco et al. 2011):

ε∗ = max ε
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s.t.

C(a, b) = ∑n
i=1 �i (a, b) ≥ λ,

gi (b) − gi (a) + ε ≤ vi , i = 1, . . . , n,

E AR

BASE .

⎫
⎬

⎭
EP (a, b).

This means that if ε∗ > 0 and constraints EP (a, b) are feasible (for assertion aSb,
concordance test does not fail and no criterion makes veto), then a outranks b for at
least one compatible instance of the outranking model.

Moreover, alternative a necessarily outranks alternative b (written as aSNb) if and
only if ε∗ ≤ 0, where:

ε∗ = max ε

s.t.

C(a, b) = ∑n
i=1 �i (a, b) + ε ≤ λ + M0(a, b),

gi (b) − gi (a) ≥ vi − δMi (a, b), i = 1, . . . , n,

Mi (a, b) ∈ {0, 1}, i = 0, . . . , n,
∑n

i=0 Mi (a, b) ≤ n,

E AR

BASE .

⎫
⎪⎪⎬

⎪⎪⎭

EN (a, b).

This means, in turn, that if ε∗ ≤ 0 or constraints EN (a, b) are infeasible (for assertion
aScb either concordance test fails or one of the criteria makes veto), then a outranks
b for all compatible instances of the outranking model. In other words, aSNb is true
because aScb is not true for all compatible instances of the outranking model.

For any pair of alternatives (a, b) ∈ A:

aSNb ⇔ ¬(aScPb), as well as, aScPb ⇔ ¬(aSNb),

aSPb ⇔ ¬(aScNb), as well as, aScNb ⇔ ¬(aSPb),

thus, there are two sources of information (SN , SP ) about four relations (SN , ScN , SP ,

ScP ) in set A. They have the following properties:

aSNb ⇒ aSPb

aSNb ⇒ ¬(aScNb) as well as aScNb ⇒ ¬(aSNb).

Moreover, for given preference information a∗Sb∗:

a∗Sb∗ ⇒ a∗SNb∗ and a∗Sb∗ ⇒ ¬(b∗SPa∗).

To work out a recommendation in the choice problem, it is advised to find a kernel
of the necessary outranking graph SN . In case of the ranking problem, one can exploit
the necessary outranking graph including SN and ScN relations, using the Net Flow
Score procedure. For each alternative a ∈ A, the score NFS(a) = strength(a) −
weakness(a), where strength(a) counts all relations (arcs) with other alternatives z,
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such that aSN z or zScNa, while weakness(a) counts all relations (arcs) with other
alternatives v, such that aScNv or vSNa. The resulting ranking is a complete preorder
determined by NFS(a) ∈ A.

2.10 ROR handling hierarchy of criteria

Inmany real-world decision problems, family of criteriaG has a hierarchical structure,
which means that the performances on some criteria are aggregates of performances
on sub-criteria. In (Keeney and Raiffa 1976), one can read: “Almost everyone who
has seriously thought about the objectives in a complex problem has come up with
some sort of hierarchy of objectives”, A similar conviction is expressed by Belton and
Stewart (2002): “In the process of structuring the problem, it is possible (even likely)
that the criteria may have been constructed hierarchically in terms of a value tree”.
For example, in the land use problem considered by Belton and Stewart (2002), the
economic benefit criterion has three sub-criteria which are the outputs of agriculture,
forestry, and secondary industry. Consideration of a hierarchy of criteria is also a way
of decreasing the problem’s complexity by reasoning about the problem at different
levels of generality. Once the hierarchy is built, theDMsmayfirst judge the alternatives
on the elementary criteria (leaves of the hierarchy tree) and then receive feedback about
their impact on criteria performances at higher levels of the hierarchy tree.

ROR has been adapted to handle the hierarchy of criteria in, the so-called, Multiple
Criteria Hierarchy Process (MCHP), first, for a general additive value function as a
preference model within the ranking problem (Corrente et al. 2012). In this case, the
marginal value functions refer to all levels of the hierarchy tree, representing values
of particular scores of the alternatives on criteria, sub-criteria, sub-sub-criteria, etc.

In MCHP, the DM is asked to provide preference information concerning a partic-
ular criterion or sub-criterion Gr. It has the form of a partial preorder �r on AR or a
partial preorder�∗

r on AR × AR , which are interpreted as pairwise comparisons of ref-
erence alternatives, or statements regarding comparisons of the intensity of preference
between pairs of reference alternatives.

The value function assessing alternative a ∈ A with respect to criterion or sub-
criterion Gr is:

Ur(a) =
∑

t∈E(Gr)

ut(gt(a))

where E(Gr) is the set of indices of lowest-level sub-criteria descending from Gr
located at a higher level.

It is worth noting that in the case ofMCHP, theDMcan express their preferences for
reference alternatives either comprehensively, or with respect to particular sub-criteria
Gr, which allows a more precise expression, and then representation, of preferences.

Since the first proposal of ROR-MCHP with the general additive value function for
the ranking problem, this methodology has been extended to:
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• preference model in terms of an outranking relation used in ELECTRE and
PROMETHEE methods for multiple criteria ranking (Corrente et al. 2013b), and
for multiple criteria classification (Corrente et al. 2016c, 2017a),

• preference model in terms of an outranking relation used in ELECTRE III method
for multiple criteria ranking with imprecise weights of criteria and stochastic mul-
tiobjective acceptability analysis (Corrente et al. 2017b),

• preference model in terms of Choquet integral for multiple criteria ranking with
stochastic multiobjective acceptability analysis (Angilella et al. 2016).

2.11 RORwith rule preferencemodel

As mentioned before, a preference model built of “i f . . . , then . . .” decision rules
induced from examples of decisions has a double advantage in MCDA: it combines
the relatively easy elicitation of indirect preference information with the transparency
and explainability of decision rules.

The decision examples come either from observations of DM’s past decisions made
in the same decision context or from conscious elicitation by the DM on demand of
the analyst. In the latter case, they concern some reference alternatives, as in other
ROR approaches. In both cases, decision examples may, however, be inconsistent with
the dominance principle commonly accepted for multiple criteria decision problems.
Decisions are inconsistent with the dominance principle if:

• In case of classification: alternative a has been assigned to a worse decision class
than alternative b, although a is at least as good as b on all the considered criteria,
i.e., a dominates b.

• In case of choice and ranking: a pair of alternatives (a, b) has been assigned a
degree of intensity of preference smaller than pair (c, d), although differences in
evaluations between a and b on all the considered criteria are at least as large as the
respective differences of evaluations between c and d, i.e., pair (a, b) dominates
pair (c, d).

The inconsistency may come from many sources. Examples include:

• Missing attributes (attributes without preference scale or criteria) in the description
of alternatives.

• Unstable preferences or hesitation of DMs.

Handling these inconsistencies is important for preference learning. They cannot be
simply considered as noise or error to be eliminated from data, or amalgamated with
consistent data by some averaging operators. They should be identified and presented
as uncertain patterns.

The concept of rough set introduced by Pawlak (1982) appeared to be useful for
handling inconsistency in data, however, originally it was limited to inconsistency
with respect to the indiscernibility principle. Objects (alternatives) that have the same
description are said to be indiscernible. The indiscernibility relation thus generated in
the universe of discourse U constitutes the mathematical basis of rough set theory. It
induces a partition of the universe into blocks of indiscernible objects, called granules,
which can be used to build knowledge about a real or abstract world. Any subset X of
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the universe may be expressed in terms of these blocks either precisely (as a union of
granules) or approximately. In the latter case, the subset X may be characterized by two
ordinary sets, called lower approximation and upper approximation of set X . A rough
set is defined by means of these two approximations, which coincide in the case of an
ordinary set. The lower approximation of X is composed of all the granules included in
X (whose elements, therefore, certainly belong to X ), while the upper approximation
of X consists of all the granules which have a non-empty intersection with X (whose
elements, therefore, may belong to X ). The difference between the upper and lower
approximations constitutes the boundary region of the rough set, whose elements
cannot be characterized with certainty as belonging or not to X by using the available
information. The information about objects from the boundary region is, therefore,
inconsistent or ambiguous. The cardinality of the boundary region states, moreover,
the extent to which it is possible to express X in exact terms, on the basis of the
available information. For this reason, this cardinality is used as a measure of the
vagueness of information about X . The lower and upper approximations of a partition
of U into decision classes prepare the ground for inducing, respectively, certain and
possible knowledge patterns in the form of “i f . . . , then . . .” decision rules.

To handle inconsistencies with respect to the dominance principle, which is typi-
cal for preference data, Greco et al. (2001) generalized the original rough set concept
substituting the indiscernibility relationwith a dominance relation in the rough approx-
imation of decision classes. The resulting methodology was called Dominance-based
Rough Set Approach (DRSA). An important consequence of DRSA is the possibility
of inferring the DM’s preference model in terms of decision rules induced either from
lower approximations of decision classes (certain rules), or from upper approxima-
tions of decision classes (possible rules), or from the difference between upper and
lower approximations (approximate rules supported by inconsistent examples).

In DRSA, the granules used for building approximations of decision classes are
dominance cones in the evaluation space. DRSA accepts all scales of criteria because
it exploits the order only which is a primitive feature of ordinal, interval, and ratio
evaluation scales.

Let us explain DRSA to multiple criteria classification problems first.
The finite universe of discourseU is composed of classification examples concern-

ing reference alternatives from set AR ∈ A, such that, without loss of generality,
gi : U → R for each i = 1, . . . , n, and, for all alternatives a∗, b∗ ∈ U ,
gi (a∗) ≥ gi (b∗) means that “a∗ is at least as good as b∗ with respect to criterion gi”,
which is denoted as a∗ �i b∗. Therefore, �i is a complete preorder, i.e., a strongly
complete and transitive binary relation, defined onU on the basis of evaluations gi (·).
Furthermore, there is a decision attribute d which makes a partition of U into a finite
number of decision classes, called classification, Cl={Cl1, . . . ,Clp}, such that each
a∗ ∈ U belongs to one and only one class Clt , t = 1, . . . , p. We suppose that the
classes are preference ordered, i.e., for all r , s = 1, . . . , p, such that r > s, the alter-
natives from Clr are preferred to the alternatives from Cls . More formally, if � is a
comprehensive weak preference relation onU , i.e., if for all a∗, b∗ ∈ U , a∗�b∗ reads
“a∗ is at least as good as b∗”, then we suppose

[a∗∈Clr , b∗∈Cls, r>s] ⇒ a∗�b∗,
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where a∗�b∗ means a∗�b∗ and not b∗�a∗. The above assumptions are typical for
consideration of a multiple criteria classification problem (also called ordinal classi-
fication with monotonicity constraints).

In DRSA, the explanation of the assignment of alternatives to preference-ordered
decision classes is made on the base of their evaluation with respect to a subset of
criteria P ⊆ J . This explanation is called approximation of decision classes with
respect to P . Of course, most commonly, P = J . In order to take into account the
order of decision classes, in DRSA the classes are not considered one by one but,
instead, unions of classes are approximated: upward union from class Clt to class
Clp, denoted by Cl≥t , and downward union from class Clt to class Cl1, denoted by
Cl≤t , i.e.:

Cl≥t =
⋃

s≥t

Cls, Cl≤t =
⋃

s≤t

Cls, t = 1, . . . , p.

The statement a∗ ∈ Cl≥t reads “a∗ belongs to at least class Clt”, while a∗ ∈ Cl≤t
reads “a∗ belongs to at most classClt”. Let us remark thatCl≥1 = Cl≤p = U ,Cl≥p=Clp
and Cl≤1 =Cl1. Furthermore, for t=2,…,p, we have:

Cl≤t−1 = U \ Cl≥t and Cl≥t = U \ Cl≤t−1 .

The key idea of the rough set approach is an explanation (approximation) of knowl-
edge generated by the decision attribute, using granules of knowledge generated by
condition attributes. In DRSA, where condition attributes are criteria and decision
classes are preference ordered, the knowledge to be explained is the assignment of
alternatives to upward and downward unions of classes, and the granules of knowl-
edge are sets of alternatives contained in dominance cones defined in the space of
evaluation criteria.

Alternative a∗ dominates alternative b∗ with respect to P ⊆ J (shortly, a∗ P-
dominates b∗), denoted by a∗DPb∗, if for every criterion i ∈ P , gi (a∗) ≥ gi (b∗).
The relation of P-dominance is reflexive and transitive, i.e., it is a partial preorder.

Given a set of criteria P ⊆ J and a∗ ∈ U , the granules of knowledge used for
approximation in DRSA are:

• a set of alternatives dominating a∗, called P-dominating set,

D+
P (a∗)={b∗ ∈ U : b∗DPa∗},

• a set of alternatives dominated by a∗, called P-dominated set,

D−
P (a∗)={b∗ ∈ U : a∗DPb∗}.

In terms of multiple criteria evaluations, the above definitions correspond to:

D+
P

(
a∗) = {b∗ ∈ U : gi (b∗) ≥ gi (a

∗), for all i ∈ P},
D−

P

(
a∗) = {b∗ ∈ U : gi (b∗) ≤ gi (a

∗), for all i ∈ P}.
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Given P ⊆ J , the inclusion of an alternative a∗ ∈ U to the upward union of
classes Cl≥t , t = 2, . . . , p, is inconsistent with the dominance principle if one of the
following conditions holds:

• a∗ belongs to classClt or better but it is P-dominated by an alternativeb∗ belonging
to a class worse than Clt , i.e., a∗ ∈ Cl≥t but D+

P (a∗) ∩ Cl≤t−1 �= ∅,
• a∗ belongs to a worse class than Clt but it P-dominates an object b∗ belonging to
class Clt or better, i.e., a∗ /∈ Cl≥t but D−

P (a∗) ∩ Cl≥t �= ∅.
The above considerations bring us closer to the definition of rough approximations

of the upward and downward unions of decision classes.
The P-lower approximation of Cl≥t , denoted by P(Cl≥t ), and the P-upper approx-

imation of Cl≥t , denoted by P(Cl≥t ), are defined as follows (t = 2, . . . , p):

P(Cl≥t ) = {a∗ ∈ U : D+
P (a∗) ⊆ Cl≥t },

P(Cl≥t ) = {a∗ ∈ U : D−
P (a∗) ∩ Cl≥t �= ∅}.

The definition of P-lower approximation and the P-upper approximation of Cl≤t ,
is analogous (t = 1, . . . , p − 1):

P(Cl≤t ) = {a∗ ∈ U : D−
P (a∗) ⊆ Cl≤t },

P(Cl≤t ) = {a∗ ∈ U : D+
P (a∗) ∩ Cl≤t �= ∅}.

The P-boundaries of Cl≥t and Cl≤t , denoted by BnP (Cl≥t ) (t = 2, . . . , p) and
BnP (Cl≤t ) (t = 1, . . . , p − 1), respectively, are defined as follows:

BnP (Cl≥t ) = P(Cl≥t ) \ P(Cl≥t ), BnP (Cl≤t ) = P(Cl≤t ) \ P(Cl≤t ).

For every P ⊆ J , the alternatives that are consistent in the sense of the dominance
principle with all upward and downward unions of classes are P-correctly classified.
For every P ⊆ J , the quality of classification Cl by set of criteria P is defined
as the ratio of the number of alternatives P-consistent with the dominance principle
and the number of all alternatives in U . Since the P-consistent alternatives are those
which do not belong to any P-boundary BnP (Cl≥t ) or BnP (Cl≤t ), and BnP (Cl≥t ) =
BnP (Cl≤t−1) for t = 2, . . . , p, the quality of classification Cl by a set of criteria
P ∈ J can be written as

γP (Cl) =

∣
∣
∣
∣
∣
U \

(
⋃

t∈{2,...,p}
BnP (Cl≥t )

)∣
∣
∣
∣
∣

|U | =

∣
∣
∣
∣
∣
U \

(
⋃

t∈{1,...,p−1}
BnP (Cl≤t )

)∣
∣
∣
∣
∣

|U | .

γP (Cl) can be seen as a degree of consistency of the classification examples, where
P is the set of criteria and Cl is the considered classification.

Each minimal (in the sense of inclusion) subset P ⊆ J , such that γP (Cl) =
γJ (Cl), is called a reduct of classification Cl, and is denoted by REDCl. Let us
remark that for a given set of classification examples, one can have more than one
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reduct. The intersection of all reducts is called the core and is denoted by CORECl.
Criteria in CORECl cannot be removed from consideration without deteriorating the
quality of classification Cl. This means that, in set J , there are three categories of
criteria:

• indispensable criteria included in the core,
• exchangeable criteria included in some reducts, but not in the core,
• redundant criteria, neither indispensable nor exchangeable, and thus not included
in any reduct.

The dominance-based rough approximations of upward and downward unions of
decision classes can serve to induce a model of classification decisions (preference
model) in terms of “i f . . . , then . . .” decision rules. Given the preference information
in terms of classification examples, it is meaningful to consider the following five
types of decision rules intending to classify alternative x ∈ A:

1) certain D≥-decision rules, providing lower profiles of alternatives belonging to
P(Cl≥t ):
i f gi1(x) ≥ ri1 and . . . and gih (x) ≥ rih , then x ∈ Cl≥t ,

t = 2, . . . , p, {i1, ..., ih} ∈ P, ri1, . . . , rih ∈ R;
2) possible D≥-decision rules, providing lower profiles of alternatives belonging to

P(Cl≥t ):
if gi1(x) ≥ ri1 and . . . and gih (x) ≥ rih , then x possibly belongs to Cl≥t ,

t = 2, . . . , p, {i1, ..., ih} ∈ P, ri1, . . . , rih ∈ R;
3) certain D≤-decision rules, providing upper profiles of alternatives belonging to

P(Cl≤t ):
if gi1(x) ≤ ri1 and . . . and gih (x) ≤ rih , then x ∈ Cl≤t ,

t = 1, . . . , p − 1, {i1, ..., ih} ∈ P, ri1 , . . . , rih ∈ R;
4) possible D≤-decision rules, providing upper profiles of alternatives belonging to

P(Cl≤t ):
if gi1(x) ≤ ri1 and . . . and gih (x) ≤ rih , then x possibly belongs to Cl≤t ,

t = 1, . . . , p − 1, {i1, ..., ih} ∈ P, ri1 , . . . , rih ∈ R;
5) approximate D≥≤-decision rules, providing simultaneously lower and upper pro-

files of alternatives belonging to Cls∪Cls+1∪…∪Clt , without the possibility of
discerning to which class: if gi1(x) ≥ ri1 and . . . and gik (x) ≥ rik and
gik+1(x) ≤ rik+1 and . . . and gih (x) ≤ rih , then x ∈ Cls ∪ Cls+1 ∪ . . . ∪ Clt ,
{i1, . . . , ih} ⊆ P, s, t ∈ {1, . . . , p}, s < t, ri1, . . . , rih ∈ R.

The rules of type 1) and 3) represent certain preference patterns extracted from
decision examples, while the rules of types 2) and 4) represent possible preference
patterns. Rules of type 5) represent doubtful preference patterns. Depending on the
classification examples supporting the induced rules, they are characterized by dif-
ferent values of adopted interestingness measures. In (Greco et al. 2016c), some rule
interestingness measures with desirable properties are characterized in four perspec-
tives ofBayesian and likelihoodist confirmation.The interestingnessmeasures are used
to classify new alternatives by decision rules in situations where these alternatives are
matched by (i) no rule, (ii) exactly one rule, (iii) several rules (even contradictory).
Such a classification scheme has been proposed by Błaszczyński et al. (2007).

123



Preference learning and multiple criteria decision… 203

The above definitions of rough approximations are based on a strict application
of the dominance principle. In practice, however, it is beneficial to accept a limited
proportion of inconsistent examples in lower approximations, particularly for large
data sets. Two parametric versions of DRSA have been proposed, relaxing in different
ways the definition of rough approximations: Variable Precision DRSA (Inuiguchi
et al. 2009) and Variable Consistency DRSA (Błaszczyński et al. 2009). Statistical
interpretation of these two parametric DRSA from the viewpoint of empirical risk
minimization typical for machine learning has been given by Kusunoki et al. (2021).
It is also worth mentioning the stochastic DRSA model presented in (Kotłowski and
Słowiński 2008; Kotłowski et al. 2008).

Algorithms for induction of decision rules from rough approximations of upward
and downward unions of decision classes perform various strategies. Themost popular
induction strategy, called minimal-cover, offers a minimal set of rules represent-
ing the decision examples in the most concise way (i.e., without any redundancy)
(Błaszczyński et al. 2012). It is usually performed by greedy heuristics of sequential
covering type, giving an approximatelyminimal-cover set of rules.Other strategies aim
at discovering a set of decision rules satisfying some pre-defined user’s requirements,
e.g., with respect to minimal support, maximal length, or maximal number of rules.
Yet other strategies propose to induce an exhaustive set of rules, i.e., all rules compat-
ible with the provided preference information, which form the most comprehensive
knowledge base with respect to the analyzed data set. The recent trend consists of inte-
grating several base classifiers into ensembles or committees of classifiers (Kotłowski
and Słowiński 2009). Several methods have been proposed to get diverse base classi-
fiers to be integrated within an ensemble of classifiers. The best known are bagging
(Błaszczyński et al. 2010) and boosting (Dembczyński et al. 2010a), which modify the
set of objects by sampling or weighting particular examples and use the same learning
algorithm to create base classifiers.

ROR has been applied to the rule preference model by Kadziński et al. (2015).
It consists of taking into account all minimal-cover (MC) by sets of decision rules
compatible with the provided decision examples when computing recommendations
for non-reference alternatives. An MC set of rules is a single base instance of the
preference model. In order to generate all MC sets of rules, first an exhaustive set of
rules is induced and then, all compatible MC sets of rules are obtained by solving
a series of integer LP problems which guarantee that each reference alternative is
covered by at least one rule from each MC set. Such an ensemble of MC classifiers is
applied to the set of all considered alternatives, producing two types of classification
results. Alternative a is necessarily assigned to class Clh if and only if a is assigned
to Clh for all MC sets of rules, and a is possibly assigned to Clh , if and only if a
is assigned to Clh for at least one MC set of rules. Since all compatible MC sets of
rules are considered, it is also possible to compute class acceptability indices defined
as the share of MC sets of rules assigning an alternative to a single class or a set
of contiguous classes. The robustness analysis is continued in a twofold way. First,
one selects a representative MC set of rules that builds on the class acceptability
indices and highlights the most stable part of the robust classification. Then, for each
alternative, one can identify rules that are decisive in terms of recommendation in the
greatest number of compatible MC sets. These rules directly influence the assignment
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suggested by different instances, being of particular interest to the DM willing to
understand the obtained recommendation.

Let us move to the explanation of DRSA to multiple criteria choice and ranking
problems. While the classification of alternatives is based on their absolute evaluation
on the considered criteria, choice and ranking refer to relative evaluation by means
of pairwise comparisons of alternatives. Indeed, the position of an alternative in the
ranking depends on the quality of other competing alternatives. This required an adap-
tation of DRSA to pairwise comparisons of alternatives instead of absolute multiple
criteria evaluations considered in classification problems. Thus, in the case of choice
and ranking problems, the rough approximation concerns a comprehensive prefer-
ence relation in the set of reference alternatives, and the approximation is done using
marginal preference relations on particular criteria for pairs of reference alternatives
(Greco et al. 2001).

Technically, the modifications of DRSA necessary to approach the problems of
choice and ranking are twofold:

1) A pairwise comparison table (PCT) is considered instead of the simple classifi-
cation table: PCT is a classification table whose rows represent pairs of reference
alternatives forwhichmultiple criteria evaluations and a comprehensive preference
relation are known.

2) A dominance principle is considered for comparisons of pairs of alternatives
instead of simple alternatives: if alternative a is preferred to b at least as strongly
as c is preferred to d on all the considered criteria, then a must be comprehensively
preferred to b at least as strongly as c is comprehensively preferred to d.

The application of DRSA to the choice or ranking problems proceeds as follows.
First, the DM gives examples of pairwise comparisons of reference alternatives from
set AR ∈ A. This can be a partial or complete ranking from the best to theworst of these
alternatives. From this set of decision examples, a PCT is constructed with an ordered
pair of reference alternatives in each row, pairs of evaluations of these alternatives
on particular criteria in the columns corresponding to criteria, and comprehensive
preference relation in the last column corresponding to the decision. The pairs of
evaluations on particular criteria for a pair of reference alternatives (a∗, b∗) ∈ AR×AR

can be converted to graded differences of evaluations (intensities of preference) in case
of criteria with interval or ratio scale. Remark that such a PCT with comprehensive
preference relations in the decision is analogous to a classification table where instead
of single alternatives there are pairs of alternatives and instead of decision classes
there are comprehensive preference relations, e.g., outranking relation a∗Sb∗ and non-
outranking relation a∗Scb∗ in the simplest case. Thus, all the DRSA methodology
developed for the multiple criteria classification can be applied to PCT and yields
lower and upper approximations of the comprehensive preference relations, e.g., S
and Sc, composed of pairs of reference objects. These approximations prepare the
ground for induction of certain, possible, and approximate “if …, then…” decision
rules. VC-DRSA methodology applies perfectly to this scheme (Szela̧g et al. 2014a).
For example, in the case of comprehensive preference relations S and Sc, decision
rules induced from VC-DRSA lower approximations have the following form:
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• i f gi1(x) − gi1(y) ≥ δi1 and . . . and gih (x) − gih (y) ≥ δih and (gih+1(x) ≥ rih+1

and gih+1(y) ≤ sih+1) and . . . and (giz (x) ≥ riz and giz (y) ≤ siz ), then xSy,
where {i1, . . . , ih} ⊆ P indicate criteria with an interval or ratio scale,
{i p+1, . . . , iz} ⊆ P indicate criteria with an ordinal scale, and δi1 , . . . , δih ∈ R,
as well as ri p+1 , . . . , riz , sih+1 , . . . , siz ∈ R;

• i f gi1(x) − gi1(y) ≤ γi1 and . . . and gik (x) − gik (y) ≤ γik and (gik+1(x) ≤ rik+1

and gik+1(y) ≥ sik+1) and . . . and (giv (x) ≤ riv and giv (y) ≥ siv ), then xSc y,
where {i1, . . . , ik} ⊆ P indicate criteria with an interval or ratio scale,
{ik+1, . . . , iv} ⊆ P indicate criteria with an ordinal scale, and γi1 , . . . , γik ∈ R,
as well as rik+1, . . . , riv , sik+1 , . . . , siv ∈ R.

These rules constitute a preference model of the DM. They are applied to the
set of alternatives A with the intention of ranking them. Any pair of alternatives
(a, b) ∈ A × A can match these rules in one of four ways:

• aSb and ¬(aScb), which is true outranking aST b,
• aScb and ¬(aSb), which is false outranking aSFb,
• aSb and aScb, which is contradictory outranking aSK b,
• ¬(aSb) and ¬(aScb), which is unknown outranking aSUb.

This 4-valued outranking relation underlines the presence or the absence of positive
or negative arguments for outranking. For any (a, b) ∈ A × A it can be faithfully
represented by 3-valued fuzzy relation R3v:

R3v(a, b) = [aSb] + (1 − [aScb])
2

,

where [ · ] denotes the indicator function taking value 0 or 1. In order to obtain a final
recommendation, relation R3v is exploited using a ranking method. In (Szela̧g et al.
2014a), several ranking methods were compared with respect to a set of desirable
properties. It appeared that the best ranking method is the Net Flow Rule which builds
a ranking of alternatives using a scoring function NFS(a) for all a ∈ A:

NFS(a) =
∑

b∈A\{a}
(R3v(a, b) − R3v(b, a))

=
∑

b∈A\{a}

([aSb] − [bSa] − [aScb] + [bSca]) ,

where [ · ] denotes again a (0–1) indicator function. The recommendation for ranking
is a complete preorder on set A determined by NFS(·), and the best choice recom-
mendation is alternative â ∈ A, such that NFS(â) = max

a∈A
{NFS(a)}.

In (Dembczyński et al. 2010b), theDRSA for choice and ranking has been compared
with statistical learning of a utility function for single objects, based on the boosting
technique. Similar to the Net Flow Rule, the utility function also gives a linear ranking
of objects. In conclusion of a computational experiment, the authors state that both
analyzed approaches to preference learning share good properties of the decision rule
preference model and have good performance in massive-data learning problems.
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DRSA has been adapted to a large variety of multi-attribute decision problems
(Słowiński et al. 2015). Let’s list a few of them:

• decision under uncertainty and time preference (Greco et al. 2010b),
• robustness analysis for decision under uncertainty (Kadziński et al. 2016),
• classification with missing data (Szela̧g et al. 2017),
• classification with a hierarchical structure of evaluation criteria (Dembczyński
et al. 2002),

• classification with imprecise evaluations and assignments (Dembczyński et al.
2009),

• interactive evolutionary multiobjective optimization (Corrente et al. 2024).

The DRSA methodology gained popularity as a useful tool for structuring prefer-
ence data prior to the induction of the preference model in terms of decision rules. It is
based on elementary concepts and mathematical tools (sets and set operations, binary
relations), without recourse to any complex algebraic or analytical structures (Greco
et al 2010a); the decision rules have very natural interpretation and the key concept of
dominance is rational and objective.

3 Conclusion

This paper is the first part of our systematic comparison of multiple criteria decision
aiding (MCDA) and preference learning (PL), in which we provided a review of
the MCDA methodology highlighting its recent trend in preference modeling from
decision examples. This review will be continued with a similar overview of PL in
the second part of the paper, which furthermore compares both methodologies in a
systematic way, and gives an overview of existing work on combining PL andMCDA.
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Corrente S,Greco S,KadzińskiMet al (2013a)Robust ordinal regression in preference learning and ranking.

Mach Learn 93:381–422
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Greco S, Matarazzo B, Słowiński R (2010b) Dominance-based rough set approach to decision under uncer-
tainty and time preference. Ann Oper Res 176(1):41–75
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Kadziński M, Greco S, Słowiński R (2012) Extreme ranking analysis in robust ordinal regression. Omega
40(4):488–501
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