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ABSTRACT

The Shapley value, which is arguably the most popular approach for assigning a meaningful contri-
bution value to players in a cooperative game, has recently been used intensively in explainable arti-
ficial intelligence. Its meaningfulness is due to axiomatic properties that only the Shapley value sat-
isfies, which, however, comes at the expense of an exact computation growing exponentially with the
number of agents. Accordingly, a number of works are devoted to the efficient approximation of the
Shapley value, most of them revolve around the notion of an agent’s marginal contribution. In this
paper, we propose with SVARM and Stratified SVARM two parameter-free and domain-independent
approximation algorithms based on a representation of the Shapley value detached from the notion
of marginal contribution. We prove unmatched theoretical guarantees regarding their approximation
quality and provide empirical results including synthetic games as well as common explainability
use cases comparing ourselves with state-of-the-art methods.

1 Introduction

Whenever agents can federalize in groups (form coalitions) to accomplish a task and get rewarded with a collective
benefit that is to be shared among the group members, the notion of cooperative game stemming from game theory is
arguably the most favorable concept to model such situations. This is due to its simplicity, which nevertheless allows
for covering a whole range of practical applications. The agents are called players and are contained in a player set
N . Each possible subset of players S ⊆ N is understood as a coalition and the coalition N containing all players is
called the grand coalition. The collective benefit ν(S) that a coalition S receives upon formation is given by a value
function ν assigning each coalition a real-valued worth.

The connection of cooperative games to (supervised) machine learning is already well-established. The most promi-
nent example is feature importance scores, both local and global, for a machine learning model: features of a dataset
can be seen as players, allowing one to interpret a feature subset as a coalition, while the model’s generalization per-
formance using exactly that feature subset is its worth Cohen et al. [2007]. Other applications include evaluating the
importance of parameters in a machine learning model, e.g. single neurons in a deep neural network Ghorbani and Zou
[2020] or base learners in an ensemble Rozemberczki and Sarkar [2021], or assigning relevance scores to datapoints in
a given dataset Ghorbani and Zou [2019]. See Rozemberczki et al. [2022] for a wider overview of its usage in the field
of explainable artificial intelligence. Outside the realm of machine learning cooperative games also found applications
in operations research Luo et al. [2022], for finding fair compensation mechanisms in electricity grids O’Brien et al.
[2015], or even for the purpose of identifying the most influential individuals in terrorist networks van Campen et al.
[2018].

In all of these applications, the question naturally arises of how to appropriately determine the contribution of a single
player (feature, parameter, etc.) with respect to the grand collective benefit. In other words, how to allocate the worth
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ν(N ) of the full player set N among the players in a fair manner. The indisputably most popular solution to this
problem is the Shapley value Shapley [1953], which can be intuitively expressed by marginal contributions. We call
the increase in worth that comes with the inclusion of player i to a coalition S, i.e., the difference ν(S ∪ {i})− ν(S),
player i’s marginal contribution to S. The Shapley value of i is a weighted average of all its marginal contributions
to coalitions that do not include i. Its popularity stems from the fact that it is the only solution to satisfy axiomatic
properties that arguably capture fairness Shapley [1953].

Despite the appealing theoretical properties of the Shapley value, there is one major drawback with respect to its
practical application, as its computational complexity increases exponentially with the number of players n. As a
consequence, the exact computation of the Shapley value becomes practically infeasible even for a moderate number
of players. This is especially the case where accesses to ν are costly, e.g., re-evaluating a (complex) machine learning
model for a specific feature subset, or manipulating training data each time ν is accessed. Recently, several approxi-
mation methods have been proposed in search of a remedy, enabling the utilization of the Shapley value in explainable
AI (and beyond). However, most works are stiffened towards the notion of marginal contribution, and, consequently,
judge algorithms by their achieved approximation accuracy depending on the number of evaluated marginal contribu-
tions. This measure does not do justice to the fact that approximations can completely dispense with the consideration
of marginal contributions and elicit information from ν in a more efficient way — as we show in this paper. We claim
that the number of single accesses to ν should be considered instead, since especially in machine learning, as men-
tioned above, access to ν is a bottleneck in overall runtime. In this paper, we make up for this deficit by considering
the problem of approximating the Shapley values under a fixed budget T of evaluations (accesses) of ν.

Contribution. We present a novel representation of the Shapley value that does not rely on the notion of marginal
contribution. Our first proposed approximation algorithm Shapley Value Approximation without Requesting Marginals
(SVARM) exploits this representation and directly samples values of coalitions, facilitating “a swarm of updates”, i.e.,
multiple Shapley value estimates are updated at once. This is in stark contrast to the usual way of sampling marginal
contributions that only allows the update of a single estimate. We prove theoretical guarantees regarding SVARM’s
precision including the bound of O( logn

T−n ) on its variance.

Based on a partitioning of the set of all coalitions according to their size, we develop with Stratified SVARM a refine-
ment of SVARM. The applied stratification materializes a twofold improvement: (i) the homogeneous strata (w.r.t.
the coalition worth) significantly accelerate convergence of estimates, (ii) our stratified representation of the Shapley
value with decomposed marginal contributions facilitates a mechanism that updates the estimates of all players with
each single coalition sampled. Among other results, we bound its variance by O

(
logn

T−n logn

)
.

Besides our superior theoretical findings, both algorithms possess a number of properties in their favor. More specifi-
cally, both are unbiased, parameter-free, incremental, i.e., the available budget has not to be fixed and can be enlarged
or cut prematurely, facilitating on-the-fly approximations due to their anytime property, and do not require any knowl-
edge about the latent value function. Moreover, both are domain-independent and not limited to some specific fields,
but can be used to approximate the Shapley values of any possible cooperative game.

Finally, we compare our algorithms empirically against other popular competitors, demonstrating their practical
usefulness and proving our empirical enhancement Stratified SVARM+, which samples without replacement to be
the first sample-mean-based approach to achieve rivaling state-of-the-art approximation quality. All code including
documentation and the technical appendix can be found on GitHub1.

2 Related Work

The recent rise of explainable AI has incentivized the research on approximation methods for the Shapley value
leading to a variety of different algorithms for this purpose. The first distinction to be made is between those that
are domain-independent, i.e., able to deal with any cooperative game, and those that are tailored to a specific use
case, e.g. assigning Shapley values to single neurons in neural networks, or which impose specific assumptions on the
value function. In this paper, we will consider only the former, as it is our goal to provide approximations algorithms
independent of the context in which they are applied. The first and so far simplest of this kind is ApproShapley Castro
et al. [2009], which samples marginal contributions from each player based on randomly drawn permutations of the
player set. The variance of each of its Shapley value estimates is bounded by O( nT ). Stratified Sampling [Maleki
et al., 2013] and Structured Sampling [van Campen et al., 2018] both partition the marginal contributions of each
player by coalition size in order to stratify the marginal contributions of the population from which to draw a sample,
which leads to a variance reduction. While Stratified Sampling calculates a sophisticated allocation of samples for
each coalition size, Structured Sampling simply samples with equal frequencies. Multiple follow-up works suggest

1https://github.com//kolpaczki//Approximating-the-Shapley-Value-without-Marginal-Contributions
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specific techniques to improve the sampling allocation over the different coalition sizes [O’Brien et al., 2015, Castro
et al., 2017, Burgess and Chapman, 2021].

In order to reduce the variance of the naive sampling approach underlying ApproShapley, Illés and Kerényi [2019]
suggest to use ergodic sampling, i.e., generating samples that are not independent but still satisfy the strong Law
of Large numbers. Quite recently, Mitchell et al. [2022] investigated two techniques for improving ApproShapley’s
sampling approach. One is based on the theory of reproducing kernel Hilbert spaces, which focuses on minimizing the
discrepancies for functions of permutations. The other exploits a geometrical connection between uniform sampling
on the Euclidean sphere and uniform sampling over permutations.

Adopting a Bayesian perspective, i.e., by viewing the Shapley values as random variables, Touati et al. [2021] consider
approximating the Shapley values by Bayesian estimates (posterior mean, mode, or median), where each posterior
distribution of a player’s Shapley value depends on the remaining ones. Utilizing a representation of the Shapley
value as an integral Owen [1972], Owen Sampling [Okhrati and Lipani, 2020] approximates this integral by sampling
marginal contributions using antithetic sampling [Rubinstein and Kroese, 2016, Lomeli et al., 2019] for variance
reduction.

A fairly new class of approaches that dissociates itself from the notion of marginal contribution are those that view
the Shapley value as a solution of a quadratic program with equality constraints Lundberg and Lee [2017], Simon and
Vincent [2020], Covert and Lee [2021]. Another unorthodox approach is to divide the player set into small enough
groups for which the Shapley values within these groups can be computed exactly Soufiani et al. [2014], Corder and
Decker [2019]. For an overview of approaches related to machine learning we refer to Chen et al. [2023].

3 Problem Statement

The formal notion of a cooperative game is defined by a tuple (N , ν) consisting of a set of players N = {1, . . . , n}
and a value function ν : P(N ) → R that assigns to each subset of N a real-valued number. The value function must
satisfy ν(∅) = 0. We call the subsets of N coalitions, N itself the grand coalition, and the assigned value ν(S) to a
coalition S ⊆ N its worth. Given a cooperative game (N , ν), the Shapley value assigns each player a share of the
grand coalition’s worth. In particular, the Shapley value Shapley [1953] of any player i ∈ N is defined as

ϕi =
∑

S⊆Ni

1

n ·
(
n−1
|S|
) [ν(S ∪ {i})− ν(S)] , (1)

where Ni := N \ {i} for each player i ∈ N . The term ν(S ∪ {i}) − ν(S) is also known as player i’s marginal
contribution to S ⊆ Ni and captures the increase in collective benefit when player i joins the coalition S. Thus, the
Shapley value can be seen as the weighted average of a player’s marginal contributions.

The exact computation of all Shapley values requires the knowledge of the values of all 2n many coalitions2 and is
shown to be NP-hard Deng and Papadimitriou [1994]. In light of the exponential computational effort w.r.t. to n, we
consider the goal of approximating the Shapley value of all players as precisely as possible for a given budget of T ∈ N
many evaluations (accesses) of ν in discrete time steps 1, . . . , T . Since ν(∅) = 0 holds by definition, the evaluation of
ν(∅) comes for free without any budget cost. We judge the quality of the estimates ϕ̂1, . . . , ϕ̂n — which are possibly
of stochastic nature — obtained by an approximation algorithm after T many evaluations by two criteria that have to
be minimized for all i ∈ N . First, the mean squared error (MSE) of the estimate ϕ̂i is given by

E
[(
ϕ̂i − ϕi

)2]
. (2)

Utilizing the bias-variance decomposition allows us to reduce the squared error to the variance V[ϕ̂i] of the Shapley
value estimate in case that it is unbiased, i.e. E[ϕ̂i] = ϕi. The second criterion is the probability of ϕ̂i deviating from
ϕi by more than a fixed ε > 0:

P
(
|ϕ̂i − ϕi| > ε

)
. (3)

Both criteria are well-established for measuring the quality of an algorithm approximating the Shapley value.

4 SVARM

Thanks to the distributive law, the formula of the Shapley value for a player i can be rearranged so that it is not its
weighted average of marginal contributions, but the difference of the weighted average of coalition values by adding i

2In fact, only 2n − 1 many coalitions, as ν(∅) = 0 is known.
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U+
1

mean: ϕ+
1

U−
1

mean: ϕ−
1

Player 1

ϕ1 = ϕ+
1 − ϕ−

1

U+
2

mean: ϕ+
2

U−
2

mean: ϕ−
2

Player 2

ϕ2 = ϕ+
2 − ϕ−

2
· · ·

U+
n

mean: ϕ+
n

U−
n

mean: ϕ−
n

Player n

ϕn = ϕ+
n − ϕ−

n

• Sample A+ ∼ P+

• Update all ϕ̂+
i with i ∈ A+

A+ = {1, 3, 5} ∈ U+
1 , U+

3 , U+
5

→ Update ϕ̂+
1 , ϕ̂

+
3 , ϕ̂

+
5

• Sample A− ∼ P−

• Update all ϕ̂−
i with i /∈ A−

A− = {1, 3, 5} ∈ U−
2 , U−

4

→ Update ϕ̂−
2 , ϕ̂

−
4

Alternate

N = {1, 2, 3, 4, 5}

1

Figure 1: Illustration of SVARM’s sampling process and update rule: Each player i has two urns U+
i := {S ∪ {i} |

S ⊆ Ni} and U−
i := {S | S ⊆ Ni} containing marbles which represent coalitions, with mean coalition worth ϕ+

i

and ϕ−
i . SVARM alternates between sampling coalitions A+ ∼ P+ and A− ∼ P−. With each drawn coalition all

estimates of those urns are updated which contain the corresponding marble. Since each player’s two urns form a
partition of the powerset P(N ), all players have exactly one urn updated with each sample.

and the weighted average of coalition values without i:

ϕi =
∑

S⊆Ni

wS · ν(S ∪ {i})
︸ ︷︷ ︸

=:ϕ+
i

−
∑

S⊆Ni

wS · ν(S)
︸ ︷︷ ︸

=:ϕ−
i

, (4)

with weights wS = 1

n·(n−1
|S| )

for each S ⊆ Ni. We call ϕ+
i the positive and ϕ−

i the negative Shapley value, while we

refer to the collective of both as the signed Shapley values. The weighted averages ϕ+
i and ϕ−

i can also be viewed as
expected values, i.e., ϕ+

i = E[ν(S ∪{i})] and ϕ−
i = E[ν(S)], where S ∼ Pw and Pw(S) = wS for all S ⊆ Ni. Note

that all weights add up to 1 and thus Pw forms a well-defined probability distribution. In this way, we can approximate
each signed Shapley value separately using estimates ϕ̂+

i and ϕ̂−
i and combine them into a Shapley value estimate by

means of ϕ̂i = ϕ̂+
i − ϕ̂−

i .

In light of this, a naive approach for approximating each signed Shapley value of a player is by sampling some
number of M many coalitions S(1), . . . , S(M) with distribution Pw and using the sample mean as the estimate, i.e.,
ϕ̂+
i = 1

M

∑M
m=1 ν(S

(m) ∪ {i}). However, this would require all 2n signed Shapley values (two per player) to be
estimated separately by sampling coalitions in a dedicated manner, each of which would lead to an update of only one
estimate. This ultimately slows down the convergence of the estimates, especially for large n.

On the basis of the aforementioned representation of the Shapley value, we present the Shapley Value Approximation
without Requesting Marginals (SVARM) algorithm, a novel approach that updates multiple Shapley value estimates
at once with a single evaluation of ν. Its novelty consists of sampling coalitions independently from two specifically
chosen distributions P+ and P− in an alternating fashion, which allows for a more powerful update rule: each (inde-
pendently) sampled coalition A+ from P+ allows one to update all positive Shapley value estimates ϕ̂+

i of all payers
i which are contained in A+, i.e., i ∈ A+. Likewise, for a coalition A− drawn from P−, all negative Shapley value
estimates ϕ̂−

i for i /∈ A− can be updated.

It is worth noting that, for simplicity, we alternate evenly between the samples from the P+ and P− distributions,
although one could also use a ratio other than 1/2. To avoid a bias, both distributions have to be tailored such that the
following holds for all i ∈ N and S ⊆ Ni:

P(A+ = S ∪ {i} | i ∈ A+) = P(A− = S | i /∈ A−) = wS . (5)

4
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Algorithm 1 SVARM
Input: N , T ∈ N

1: ϕ̂+
i , ϕ̂

−
i ← 0 for all i ∈ N

2: c+i , c
−
i ← 1 for all i ∈ N

3: WarmUp
4: t← 2n
5: while t+ 2 ≤ T do
6: Draw A+ ∼ P+

7: Draw A− ∼ P−

8: v+ ← ν(A+)
9: v− ← ν(A−)

10: for i ∈ A+ do
11: ϕ̂+

i ←
c+i ϕ̂+

i +v+

c+i +1

12: c+i ← c+i + 1
13: end for
14: for i ∈ N \A− do
15: ϕ̂−

i ←
c−i ϕ̂−

i +v−

c−i +1

16: c−i ← c−i + 1
17: end for
18: t← t+ 2
19: end while
20: ϕ̂i ← ϕ̂+

i − ϕ̂−
i for all i ∈ N

Output: ϕ̂1, . . . , ϕ̂n

For this reason, we define the probability distributions over coalitions to sample from as

P+(S) :=
1

|S|
(

n
|S|
)
Hn

∀S ∈ P(N ) \ {∅}, (6)

P−(S) :=
1

(n− |S|)
(

n
|S|
)
Hn

∀S ∈ P(N ) \ {N}, (7)

where Hn =
∑n

k=1 1/k denotes the n-th harmonic number. Note that both P+ and P− assign equal probabilities to
coalitions of the same size, so that one can first sample the size and then draw a set uniformly of that size. This pair of
distributions is provably the only one to fulfill the required property (see Appendix C.1).

The approach of dividing the Shapley value into two parts and approximating both has already been pursued (although
not as formally rigorous) via importance sampling Covert et al. [2019], allowing to update all n estimates with each
sample. Wang and Jia [2023] adopt the same representation for the Banzhaf value, and coined the strategy of updating
all players’ estimates with each sampled coalition the maximum sample reuse (MSR) principle. Their approximation
algorithm is specifically tailored to the Banzhaf value as it leverages its uniform weights wS = 1

2n−1 and is thus, at
least not directly, transferable to the Shapley value.

In the following we describe SVARM’s procedure with the pseudocode of Algorithm 1. The overall idea of the
sampling and update process is illustrated in Figure 1. It starts by initializing the positive and negative Shapley value
estimates ϕ̂+

i and ϕ̂−
i , and the number of samples c+i and c−i collected for each player i. SVARM continues by

launching a warm-up phase (see Algorithm 3 in Appendix B). In the main loop, the update rule is applied for as many
sampled pairs of coalitions A+ and A− as possible until SVARM runs out of budget. In each iteration A+ is sampled
from P+ and A− from P−. The worth of A+ and A− is evaluated and stored in v+ and v−, requiring two accesses to
the value function. The estimate ϕ̂+

i of each player i ∈ A+ is updated with the worth ν(A+) such that ϕ̂+
i is the mean

of sampled coalition values. Likewise, the estimate ϕ̂−
i of each player i /∈ A− is updated with the worth ν(A−). At the

same time, the sample numbers of the respective signed Shapley value estimates are also updated. Finally, SVARM
computes its Shapley value estimate ϕ̂i of ϕi for each i according to Equation (4). Note that since only the quantities
ϕ̂+
i , ϕ̂

−
i , c

+
i , and c+i are stored for each player, its space complexity is inO(n). Moreover, SVARM is incremental and

can be stopped at any time to return its estimates after executing line 20, or it can be run further with increased budget.
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Theoretical analysis. In the following we present theoretical results for SVARM. All proofs are given in Appendix C
of the technical appendix. For the remainder of this section we assume that a minimum budget of T ≥ 2n+2 is given.
This assumption guarantees the completion of the warm-up phase such that each positive and negative Shapley value
estimate has at least one sample and an additional pair sampled in the loop. The lower bound on T is essentially twice
the number of players n, which is a fairly weak assumption. We denote by T̄ := T − 2n the number of time steps
(budget) left after the warm-up phase. Moreover, we assume T̄ to be even for sake of simplicity such that a lower
bound on the number of sampled pairs in the main part can be expressed by T

2 − n. We begin with the unbiasedness
of the estimates maintained by SVARM allowing us later to reduce the mean squared error (MSE) of each estimate to
its variance.
Theorem 1. The Shapley value estimate ϕ̂i of any i ∈ N obtained by SVARM is unbiased, i.e.,

E[ϕ̂i] = ϕi .

Next, we give a bound on the variance of each Shapley value estimate. For this purpose, we introduce notation for the
variances of coalition values contained in ϕ+

i and ϕ−
i . For a random set Ai ⊆ Ni distributed according to Pw let

σ+
i

2
:= V [ν(Ai ∪ {i})] and σ−

i

2
:= V [ν(Ai)] . (8)

Theorem 2. The variance of any player’s Shapley value estimate ϕ̂i obtained by SVARM is bounded by

V[ϕ̂i] ≤
2Hn

T̄
(σ+

i

2
+ σ−

i

2
) .

Combining the unbiasedness in Theorem 1 with the latter variance bound implies the following result on the MSE.

Corollary 1. The MSE of any player’s Shapley value estimate ϕ̂i obtained by SVARM is bounded by

E
[(
ϕ̂i − ϕi

)2] ≤ 2Hn

T̄
(σ+

i

2
+ σ−

i

2
) .

Assuming that each variance term σ+
i

2
and σ−

i

2
is bounded by some constant independent of n (and T ), the MSE

bound in Corollary 1 is in O( logn
T−n ) and so is the variance bound in Theorem 2. Note that this assumption is rather

mild and satisfied if the underlying value function is bounded by constants independent of n, which again is the
case for a wide range of games and in particular in explainable AI for global and local feature importance based
on classification probabilities lying between 0 and 1. Further, as T is growing linearly with n by assumption, the
denominator is essentially driven by the asymptotics of T. Thus, the dependency on n is logarithmic, which is a
significant improvement over existing theoretical results having a linear dependency on n likeO( nT ) for ApproShapley
[Castro et al., 2009] or possibly worse [Simon and Vincent, 2020]. Finally, we present two probabilistic bounds on
the approximated Shapley value. The first utilizes the variance bound shown in Theorem 2 by applying Chebyshev’s
inequality.

Theorem 3. The probability that the Shapley value estimate ϕ̂i of any fixed player i ∈ N deviates from ϕi by a margin
of any fixed ε > 0 or greater is bounded by

P(|ϕ̂i − ϕi| ≥ ε) ≤ 2Hn

ε2T̄
(σ−

i

2
+ σ+

i

2
) .

The presented bound is in O( logn
T−n ) and improves upon the bound derived by Chebyshev’s inequality of O( nT ) for

ApproShapley Maleki et al. [2013]. Our second bound derived by Hoeffding’s inequality is tighter, but requires the
introduction of notation for the ranges of ν(Ai) and ν(Ai ∪ {i}):

r+i := max
S⊆Ni

ν(S ∪ {i})− min
S⊆Ni

ν(S ∪ {i}) , (9)

r−i := max
S⊆Ni

ν(S)− min
S⊆Ni

ν(S) . (10)

Theorem 4. The probability that the Shapley value estimate ϕ̂i of any fixed player i ∈ N deviates from ϕi by a margin
of any fixed ε > 0 or greater is bounded by

P(|ϕ̂i − ϕi| ≥ ε) ≤ 2e
− T̄

4Hn2 + 4
e−Ψ⌊ T̄

4Hn
⌋

eΨ − 1
,

where Ψ = 2ε2/(r+i +r−i )2.

Note that this bound is exponentially decreasing with T and can be expressed asymptotically as O(e−
T−n

(log n)2 ). In
comparison, the bounds of O(e−T

n ) for ApproShapley, O(ne− T
n3 ) for Stratified Sampling Maleki et al. [2013], and

the projected SGD variant Simon and Vincent [2020] show worse asymptotic dependencies on n in comparison.
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U+
1,0 U+

1,n−1

mean: ϕ+
1,0 ϕ+

1,n−1

U−
1,0 U−

1,n−1
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1,0 ϕ−
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Player 1

ϕ1 =
1
n

n−1∑
ℓ=0

ϕ+
1,ℓ − ϕ−

1,ℓ

U+
2,0 U+

2,n−1

mean: ϕ+
2,0 ϕ+

2,n−1

U−
2,0 U−

2,n−1

mean: ϕ−
2,0 ϕ−

2,n−1

Player 2

ϕ2 =
1
n

n−1∑
ℓ=0

ϕ+
2,ℓ − ϕ−

2,ℓ
· · ·

U+
n,0 U+

n,n−1

mean: ϕ+
n,0 ϕ+

n,n−1

U−
n,0 U−

n,n−1

mean: ϕ−
n,0 ϕ−

n,n−1

Player n

ϕn = 1
n

n−1∑
ℓ=0

ϕ+
n,ℓ − ϕ−

n,ℓ

• Sample s ∼ P̃

• Sample A uniformly
with size s

• Update all ϕ̂+
i,s−1

with i ∈ A

• Update all ϕ̂−
i,s

with i /∈ A

N = {1, 2, 3, 4, 5},
s = 3, A = {1, 3, 5} :
→ Update ϕ̂+

1,2, ϕ̂
+
3,2, ϕ̂

+
5,2

→ Update ϕ̂−
2,3, ϕ̂

−
4,3

2

Figure 2: Illustration of Stratified SVARM’s sampling process and update rule: Each player i has urns U+
i,ℓ := {S∪{i} |

S ⊆ Ni, |S| = ℓ} and U−
i,ℓ := {S | S ⊆ Ni, |S| = ℓ} for all ℓ ∈ {0, . . . , n−1}, 2n in total, containing marbles which

represent coalitions, with mean coalition worth ϕ+
i,ℓ and ϕ−

i,ℓ. Stratified SVARM samples in each time step t a coalition
At ⊆ N and updates the estimates of all players’ urns that contain the corresponding marble. Since each player’s urns
form a partition of the powerset P(N ), all players have exactly one urn updated with each sample.

5 Stratified SVARM

On the basis of the representation of the Shapley value in Equation (4), we develop another approximation algorithm
named Stratified SVARM to further pursue and reach the maximum sample reuse principle. Its crux is a refinement of
SVARM obtained by stratifying the positive and the negative Shapley value ϕ+

i and ϕ−
i . We exploit the latter to develop

an even more powerful update rule that allows for updating all players simultaneously with each single coalition
sampled. Both, ϕ+

i and ϕ−
i can be rewritten using stratification such that each becomes an average of strata, whereas

the strata themselves are averages of the coalitions’ worth:

ϕ+
i =

1

n

n−1∑

ℓ=0

1(
n−1
ℓ

)
∑

S⊆Ni

|S|=ℓ

ν(S ∪ {i}) =:
1

n

n−1∑

ℓ=0

ϕ+
i,ℓ , (11)

ϕ−
i =

1

n

n−1∑

ℓ=0

1(
n−1
ℓ

)
∑

S⊆Ni

|S|=ℓ

ν(S) =:
1

n

n−1∑

ℓ=0

ϕ−
i,ℓ . (12)

We call ϕ+
i,ℓ the ℓ-th positive Shapley subvalue and ϕ−

i,ℓ the ℓ-th negative Shapley subvalue for all ℓ ∈ L := {0, . . . , n−
1}. Now, we can write ϕi as

ϕi =
1

n

n−1∑

ℓ=0

ϕ+
i,ℓ − ϕ−

i,ℓ . (13)

Note that this representation of ϕi coincides with Equation 6 in Ancona et al. [2019]. Intuitively speaking at the
example of ϕ+

i (and analogously for ϕ−
i ), we partition the population of coalitions contained in ϕ+

i into n strata. Each
stratum ϕ+

i,ℓ comprises all coalitions which include the player i and have cardinality ℓ+1. Instead of sampling directly
for ϕ+

i , the stratification allows one to sample coalitions from each stratum, obtain mean estimates ϕ̂+
i,ℓ, and aggregate

them to

ϕ̂+
i =

1

n

n−1∑

ℓ=0

ϕ̂+
i,ℓ (14)

in order to obtain an estimate for ϕ+
i . Due to the increase in homogeneity of the strata in comparison to their origin

population, caused by the shared size and inclusion or exclusion of i for coalitions in the same stratum, one would ex-
pect the strata to have significantly lower variances and ranges resulting in approximations of better quality compared
to SVARM. In combination with our bounds shown in Theorem 2 and Theorem 4, this should result in approxima-
tions of better quality. In the following we present further techniques for improvement which we apply for Stratified
SVARM (Algorithm 2).

7
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Algorithm 2 Stratified SVARM
Input: N , T ∈ N

1: ϕ̂+
i,ℓ, ϕ̂

−
i,ℓ ← 0 for all i ∈ N and ℓ ∈ L

2: c+i,ℓ, c
−
i,ℓ ← 0 for all i ∈ N and ℓ ∈ L

3: ExactCalculation(N )
4: WarmUp+(N )
5: WarmUp−(N )

6: t← 2n+ 1 + 2
n−2∑
s=2
⌈ns ⌉

7: while t < T do
8: Draw st ∼ P̃
9: Draw At from {S ⊆ N | |S| = st} uniformly

10: Update(At)
11: t← t+ 1
12: end while
13: ϕ̂i ← 1

n

n−1∑
ℓ=0

ϕ̂+
i,ℓ − ϕ̂−

i,ℓ for all i ∈ N

Output: ϕ̂1, . . . , ϕ̂n

Exact calculation. First, we observe that some strata contain very few coalitions. Thus, we calculate
ϕ+
i,0, ϕ

+
i,n−2, ϕ

+
i,n−1, ϕ

−
i,1, and ϕ−

i,n−1 for all players exactly by evaluating ν for all coalitions of size 1, n − 1, and
n. This requires 2n+ 1 many evaluations of ν (see Algorithm 5 in Appendix B). We already obtain ϕ−

i,0 = ν(∅) = 0
by definition. As a consequence, we can exclude the sizes 0, 1, n − 1, and n from further consideration. We assume
for the remainder that n ≥ 4, otherwise we would have already calculated all Shapley values exactly.

Refined warm-up. Next, we split the warm-up into two parts, one for the positive, the other for the negative Shapley
subvalues (see Algorithm 6 and 7 in Appendix B). Each collects for each estimate ϕ̂+

i,ℓ or ϕ̂−
i,ℓ, respectively, one sample

and consumes a budget of
∑n−2

s=2

⌈
n
s

⌉
.

Enhanced update rule. Thanks to the stratified representation of the Shapley value, we can enhance SVARM’s
update rule and update with each sampled coalition At ⊆ N the estimates ϕ̂+

i,|At|−1 for all i ∈ At and ϕ̂−
i,|At| for all

i /∈ At. Thus, we can update all estimates ϕ̂i at once with a single sample. This enhanced update step is given in
Algorithm 4 (see Appendix B) and illustrated in Figure 2. In order to obtain unbiased estimates, it suffices to select an
arbitrary size s of the coalition A to be sampled and draw A uniformly at random from the set of coalitions with size
s. We go one step further and choose not only the coalition A, but also the size s randomly according to a specifically
tailored probability distribution P̃ over {2, . . . , n − 2}, which leads to simpler bounds in our theoretical analysis in
which each stratum receives the same weight. We define for n even:

P̃ (s) :=





n logn−1

2sn logn
(
Hn

2
−1−1

) if s ≤ n−2
2

1
n logn if s = n

2
n logn−1

2(n−s)n logn
(
Hn

2
−1−1

) otherwise
and for n odd: P̃ (s) :=





1

2s

(
Hn−1

2
−1

) if s ≤ n−1
2

1

2(n−s)

(
Hn−1

2
−1

) otherwise
. (15)

Note that Stratified SVARM is incremental just as SVARM, but in contrast, requires quadratic spaceO(n2) as it stores
estimates and counters for each player and stratum.

Theoretical analysis. Similar to SVARM, we present in the following our theoretical results for Stratified SVARM.
All proofs are given in Appendix D. Again, we assume a minimum budget of T ≥ 2n + 1 + 2

∑n−2
s=2

⌈
n
s

⌉
=: W ∈

O(n log n), guaranteeing the completion of the warm-up phase, and denote by T̄ = T −W the budget left after the
warm-up phase. We start by showing that Stratified SVARM is not afflicted with any bias.

Theorem 5. The Shapley value estimate ϕ̂i of any i ∈ N obtained by Stratified SVARM is unbiased, i.e.,

E[ϕ̂i] = ϕi .

8
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Next, we consider the variance of the Shapley value estimates and quickly introduce some notation. Let Ai,ℓ ⊆ Ni be
a random coalition of size ℓ distributed with P(Ai,ℓ = S) =

(
n−1
ℓ

)−1
. Define the strata variances

σ+
i,ℓ

2
:= V [ν(Ai,ℓ ∪ {i})] and σ−

i,ℓ

2
:= V [ν(Ai,ℓ)] . (16)

Theorem 6. The variance of any player’s Shapley value estimate ϕ̂i obtained by Stratified SVARM is bounded by

V[ϕ̂i] ≤
2 log n

nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

Together with the unbiasedness shown in Theorem 5, the variance bound implies the following MSE bound.

Corollary 2. The MSE of any player’s Shapley value estimate ϕ̂i obtained by Stratified SVARM is bounded by

E[(ϕ̂i − ϕi)
2] ≤ 2 log n

nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

With our choice of the sampling distribution P̃ we achieved an easily interpretable bound on the MSE in which each
stratum variance is equally weighted. Assuming that each stratum variance is bounded by some constant independent
of n, the MSE bound in Corollary 2 is in O( logn

T−n logn ). Note that, by assumption, T is growing log-linearly with n so
that the denominator is essentially driven by the asymptotics of T . Again, compared to existing theoretical results, with
linear dependence on n, the logarithmic dependence on n is a significant improvement. Still, it is worth emphasizing
that the more homogeneous strata with lower variances constitute the core improvement of Stratified SVARM, which
are not reflected within the O-notation. Our first probabilistic bound is obtained by Chebyshev’s inequality and the
bound from Theorem 6.
Theorem 7. The probability that the Shapley value estimate ϕ̂i of any fixed player i ∈ N deviates from ϕi by a margin
of any fixed ε > 0 or greater is bounded by

P(|ϕ̂i − ϕi| ≥ ε) ≤ 2 log n

ε2nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

Lastly, our second probabilistic bound derived via Hoeffding’s inequality is tighter, but less trivial. It requires some
further notation, namely the ranges of the strata values:

r+i,ℓ := max
S⊆Ni:|S|=ℓ

ν(S ∪ {i})− min
S⊆Ni:|S|=ℓ

ν(S ∪ {i}) , (17)

r−i,ℓ := max
S⊆Ni:|S|=ℓ

ν(S)− min
S⊆Ni:|S|=ℓ

ν(S) . (18)

Theorem 8. The probability that the Shapley value estimate ϕ̂i of any fixed player i ∈ N deviates from ϕi by a margin
of any fixed ε > 0 or greater is bounded by

P(|ϕ̂i − ϕi| ≥ ε) ≤ 2(n− 3)

(
e
− T̄

8n2(log n)2 + 2
e−Ψ⌊ T̄

4n log n⌋
eΨ − 1

)
,

where Ψ = 2ε2n2
/
(

n−3∑
ℓ=1

r+i,ℓ+r−i,ℓ+1

)2

.

This bound is of orderO(ne−
T−n log n

n2(log n)2 ) showing a slightly worse dependency on n compared to Theorem 4 due to the
introduction of strata.

6 Empirical Results

To complement our theoretical findings, we evaluate our algorithms and its competitors on commonly considered
synthetic cooperative games and explainable AI scenarios in which Shapley values need to be approximated. In
particular, we select parameterless algorithms that do not rely on provided knowledge about the value function of the
problem instance at hand, since ours do not either. Besides the sampling distribution P̃ over coalition sizes proposed
for Stratified SVARM (S-SVARM), we also consider sampling with the simpler uniform distribution over all sizes from

9
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Figure 3: Averaged MSE and standard errors over 100 repetitions in dependence of fixed budget T : (1) Airport game,
(2) Shoe game, (3) SOUG game, (4) NLP sentiment analysis, (5) Image classifier, (6) Adult classification.

2 to n − 2 (S-SVARM uniform). In order to allow for a fair comparison with KernelSHAP, which samples coalitions
without replacement, we include with S-SVARM+ (uniform) an empirical version of S-SVARM without the warm-up
that also samples without replacement to compensate for this underlying advantage (see Algorithm 8 in Appendix B),
which obviously comes at the price of space complexity linear in T .

We run the algorithms multiple times on the selected game types and measure their performances by the mean squared
error (MSE) averaged over all players and runs depending on a range of fixed budget values T . Measuring the approx-
imation quality by the MSE requires the true Shapley values of the considered games to be available. These are either
given by a polynomial closed-form solution for the synthetic games (see Section 6.1) or we compute them exhaustively
for our explanation tasks (see Section 6.2). The results of our evaluation are shown in Figure 3 and are presented in
more detail in Appendix F.

As already said, we judge the algorithms’ approximation qualities in dependence on the spent budget (model eval-
uations) T instead of the consumed runtime. In fact, the algorithms differ in actual runtime. For example SVARM
performs less arithmetic operations than Stratified SVARM since it does not update all players’ estimates ϕ̂+

i or ϕ̂−
i

with each sample. Some algorithms, e.g. KernelSHAP, vary strongly in their time consumption per sample since a
costly quadratic optimization problem needs to be solved after observing all samples. We intentionally avoid the run-
time comparison for three reasons: (i) the observed runtimes may differ depending on the actual implementation, (ii)
the fixed-budget setting facilitates a coherent theoretical analysis where the observed information is restricted, (iii)
evaluating the worth of a coalition poses the bottleneck in explanation tasks, rendering the difference in performed
arithmetic operations negligible.

6.1 Synthetic games

Cooperative games with polynomial closed-form solutions of their Shapley values are well suited for tracking the
approximation error for large player numbers. We exploit this fact and investigate a broad range of player numbers n
which are significantly higher than those for the explanation tasks. We conduct experiments on the predefined Shoe
and Airport game as done in Castro et al. [2009, 2017]. Their degree of non-additivity poses a difficult challenge to all
approximation algorithms. Further, we consider randomly generated Sum of Unanimity Games (SOUG) games van
Campen et al. [2018] which are capable of representing any cooperative game. The value function and Shapley values
of each game are given in Appendix E.

We observe that S-SVARM itself already shows reliably good approximation performance across all considered games
and budget ranges. It is significantly superior to its competitors ApproShapley and KernelSHAP and as expected,
S-SVARM+ extends the lead in approximation quality even more. In contrast, SVARM can rarely keep up with its
refined counterpart S-SVARM. However, in light of the bounds on the MSEs in Corollary 1 and 2 this is not surprising:
SVARM’s MSE bound scales linearly with the variances σ+

i

2
and σ−

i

2
of all coalition values containing respectively

10
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not containing i, while the relevant variance terms σ+
i,ℓ

2
and σ−

i,ℓ

2
for S-SVARM are restricted to coalitions of fixed

size. In most games, the latter terms are significantly lower since coalitions of the same size are plausibly closer in
worth. Finally, S-SVARM is quite robust regarding the magnitude of the standard errors.

6.2 Explainabality games

We further conduct experiments on cooperative games stemming from real-world explainability scenarios, in particu-
lar, use cases in which local feature importance of machine learning models are to be quantified via Shapley values.
The NLP sentiment analysis game is based on the DistilBERT Sanh et al. [2019] model architecture and consists of
randomly selected movie reviews from the IMDB dataset Maas et al. [2011] containing 14 words. Missing features
are masked in the tokenized representation and the value of a set is its sentiment score. In the image classifier game,
we explain the output of a ResNet18 He et al. [2016] trained on ImageNet Deng et al. [2009]. The images’ pixels are
summarized into n = 14 super-pixels and absent features are masked with mean imputation. The worth of a coalition
is the returned class probability of the model (using only the present super-pixels) for the class of the original predic-
tion which was made with all pixels being present. For the adult classification game, we train a gradient-boosted tree
model on the adult dataset Becker and Kohavi [1996]. A coalition’s worth is the predicted class probability of the true
income class (income above or below 50 000) of the given datapoint with the absent features being removed via mean
imputation. Since no polynomial closed-form solution exists for the Shapley values in these games, we compute them
exhaustively, limiting us to a feasible number of players for which we can track the MSE. While this restricts us to a
player number (tokens, superpixels, features) of n = 14 due to limited computational resources, this is arguably still
an appropriate and commonly appearing number of entities involved in an explanation task. We refer to Appendix E
for a more detailed explanation of the chosen games.

A first observation is the close head-to-head race between S-SVARM+ and KernelSHAP across the considered games
leaving all other methods behind. Thus, S-SVARM+ is the first sample-mean-based approach achieving rivaling state-
of-the-art approximation quality. KernelSHAP’s counterpart Unbiased KernelSHAP, designed to facilitate approxi-
mation guarantees similar to our theoretical results which KernelSHAP lacks, is clearly outperformed by S-SVARM.
Given the consistency demonstrated by S-SVARM and S-SVARM+, we claim that both constitute a reliable choice
under absence of domain knowledge. We conjecture that the reason for the slight performance decrease of S-SVARM
from synthetic to explainability games lies not only within the latent structure of ν, but is also caused by the lower
player numbers. As our theoretical results indicate, its sample efficiency grows with n due to its enhanced update
rule. However, conducting experiments with larger n becomes computationally prohibitive for explainability games,
since the Shapley values have to be calculated exhaustively in order to track the approximation error. Further, our
results indicate the robustness of S-SVARM(+) w.r.t. the utilized distribution P̃ , which allows us to use the uniform
distribution without performance loss, and secondly shows that our derived distribution is not just a theoretical artifact,
but a valid contribution to express simpler bounds which are easier to grasp and interpret.

7 Conclusion

We considered the problem of precisely approximating the Shapley value of all players in a cooperative game under
the restriction that the value function can be evaluated only a given number of times. We presented a reformulation
of the Shapley value, detached from the ubiquitous notion of marginal contribution, facilitating the approximation by
estimates of which a multitude can be updated with each access to the value function. On this basis, we proposed two
approximation algorithms, SVARM and Stratified SVARM, which have a number of desirable properties. Both are
parameter-free, incremental, domain-independent, unbiased, and do not require any prior knowledge of the value func-
tion. Further, Stratified SVARM shows a satisfying compromise between peak approximation quality and consistency
across all considered games, paired with unmatched theoretical guarantees regarding its approximation quality. While
fulfilling more desirable properties and not having to solve a quadratic optimization problem of size T in comparison
to the state-of-the-art method KernelSHAP, effectively disabling on-the-fly approximations, our simpler sample-mean-
based method Stratified SVARM+ can fully keep up in common explainable AI scenarios, and even shows empirical
superiority on synthetic games.

Limitations and future work. The quadratically growing number of strata w.r.t. n might pose a challenge for
higher player numbers, which future work could remedy by applying a coarser stratification that assigns multiple
coalition sizes to a single stratum. One could investigate the empirical behavior in further popular explanation domains
such as data valuation, federated learning, or neuron importance and extend our evaluation to scenarios with higher
player numbers. Since the true Shapley values are not accessible for larger n, a different measure of approximation
quality than the MSE needs to be taken for reference. The convergence speed of the estimates is a naturally arising
alternative. Our empirical results give further evidence for the non-existence of a universally best approximation
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algorithm and encourage future research into the cause of the observed differences in performance w.r.t. the game type.
Further, it would be interesting to analyze whether structural properties of the value function, such as monotonicity or
submodularity, have an impact on the approximation quality of both algorithms.

Acknowledgments

This research was supported by the research training group Dataninja (Trustworthy AI for Seamless Problem Solv-
ing: Next Generation Intelligence Joins Robust Data Analysis) funded by the German federal state of North Rhine-
Westphalia. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation): TRR 318/1 2021 – 438445824. We would like to thank Fabian Fumagalli and especially Patrick Becker
for their efforts in supporting our implementation.

References
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A List of Symbols

Table 1: List of frequently symbols used throughout the paper.

Problem setting
N set of players
Ni set of players without i
n number of players
ν value function
T budget, number of allowed evaluations of ν
ϕi Shapley value of player i
ϕ̂i estimated Shapley value of player i

SVARM
ϕ+
i positive Shapley value

ϕi− negative Shapley value
ϕ̂+
i estimated positive Shapley value

ϕ̂−
i estimated negative Shapley value

P+ sampling probability distribution over coalitions to estimate ϕ+
i

P− sampling probability distribution over coalitions to estimate ϕ−
i

T̄ remaining budget after completion of the warm-up phase
σ+
i

2
variance of coalition values including player i

σ−
i

2
variance of coalition values excluding player i

r+i range of coalition values including player i
r−i range of coalition values excluding player i
m̄+

i number of sampled coalitions after the warm-up phase to update ϕ̂+
i

m̄−
i number of sampled coalitions after the warm-up phase to update ϕ̂−

i

m+
i total number of sampled coalitions to update ϕ̂+

i

m−
i total number of sampled coalitions to update ϕ̂−

i
Stratified SVARM

ϕ+
i,ℓ ℓ-th positive Shapley subvalue

ϕ−
i,ℓ ℓ-th negative Shapley subvalue

ϕ̂+
i,ℓ estimated ℓ-th positive Shapley subvalue

ϕ̂−
i,ℓ estimated ℓ-th positive Shapley subvalue

P̃ sampling probability distribution over coalition sizes
T̄ remaining budget after completion of the warm-up phase
σ+
i,ℓ

2
variance of coalition values in the ℓ-th stratum including player i

σ+
i,ℓ

2
variance of coalition values in the ℓ-th stratum excluding player i

r+i,ℓ range of coalition values in the ℓ-th stratum including player i
r−i,ℓ range of coalition values in the ℓ-th stratum excluding player i
m̄+

i,ℓ number of sampled coalitions after the warm-up phase to update ϕ̂+
i,ℓ

m̄−
i,ℓ number of sampled coalitions after the warm-up phase to update ϕ̂−

i,ℓ

m+
i,ℓ total number of sampled coalitions to update ϕ̂+

i,ℓ

m−
i,ℓ total number of sampled coalitions to update ϕ̂−

i,ℓ
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B Further Pseudocode

B.1 SVARM

Algorithm 3 WarmUp

1: for i ∈ N do
2: Draw A+ and A− i.i.d. from Pw

3: ϕ̂+
i ← ν(A+ ∪ {i})

4: ϕ̂−
i ← ν(A−)

5: end for

The warm-up of SVARM samples for each player i two coalitions A+ and A−, both drawn i.i.d. according to the
weights wS , i.e., the probability distribution Pw, and updates ϕ̂+

i and ϕ̂−
i , which needs a budget of 2n in total. This

ensures that each estimate is based on at least one sample.

B.2 Stratified SVARM

Algorithm 4 Update(A)

1: v ← ν(A)
2: for i ∈ A do
3: ϕ̂+

i,|A|−1 ←
c+
i,|A|−1

·ϕ̂+
i,|A|−1

+v

c+
i,|A|−1

+1

4: c+i,|A|−1 ← c+i,|A|−1 + 1

5: end for
6: for i ∈ N \A do

7: ϕ̂−
i,|A| ←

c−
i,|A|·ϕ̂

−
i,|A|+v

c−
i,|A|+1

8: c−i,|A| ← c−i,|A| + 1

9: end for

Stratified SVARM’s update procedure updates exactly one Shapley subvalue of each player given a coalition A. It
consumes only one budget token by storing the worth of A in the variable v (line 1). The first loop increments for all
players i ∈ A their counter c+i,|A|−1 by 1 and updates the |A| − 1-th positive Shapley subvalue estimate ϕ̂+

i,|A|−1 to
be the average over all values of coalitions which are contained in that stratum of player i. Analogously, the second
loop incerements for all players i not contained in A their counter c−i,|A| by 1 and updates the |A|-th negative Shapley

subvalue estimate ϕ̂+
i,|A| to be the average over all values of coalitions which are contained in that stratum of player i.

Algorithm 5 ExactCalculation(N )

1: for s ∈ {1, n− 1, n} do
2: for A ∈ {S ⊆ N | |S| = s} do
3: Update(A)
4: end for
5: end for

The exact calculation evaluates all coalitions of size 1, n − 1 and n, thus 2n + 1 in total. For each coalition, the
update procedure is called. Effectively, this leads to exactly computed strata ϕ̂+

i,0 = ϕ+
i,0, ϕ̂

+
i,n−2 = ϕ+

i,n−2, ϕ̂
+
i,n−1 =

ϕ+
i,n−1, ϕ̂

−
i,1 = ϕ−

i,1, ϕ̂
−
i,n−1 = ϕ−

i,n−1 and counters c+i,0 = 1, c+i,n−2 = n− 1, c+i,n−1 = 1, c−i,1 = n− 1, c−i,n−1 = 1.
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Algorithm 6 WarmUp+(N )

1: for s = 2, . . . , n− 2 do
2: Draw a permutation π of N u.a.r.
3: for k = 0, . . . , ⌊ns ⌋ − 1 do
4: A← {π(1 + ks), . . . , π(s+ ks)}
5: v ← ν(A)
6: for i ∈ A do
7: ϕ̂+

i,s−1 ← v

8: c+i,s−1 ← 1
9: end for

10: end for
11: if n mod s ̸= 0 then
12: A← {π(n− (n mod s) + 1), . . . , π(n)}
13: Draw B ∈ {S ⊆ N \A | |S| = s− (n mod s)}
14: v ← ν(A ∪B)
15: for i ∈ A do
16: ϕ̂+

i,s−1 ← v

17: c+i,s−1 ← 1
18: end for
19: end if
20: end for

The warm-up for the positive Shapley subvalues iterates over all coalition sizes from 2 to n − 2 (line 1) and draws
for each size s a permutation π of N uniformly at random (line 2). The ordering π is sliced into coalitions of size
s and each of them is used to update only the players contained in that particular coalition (lines 6–9). In particular,
since each coalition A is the first to be observed for the corresponding players’ stratum, the estimate ϕ̂+

i,s−1 is set to
the worth of A and its counter c+i,s−1 is set to 1. Note that for each coalition A of size s only one access to ν is made
to update all affected s many players. In case that n is not a multiple of s, some players less than s are left over at
the end of π (line 11). We group those with other random players to form a coalition of size s, but only update with
the worth of that coalition the left out players (lines 15–18). Note that the warm-up comes without any bias, since for
each player i and stratum estimate ϕ̂i,s each coalition A ⊆ N with i ∈ A and |A| = s has the same probability of
being chosen. Finally, ⌈ns ⌉ many coalitions are evaluated for each size s, resulting in

∑n−2
s=2 ⌈ns ⌉ ∈ O(n log n) total

evaluations.

Algorithm 7 WarmUp−(N )

1: for s = 2, . . . , n− 2 do
2: Draw a permutation π of N u.a.r.
3: for k = 0, . . . , ⌊ns ⌋ − 1 do
4: A← {π(1 + ks), . . . , π(s+ ks)}
5: v ← ν(N \A)
6: for i ∈ A do
7: ϕ̂−

i,n−s ← v

8: c−i,n−s ← 1
9: end for

10: end for
11: if n mod s ̸= 0 then
12: A← {π(n− (n mod s) + 1), . . . , π(n)}
13: Draw B ∈ {S ⊆ N \A | |S| = s− (n mod s)} u.a.r.
14: v ← ν(N \ (A ∪B))
15: for i ∈ A do
16: ϕ̂−

i,n−s ← v

17: c−i,n−s ← 1
18: end for
19: end if
20: end for
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The warm-up for the negative subvalues proceeds analogously to the previously presented positive warm-up. Instead
of ϕ̂+

i,s−1 and c+i,s−1, ϕ̂−
i,n−s and c−i,n−s are updated with the wort ofN \A for all players contained in the coalition A.

B.3 Stratified SVARM+

Algorithm 8 Stratified SVARM+

Input: N , T ∈ N
1: ϕ̂+

i,ℓ, ϕ̂
−
i,ℓ ← 0 for all i ∈ N and ℓ ∈ L

2: c+i,ℓ, c
−
i,ℓ ← 0 for all i ∈ N and ℓ ∈ L

3: ExactCalculation(N )
4: t← 2n+ 1 {consumed budget}
5: ws ← P̃ (s) for all s ∈ {2, . . . , n− 2} {sampling weight of size s}
6: Ls ← ∅ for all s ∈ {2, . . . , n− 2} {sampled coalitions of size s}
7: ms ←

(
n
s

)
for all s ∈ {2, . . . , n− 2} {reamining sets to sample of size s}

8: while t < T and ms > 0 for some s do
9: Draw st ∈ {2, . . . , n− 2} with probability wsms

n−2∑
s′=2

ws′ms′

10: Draw At from {S ⊆ N | |S| = st, S /∈ Lst} u.a.r.
11: Update(At)
12: mst ← mst − 1
13: t← t+ 1
14: end while
15: ϕ̂i ← 1

|{c+i,ℓ|ℓ∈{0,...,n−1}}|

n−1∑
ℓ=0

ϕ̂+
i,ℓ − 1

|{c−i,ℓ|ℓ∈{0,...,n−1}}|

n−1∑
ℓ=0

ϕ̂−
i,ℓ for all i ∈ N

Output: ϕ̂1, . . . , ϕ̂n

Stratified SVARM+ is a modification of Stratified SVARM to deliver better empirical performance with only two
slight changes that do not alter the method on a conceptual level. First, we remove the warm-up since it is less efficient
in the sense that not all players estimates are updated with each sampled coalition. Hence, we only consume a budget
of 2n + 1 due to the exact calculation of the border strata before entering the main loop. Although it is extremely
unlikely for a sufficiently large chosen budget T and an appropriate distribution P̃ over the coalition sizes, it can
happen that some c+i,ℓ or c−i,ℓ are zero. In this case dividing by n the total number of strata per sign per player in line
15 would cause an unnecessary bias. Instead, we average only over all strata for which at least one sample has been
observed, i.e. c+i,ℓ > 0 respectively c−i,ℓ > 0. Second and most important, we sample coalitions without replacement.
We are aware that different ways of implementing this exist (saving substantial amounts of runtime), but we choose
to demonstrate it as simply as possible. Effectively each coalition of size s ∈ {2, . . . , n − 2} is assigned the weight
P̃ (s)

(ns)
, such that coalitions of the same size have the same weight and their weight sums up to P̃ (s). In each time step

t a remaining coalition At is drawn with probability proportional to its weight (its own weight divided by the sum of
all remaining coalitions’ weights). We realize this by a two-step procedure: first the size st is drawn in line 9, then a
remaining coalition of size st is drawn uniformly at random in line 10. For this purpose we keep track of all so far
sampled coalitions of a given size s in Ls (line 6) and the number of coalitions ms of size s left to sample (line 7).
Finally, we added the condition that at least one coalition must be left to sample to the loop in line 8, in case that T is
chosen larger than 2n − 1.
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C SVARM Analysis

Notation:

• Let T̄ = T − 2n.

• Let Ai be a random set with P(Ai = S) = wS for all S ⊆ Ni .

• Let σ+
i

2
= V[ν(Ai ∪ {i})].

• Let σ−
i

2
= V[ν(Ai)].

• Let m̄+
i be number of sampled coalitions A+ after the warm-up phase that contain i.

• Let m̄−
i be number of sampled coalitions A− after the warm-up phase that do not contain i.

• Let m+
i = m̄+

i + 1 be total number of samples for ϕ̂+
i .

• Let m−
i = m̄+

i + 1 be total number of samples for ϕ̂−
i .

• Let r+i = max
S⊆Ni

ν(S ∪ {i})− min
S⊆Ni

ν(S ∪ {i}) be the range of ν(Ai ∪ {i}).

• Let r−i = max
S⊆Ni

ν(S)− min
S⊆Ni

ν(S) be the range of ν(Ai).

Assumptions:

• T̄ is even

• T̄ > 0

C.1 Unbiasedness of Shapley Value Estimates

To start with, we prove that the distributions P+ and P− are well-defined.

Lemma 1. The distributions P+ and P− over P(N ) are well-defined, i.e.,
∑

S⊆N

P+(S) =
∑

S⊆N

P−(S) = 1.

Proof. The statement is easily shown for P+ by grouping the coalitions by size. We derive:
∑

S⊆N

P+(S)

=

n∑

ℓ=1

∑

S⊆N
|S|=ℓ

P+(S)

=

n∑

ℓ=1

∑

S⊆N
|S|=ℓ

1

ℓ
(
n
ℓ

)
Hn

=
1

Hn

n∑

ℓ=1

1

ℓ

= 1.

One can prove the desired property analogously for P−.

For the remainder of this section we assume that T ≥ 2n + 1 such that the warm-up phase can be completed by
SVARM.

Lemma 2. For each player i ∈ N the positive and negative Shapley Value estimates ϕ̂+
i and ϕ̂−

i are unbiased, i.e.,

E
[
ϕ̂+
i

]
= ϕ+

i and E
[
ϕ̂−
i

]
= ϕ−

i .
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Proof. Let m̄+
i be the number of coalitions sampled after the warm-up phase that contain i and m+

i be the total number
of samples used to update ϕ̂+

i , thus m+
i = m̄+

i + 1. Further, let A+
m for m ∈ {1, 3, 5, . . . , T − 1} be the sampled

coalitions for updating the positive Shapley values (ϕ̂+
i )i∈N , then we can write the positive Shapley value of player

i ∈ N as

ϕ̂+
i =

1

m+
i

T/2∑

m̃=1

ν(A+
2m̃−1)I{i∈A+

2m̃−1}

=
1

m+
i


ν(A+

2i−1) +

T/2∑

m̃=n

ν(A+
2m̃−1)I{i∈A+

2m̃−1}


 ,

(19)

where I· denotes the indicator function, and we used that during the warm-up phase (m ≤ 2n) there is for each player
i only one A+

m to update the corresponding positive Shapley value, namely at time step 2i− 1. First, we show for each
odd m ≥ 2n and S ⊆ Ni that P(A+

m = S ∪ {i} | i ∈ A+
m) = wS . Note that since A+

m ∼ P+ (see (6)) it holds that

P(i ∈ A+
m) =

n∑

ℓ=1

P(i ∈ A+
m, |A+

m| = ℓ)

=

n∑

ℓ=1

P(i ∈ A+
m | |A+

m| = ℓ) · P(|A+
m| = ℓ)

=

n∑

ℓ=1

ℓ

n
· 1

ℓ ·Hn−1

=
1

Hn
.

(20)

With this, we derive

P(A+
m = S ∪ {i} | i ∈ A+

m) =
P(A+

m = S ∪ {i})
P(i ∈ A+

i )

= Hn · P+(S ∪ {i})

=
1

(|S + 1|) ·
(

n
|S+1|

)

= wS .

Since A+
2i−1 \ {i} ∼ Pw it holds that P(A+

2i−1 \ {i} = S) = wS for any i ∈ N and S ⊂ Ni.

Taking all of this into account, we derive for ϕ̂+
i using (19):

E
[
ϕ̂+
i | m+

i

]
=

1

m+
i


E

[
ν(A+

2i−1) | m+
i

]
+ E




T/2∑

m̃=n

ν(A+
2m̃−1)I{i∈A+

2m̃−1}
| m+

i






=
1

m+
i

( ∑

S⊆Ni

P(A+
2i−1 \ {i} = S) · ν(S ∪ {i})

+ E
[ T/2∑

m̃=n

I{i∈A+
2m̃−1}

∑

S⊂Ni

P(A+
2m̃−1 = S ∪ {i} | i ∈ A+

2m̃−1) · ν(S ∪ {i}) | m+
i

])

=
1

m+
i


∑

S⊆Ni

wS · ν(S ∪ {i}) + m̄+
i

∑

S⊆Ni

wS · ν(S ∪ {i})




= ϕ+
i .
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Finally, we conclude:

E
[
ϕ̂+
i

]
=

T̄
2∑

m=1

E
[
ϕ̂+
i | m+

i = m
]
· P(m+

i = m)

=

T̄
2∑

m=1

ϕ+
i · P(m+

i = m)

= ϕ+
i .

Analogously we derive E
[
ϕ̂−
i

]
= ϕ−

i by defining m̄−
i , m−

i , and A−
m for m ∈ {2, 4, 6, . . . , T} similarly as for their

positive counterparts.

Theorem 1 For each player i ∈ N the estimate ϕ̂i obtained by SVARM is unbiased, i.e.,

E
[
ϕ̂i

]
= ϕi.

Proof. We apply Lemma 2 and obtain in combination with Equation (4):

E
[
ϕ̂i

]
= E

[
ϕ̂+
i

]
− E

[
ϕ̂−
i

]

= ϕ+
i − ϕ−

i

= ϕi.

C.2 Sample Numbers

Lemma 3. For any i ∈ N the expected number of updates of ϕ̂+
i and ϕ̂−

i after the warm-up phase is

E
[
m̄+

i

]
= E

[
m̄−

i

]
=

T̄

2Hn
.

Proof. First, we observe that m̄+
i is binomially distributed with m̄+

i ∼ Bin
(

T̄
2 ,

1
Hn

)
because T̄

2 many pairs are

sampled and each independently sampled coalition A+ contains the player i with probability H−1
n , see (20).

Consequently, we obtain

E
[
m̄+

i

]
=

T̄

2Hn
.

Similarly, we observe that m−
i is also binomially distributed with m−

i ∼ Bin
(

T̄
2 ,

1
Hn

)
, leading to the same expected

number of updates.

C.3 Variance and Squared Error

Lemma 4. The variance of any player’s Shapley value estimate ϕ̂i given the number of samples m+
i and m−

i is exactly

V
[
ϕ̂i | m+

i ,m
−
i

]
=

σ+
i

2

m+
i

+
σ−
i

2

m−
i

.

Proof. We first decompose the variance of ϕ̂i into the variances of ϕ̂+
i and ϕ̂−

i and their covariance:

V
[
ϕ̂i | m+

i ,m
−
i

]
=
(
V
[
ϕ̂+
i | m+

i

]
+ V

[
ϕ̂−
i | m−

i

]
− 2Cov

(
ϕ̂+
i , ϕ̂

−
i | m+

i ,m
−
i

))
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We derive for the variance of ϕ̂+
i :

V
[
ϕ̂+
i | m+

i

]
=

1

m+
i

2

m̄+
i∑

m=0

V
[
ν(A+

i,m)
]

=
σ+
i

2

m+
i

.

Similarly we obtain for ϕ̂−
i :

V
[
ϕ̂−
i | m−

i

]
=

σ−
i

2

m−
i

.

The covariance of ϕ̂+
i and ϕ̂−

i is zero because both are updated with sampled coalitions drawn independently of each
other. Thus, we conclude:

V
[
ϕ̂i | m+

i ,m
−
i

]
=

σ+
i

2

m+
i

+
σ−
i

2

m−
i

.

Lemma 5. For the sample numbers of any player i ∈ N holds

E
[

1

m+
i

]
= E

[
1

m−
i

]
≤ 2Hn

T̄
.

Proof. By combining Equation (3.4) in Chao and Strawderman [1972]:

E
[

1

1 +X

]
=

1− (1− p)m+1

(m+ 1)p
≤ 1

mp
=

1

E[X]
,

for any binomially distributed random variable X ∼ Bin(m, p) with Lemma 3, we obtain:

E
[

1

m+
i

]
= E

[
1

1 + m̄+
i

]
≤ 1

E
[
m̄+

i

] = 2Hn

T̄
.

Notice that m+
i and m−

i are identically distributed.

Theorem 2 The variance of any player’s Shapley value estimate ϕ̂i is bounded by

V
[
ϕ̂i

]
≤ 2Hn

T̄

(
σ+
i

2
+ σ−

i

2
)
.

Proof. The combination of Lemma 4 and Lemma 5 yields:

V
[
ϕ̂i

]
= E

[
V
[
ϕ̂i | m+

i ,m
−
i

]]

= E

[
σ+
i

2

m+
i

+
σ−
i

2

m−
i

]

= σ+
i

2E
[

1

m+
i

]
+ σ−

i

2
[

1

m−
i

]

≤ 2Hn

T̄

(
σ+
i

2
+ σ−

i

2
)
.

Corollary 1 The expected squared error of any player’s Shapley value estimate is bounded by

E
[(

ϕ̂i − ϕi

)2]
≤ 2Hn

T̄

(
σ+
i

2
+ σ−

i

2
)
.

21



Approximating the Shapley Value without Marginal Contributions

Proof. The bias-variance decomposotion allows us to plug in the unbiasedness of ϕ̂i shown in Theorem 1 and the
bound on the variance from

E
[(

ϕ̂i − ϕi

)2]
=
(
E
[
ϕ̂i

]
− ϕi

)2
+ V

[
ϕ̂i

]

≤ 2Hn

T̄

(
σ+
i

2
+ σ−

i

2
)
.

C.4 Probabilistic Bounds

Theorem 3 Fix any player i ∈ N and ε > 0. The probability that the Shapley value estimate ϕ̂i deviates from ϕi by
a margin of ε or greater is bounded by

P
(
|ϕ̂i − ϕi| ≥ ε

)
≤ 2Hn

ε2T̄

(
σ−
i

2
+ σ+

i

2
)
.

Proof. The bound on the variance of ϕ̂i in Theorem 2 allows us to apply Chebyshev’s inequality:

P
(
|ϕ̂i − ϕi| ≥ ε

)
≤

V
[
ϕ̂i

]

ε2
≤ 2Hn

ε2T̄

(
σ−
i

2
+ σ+

i

2
)
.

Corollary 3. Fix any player i ∈ N and δ ∈ (0, 1]. The Shapley value estimate ϕ̂i deviates from ϕi by a margin of ε
or greater with probability not greater than δ, i.e.,

P
(
|ϕ̂i − ϕi| ≥ ε

)
≤ δ for ε =

√
2Hn

δT̄

(
σ+
i

2
+ σ−

i

2
)
.

Lemma 6. For any fixed player i ∈ N and ε > 0 holds

P
(
|ϕ̂+

i − ϕ+
i | ≥ ε | m+

i

)
≤ 2 exp

(
−2m+

i ε
2

r+i
2

)
and P

(
|ϕ̂−

i − ϕ−
i | ≥ ε | m−

i

)
≤ 2 exp

(
−2m+

i ε
2

r+i
2

)
.

Proof. We prove the statement for ϕ̂i by making use of Hoeffding’s inequality in combination with the unbiasedness
of the positive and negative Shapley value estimates shown in Lemma 2. The proof for ϕ̂−

i is analogous.

P
(
|ϕ̂+

i − ϕ+
i | ≥ ε | m+

i

)
= P

(
|ϕ̂+

i − E
[
ϕ̂i+

]
| | m+

i

)

= P



∣∣∣∣∣

m̄+
i∑

m=0

ν(A+
i,m)− E




m̄+
i∑

m=0

ν(A+
i,m)



∣∣∣∣∣ ≥ m+

i ε | m+
i




≤ 2 exp

(
−2m+

i ε
2

r+i
2

)
.

Lemma 7. For any fixed player i ∈ N and ε > 0 holds:

• P
(
|ϕ̂+

i − ϕ+
i | ≥ ε

)
≤ exp

(
− T̄

4Hn
2

)
+ 2

exp

(
− 2ε2

r
+
i

2

)⌊ T̄
4Hn ⌋

exp

(
2ε2

r
+
i

2

)
−1

,

• P
(
|ϕ̂−

i − ϕ−
i | ≥ ε

)
≤ exp

(
− T̄

4Hn
2

)
+ 2

exp

(
− 2ε2

r
−
i

2

)⌊ T̄
4Hn ⌋

exp

(
2ε2

r
−
i

2

)
−1

.
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Proof. We prove the statement for ϕ̂+
i . The proof for ϕ̂−

i is analogous. To begin with, we derive with the help of
Hoeffding’s inequality for binomial distributions a bound for the probability of m̄+

i not exceeding T̄
4Hn

:

P
(
m̄+

i ≤
T̄

4Hn

)
≤ P

(
E
[
m̄+

i

]
− m̄+

i ≥ E
[
m̄+

i

]
− T̄

4Hn

)

≤ exp


−

4
(
E
[
m̄+

i

]
− T̄

4Hn

)2

T̄




≤ exp

(
− T̄

4Hn
2

)
,

where we used the lower bound on E
[
m̄+

i

]
shown in Lemma 3. Next, we derive with the help of Lemma 6 a statement

of technical nature to be used later:
T̄
2∑

m=⌊ T̄
4Hn
⌋+1

P
(
|ϕ̂+

i − ϕ+
i | ≥ ε | m+

i = m
)

≤ 2

T̄
2∑

m=⌊ T̄
4Hn
⌋+1

exp

(
−2mε2

r+i
2

)

= 2

T̄
2∑

m=0

exp

(
− 2ε2

r+i
2

)m

− 2

⌊ T̄
4Hn
⌋∑

m=0

exp

(
− 2ε2

r+i
2

)m

= 2

exp

(
− 2ε2

r+i
2

)⌊ T̄
4Hn
⌋
− exp

(
− ε2

r+i
2

)T̄

exp

(
2ε2

r+i
2

)
− 1

≤ 2

exp

(
− 2ε2

r+i
2

)⌊ T̄
4Hn
⌋

exp

(
2ε2

r+i
2

)
− 1

.

At last, putting both findings together, we derive our claim:

P
(
|ϕ̂+

i − ϕ+
i | ≥ ε

)

=

T̄
2∑

m=1

P
(
|ϕ̂+

i − ϕ+
i | ≥ ε | m+

i = m
)
· P
(
m+

i = m
)

=

⌊ T̄
4Hn
⌋∑

m=1

P
(
|ϕ̂+

i − ϕ+
i | ≥ ε | m+

i = m
)
· P
(
m+

i = m
)
+

T̄
2∑

m=⌊ T̄
4Hn
⌋+1

P
(
|ϕ̂+

i − ϕ+
i | ≥ ε | m+

i = m
)
· P
(
m+

i = m
)

≤ P
(
m̄+

i ≤
⌊

T̄

4Hn

⌋)
+

T̄
2∑

m=⌊ T̄
4Hn
⌋+1

P
(
|ϕ̂+

i − ϕ+
i | ≥ ε | m+

i = m
)

≤ exp

(
− T̄

4Hn
2

)
+ 2

exp

(
− 2ε2

r+i
2

)⌊ T̄
4Hn
⌋

exp

(
2ε2

r+i
2

)
− 1

.
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Theorem 4 For any fixed player i ∈ N and ε > 0 the probability that the Shapley value estimate ϕ̂i deviates from ϕi

by a margin of ε or greater is bounded by

P
(
|ϕ̂i − ϕi| ≥ ε

)
≤ 2 exp

(
− T̄

4Hn
2

)
+ 4

exp
(
− 2ε2

(r+i +r−i )2

)⌊ T̄
4Hn
⌋

exp
(

2ε2

(r+i +r−i )2

)
− 1

.

Proof.

P
(
|ϕ̂i − ϕi| ≥ ε

)

= P
(
|(ϕ̂+

i − ϕ+
i ) + (ϕ−

i − ϕ̂−
i )| ≥ ε

)

≤ P
(
|ϕ̂+

i − ϕ+
i |+ |ϕ̂−

i − ϕ−
i | ≥ ε

)

≤ P
(
|ϕ̂+

i − ϕ+
i | ≥

εr+i
r+i + r−i

)
+ P

(
|ϕ̂−

i − ϕ−
i | ≥

εr−i
r+i + r−i

)

≤ 2 exp

(
− T̄

4Hn
2

)
+ 4

exp
(
− 2ε2

(r+i +r−i )2

)⌊ T̄
4Hn
⌋

exp
(

2ε2

(r+i +r−i )2

)
− 1

.
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D Stratified SVARM Analysis

Notation:

• Let L = {0, . . . , n− 1}, L+ = {1, . . . , n− 3}, and L− = {2, . . . , n− 2}.

• Let W = 2n+ 1 + 2
n−2∑
s=2
⌈ns ⌉ denote the length of the warm-up phase.

• Let T̄ = T −W be the available steps after the warm-up phase.

• Let m+
i,ℓ = #{t | i ∈ At, |At| = ℓ+ 1} be the total number of samples used to update ϕ̂+

i,ℓ.

• Let m−
i,ℓ = #{t | i /∈ At, |At| = ℓ} be the total number of samples used to update ϕ̂−

i,ℓ.

• Let m̄+
i,ℓ = #{t | i ∈ At, |At| = ℓ + 1, t > W} be the number of samples used to update ϕ̂+

i,ℓ after the
warm-up phase.

• Let m̄−
i,ℓ = #{t | i /∈ At, |At| = ℓ, t > W} be the number of samples used to update ϕ̂−

i,ℓ after the warm-up
phase.

• Let A+
i,ℓ,k be the k-th set used to update ϕ+

i,ℓ and A−
i,ℓ,k the k-th set used to update ϕ−

i,ℓ.

• Let Ai,ℓ be a random set with P(Ai,ℓ = S) = 1

(n−1
ℓ )

for all S ⊆ N \ {i} with |S| = ℓ.

• Let ϕ̂+
i,ℓ =

1
m+

i,ℓ

m+
i,ℓ∑

k=1

ν(A+
i,ℓ,k) and ϕ̂−

i,ℓ =
1

m−
i,ℓ

m−
i,ℓ∑

k=1

ν(A−
i,ℓ,k).

• Let ϕ̂i =
1
n

n−1∑
ℓ=0

ϕ̂+
i,ℓ − ϕ̂−

i,ℓ.

• Let σ+
i,ℓ

2
= V [ν(Ai,ℓ ∪ {i})] and σ−

i,ℓ

2
= V [ν(Ai,ℓ)].

• Let r+i,ℓ = max
S⊆N :i/∈S,|S|=ℓ

ν(S ∪ {i})− min
S⊆N :i/∈S,|S|=ℓ

ν(S ∪ {i}) be the range of ν(A+
i,ℓ,k).

• Let r−i,ℓ = max
S⊆N :i/∈S,|S|=ℓ

ν(S)− min
S⊆N :i/∈S,|S|=ℓ

ν(S) be the range of ν(A−
i,ℓ,k).

• Let R+
i =

n−3∑
ℓ=1

r+i,ℓ and R−
i =

n−2∑
ℓ=2

r−i,ℓ.

Assumptions:

• n ≥ 4, for n ≤ 3 the algorithm computes all Shapley values exactly.

D.1 Unbiasedness of Shapley Value Estimates

Lemma 8. Due to the exact calculation, the following estimates are exact for all i ∈ N :

• ϕ̂+
i,0 = ϕ+

i,0 = ν({i})

• ϕ̂+
i,n−2 = ϕ+

i,n−2 = 1
n−1

∑
j∈N :j ̸=i

ν(N \ {j})

• ϕ̂+
i,n−1 = ϕ+

i,n−1 = ν(N )

• ϕ̂−
i,0 = ϕ−

i,0 = ν(∅) = 0

• ϕ̂−
i,1 = ϕ−

i,1 = 1
n−1

∑
j∈N :j ̸=i

ν({j})

• ϕ̂−
i,n−1 = ϕ−

i,n−1 = ν(N \ {i})

Lemma 9. All remaining estimates that are not calculated exactly are unbiased, i.e., for all i ∈ N :
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• E
[
ϕ̂+
i,ℓ

]
= ϕ+

i,ℓ for all ℓ ∈ L+

• E
[
ϕ̂−
i,ℓ

]
= ϕ−

i,ℓ for all ℓ ∈ L−

Proof. We prove the statement only for ϕ̂+
i,ℓ as the proof for ϕ̂−

i,ℓ is analogous. Fix any i ∈ N and ℓ ∈ L+. As soon
as the size st of the to be sampled coalition |At| is fixed, At is sampled uniformly from {S ⊆ N | |S| = st}. This
allows us to state for every At and any S ⊆ N with |S| = ℓ+ 1 and i /∈ S:

P (At = S ∪ {i} | i ∈ At, |At| = ℓ+ 1) =
1(

n−1
ℓ

) .

Continuing, we derive for the expectation of ϕ̂+
i,ℓ given the number of samples m+

i,ℓ:

E
[
ϕ̂+
i,ℓ | m+

i,ℓ

]

= E


 1

m+
i,ℓ

m+
i,ℓ∑

k=1

ν(A+
i,ℓ,k)

∣∣∣∣∣m
+
i,ℓ




=
1

m+
i,ℓ

m+
i,ℓ∑

k=1

E
[
ν(A+

i,ℓ,k) | m+
i,ℓ

]

=
1

m+
i,ℓ

m+
i,ℓ∑

k=1

∑

S⊆N\{i}:|S|=ℓ

P
(
A+

i,ℓ,k = S ∪ {i} | i ∈ A+
i,ℓ,k, |A+

i,ℓ,k| = ℓ+ 1
)
· ν(S ∪ {i})

=
1

m+
i,ℓ

m+
i,ℓ∑

k=1

∑

S⊆N\{i}:|S|=ℓ

1(
n−1
ℓ

) · ν(S ∪ {i})

=
1

m+
i,ℓ

m+
i,ℓ∑

k=1

ϕ+
i,ℓ

= ϕ+
i,ℓ.

Note that the term is well defined, since m+
i,ℓ ∈ {1, . . . , T} due to the warm-up phase. We conclude:

E
[
ϕ̂+
i,ℓ

]
=

T∑

m=1

E
[
ϕ̂+
i,ℓ | m+

i,ℓ = m
]
· P
(
m+

i,ℓ = m
)

=

T∑

m=1

ϕ+
i,ℓ · P

(
m+

i,ℓ = m
)

= ϕ+
i,ℓ.

Theorem 5 The Shapley value estimates for all i ∈ N are unbiased, i.e.,

E
[
ϕ̂i

]
= ϕi.

Proof. By applying Lemma 8 and Lemma 9 we obtain:

E
[
ϕ̂i

]
=

1

n

n−1∑

ℓ=0

E
[
ϕ̂+
i,ℓ

]
− E

[
ϕ̂−
i,ℓ

]

=
1

n

n−1∑

ℓ=0

ϕ+
i,ℓ − ϕ−

i,ℓ

= ϕi.
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D.2 Sample numbers

Lemma 10. For any i ∈ N the numer of updates m̄+
i,ℓ and m−

i,ℓ are binomially distributed with

m̄+
i,ℓ ∼ Bin

(
T̄ ,

ℓ+ 1

n
· P̃ (ℓ+ 1)

)
for all ℓ ∈ L+

and m̄−
i,ℓ ∼ Bin

(
T̄ ,

n− ℓ

n
· P̃ (ℓ)

)
for all ℓ ∈ L−.

Proof. We argue that there are T̄ many independent time steps in which ϕ̂+
i,ℓ can be updated. If |At| = ℓ+ 1 then i is

included in At with a probability of ℓ+1
n due to the uniform sampling of At given that its size st is fixed, leading to an

update. Since the choice of size and members of the set At are independent, the probability of ϕ̂+
i,ℓ being updated in

time step t is ℓ+1
n · P̃ (ℓ+ 1). The same argument holds true for ϕ̂−

i,ℓ with an update probability of n−ℓ
n · P̃ (ℓ) in each

time step.

Lemma 11. For any i ∈ N the expected number of updates of ϕ̂+
i,ℓ and ϕ̂−

i,ℓ after the warm-up phase is at least

E
[
m̄+

i,ℓ

]
≥ T̄

2n log n
for all ℓ ∈ L+

and E
[
m̄−

i,ℓ

]
≥ T̄

2n log n
for all ℓ ∈ L−.

Proof. In the following we distinguish between different cases, depending on the parity of n and size of ℓ. We will
use the bound Hn ≤ log n+ 1 and the following inequalities multiple times which hold true for n ≥ 4:

1

Hn−1
2
− 1
≥ 1

log n
and

n log n− 1

n
(
Hn

2 −1 − 1
) ≥ 1.

We begin with the case of n ∤ 2 and ℓ ≤ n−1
2 − 1:

E
[
m̄+

i,ℓ

]
= T̄ · ℓ+ 1

n
· P̃ (ℓ+ 1) E

[
m̄−

i,ℓ

]
= T̄ · n− ℓ

n
· P̃ (ℓ)

=
T̄

2n
· 1

Hn−1
2
− 1

=
T̄

2n
· n− ℓ

ℓ
· 1

Hn−1
2
− 1

≥ T̄

2n log n
≥ T̄

2n log n

For n ∤ 2 and ℓ = n−1
2 we obtain:

E
[
m̄+

i,ℓ

]
= T̄ · ℓ+ 1

n
· P̃ (ℓ+ 1) E

[
m̄−

i,ℓ

]
= T̄ · n− ℓ

n
· P̃ (ℓ)

=
T̄

2n
· ℓ+ 1

n− ℓ− 1
· 1

Hn−1
2
− 1

=
T̄

2n
· n− ℓ

ℓ
· 1

Hn−1
2
− 1

≥ T̄

2n log n
≥ T̄

2n log n
.
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For n ∤ 2 and ℓ ≥ n+1
2 we obtain:

E
[
m̄+

i,ℓ

]
= T̄ · ℓ+ 1

n
· P̃ (ℓ+ 1) E

[
m̄−

i,ℓ

]
= T̄ · n− ℓ

n
· P̃ (ℓ)

=
T̄

2n
· ℓ+ 1

n− ℓ− 1
· 1

Hn−1
2
− 1

=
T̄

2n
· 1

Hn−1
2
− 1

≥ T̄

2n log n
≥ T̄

2n log n

Switching to n | 2, we start with ℓ = n
2 − 1:

E
[
m̄+

i,ℓ

]
= T̄ · ℓ+ 1

n
· P̃ (ℓ+ 1) E

[
m̄−

i,ℓ

]
= T̄ · n− ℓ

n
· P̃ (ℓ)

=
T̄

2n log n
=

T̄

2n log n
· n− ℓ

ℓ
· n log n− 1

n
(
Hn

2 −1 − 1
)

≥ T̄

2n log n

For n | 2 and ℓ = n
2 we derive:

E
[
m̄+

i,ℓ

]
= T̄ · ℓ+ 1

n
· P̃ (ℓ+ 1) E

[
m̄−

i,ℓ

]
= T̄ · n− ℓ

n
· P̃ (ℓ)

=
T̄

2n log n
· ℓ+ 1

n− ℓ− 1
· n log n− 1

n
(
Hn

2 −1 − 1
) =

T̄

2n log n

≥ T̄

2n log n

For n | 2 and ℓ ≤ n
2 − 2 we derive:

E
[
m̄+

i,ℓ

]
= T̄ · ℓ+ 1

n
· P̃ (ℓ+ 1) E

[
m̄−

i,ℓ

]
= T̄ · n− ℓ

n
· P̃ (ℓ)

=
T̄

2n log n
· n log n− 1

n
(
Hn

2 −1 − 1
) =

T̄

2n log n
· n− ℓ

ℓ
· n log n− 1

n
(
Hn

2 −1 − 1
)

≥ T̄

2n log n
≥ T̄

2n log n

Finally, n | 2 and ℓ ≥ n
2 + 1 yields:

E
[
m̄+

i,ℓ

]
= T̄ · ℓ+ 1

n
· P̃ (ℓ+ 1) E

[
m̄−

i,ℓ

]
= T̄ · n− ℓ

n
· P̃ (ℓ)

=
T̄

2n log n
· ℓ+ 1

n− ℓ− 1
· n log n− 1

n
(
Hn

2 −1 − 1
) =

T̄

2n log n
· n log n− 1

n
(
Hn

2 −1 − 1
)

≥ T̄

2n log n
≥ T̄

2n log n

D.3 Variance and Expected Squared Error

Lemma 12. The variance of any player’s Shapley value estimate ϕ̂i given the number of samples m+
i,ℓ and m−

i,ℓ for
all ℓ ∈ L is given by

V
[
ϕ̂i

∣∣∣
(
m+

i,ℓ

)
ℓ∈L+

,
(
m−

i,ℓ

)
ℓ∈L−

]
=

1

n2

n−3∑

ℓ=1

σ+
i,ℓ

2

m+
i,ℓ

+
σ−
i,ℓ+1

2

m−
i,ℓ+1

.
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Proof. We first decompose the variance of ϕ̂i into the variances of ϕ̂+
i and ϕ̂−

i and their covariance:

V
[
ϕ̂i |

(
m+

i,ℓ

)
ℓ∈L+

,
(
m−

i,ℓ

)
ℓ∈L−

]

= V
[
ϕ̂+
i |
(
m+

i,ℓ

)
ℓ∈L+

]
+ V

[
ϕ̂−
i |
(
m−

i,ℓ

)
ℓ∈L−

]
− 2Cov

(
ϕ̂+
i , ϕ̂

−
i |
(
m+

i,ℓ

)
ℓ∈L+

,
(
m−

i,ℓ

)
ℓ∈L−

)

= V
[
ϕ̂+
i |
(
m+

i,ℓ

)
ℓ∈L+

]
+ V

[
ϕ̂−
i |
(
m−

i,ℓ

)
ℓ∈L−

]
.

where we used the observation that ϕ̂+
i and ϕ̂−

i are independent. We derive for ϕ̂+
i :

V
[
ϕ̂+
i |
(
m+

i,ℓ

)
ℓ∈L+

]
=

1

n2

n−3∑

ℓ=1

V
[
ϕ̂+
i,ℓ | m+

i,ℓ

]
+
∑

ℓ ̸=ℓ′

Cov
(
ϕ̂+
i,ℓ, ϕ̂

+
i,ℓ′ | m+

i,ℓ,m
+
i,ℓ′

)

=
1

n2

n−3∑

ℓ=1

V
[
ϕ̂+
i,ℓ | m+

i,ℓ

]

=
1

n2

n−3∑

ℓ=1

σ+
i,ℓ

2

m+
i,ℓ

,

where we used the observation that ϕ̂+
i,ℓ and ϕ̂+

i,ℓ′ are independent for ℓ ̸= ℓ′. Note that ϕ̂+
i,0, ϕ̂+

i,n−2, ϕ̂+
i,n−1, ϕ̂−

i,0, ϕ̂−
i,1,

and ϕ̂−
i,n−1 are constants without variance. A similar result can be obtained for ϕ̂−

i . Putting our intermediate results
together yields:

V
[
ϕ̂i

∣∣∣
(
m+

i,ℓ

)
ℓ∈L+

,
(
m−

i,ℓ

)
ℓ∈L−

]

= V
[
ϕ̂+
i |
(
m+

i,ℓ

)
ℓ∈L+

]
+ V

[
ϕ̂−
i |
(
m−

i,ℓ

)
ℓ∈L−

]

=
1

n2

n−3∑

ℓ=1

σ+
i,ℓ

2

m+
i,ℓ

+
1

n2

n−2∑

ℓ=2

σ−
i,ℓ

2

m−
i,ℓ

=
1

n2

n−3∑

ℓ=1

σ+
i,ℓ

2

m+
i,ℓ

+
σ−
i,ℓ+1

2

m−
i,ℓ+1

.

Lemma 13. For any i ∈ N holds

E

[
1

m+
i,ℓ

]
≤ 2n log n

T̄
for all ℓ ∈ L+ and E

[
1

m−
i,ℓ

]
≤ 2n log n

T̄
for all ℓ ∈ L−.

Proof. We prove the result only for m+
i,ℓ since the proof for m−

i,ℓ is analogous. By combining Equation (3.4) in Chao
and Strawderman [1972]:

E
[

1

1 +X

]
=

1− (1− p)m+1

(m+ 1)p
≤ 1

mp
=

1

E[X]
,

for any binomially distributed random variable X ∼ Bin(m, p) with Lemma 10 and Lemma 11, we obtain:

E

[
1

m+
i,ℓ

]
= E

[
1

1 + m̄+
i,ℓ

]
≤ 1

E
[
m̄+

i,ℓ

] ≤ 2n log n

T̄
.

Theorem 6 For P̃ as chosen above the variance of any player’s Shapley value estimate ϕ̂i is bounded by

V
[
ϕ̂i

]
≤ 2 log n

nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.
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Proof. The combination of Lemma 12 and Lemma 13 yields:

V
[
ϕ̂i

]
= E

[
V
[
ϕ̂i

∣∣∣
(
m+

i,ℓ

)
ℓ∈L+

,
(
m−

i,ℓ

)
ℓ∈L−

]]

≤ E

[
1

n2

n−3∑

ℓ=1

σ+
i,ℓ

2

m+
i,ℓ

+
σ−
i,ℓ+1

2

m−
i,ℓ+1

]

=
1

n2

n−3∑

ℓ=1

σ+
i,ℓ

2 · E
[

1

m+
i,ℓ

]
+ σ−

i,ℓ+1

2 · E
[

1

m−
i,ℓ+1

]

≤ 2 log n

nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

Corollary 2 For P̃ as chosen above the MSE of any player’s Shapley value estimate ϕ̂i is bounded by

E
[(

ϕ̂i − ϕi

)2]
≤ 2 log n

nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

Proof. Using the bias-variance decomposition, the unbiasedness of ϕ̂i shown in Theorem 5, and the bound on the
variance from Theorem 6 we obtain that:

E
[(

ϕ̂i − ϕi

)2]
=
(
E
[
ϕ̂i

]
− ϕi

)2
+ V

[
ϕ̂i

]

≤ 2 log n

nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

D.4 Probabilistic Bounds

Theorem 7 Fix any player i ∈ N and ε > 0. For P̃ as above the probability that the estimate ϕ̂i deviates from ϕi by
a margin of ε or greater is bounded by

P
(
|ϕ̂i − ϕ| ≥ ε

)
≤ 2 log n

ε2nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

Proof. The bound on the variance of ϕ̂i in Theorem 6 allows us to apply Chebyshev’s inequality:

P
(
|ϕ̂i − ϕ| ≥ ε

)
≤

V
[
ϕ̂i

]

ε2
≤ 2 log n

ε2nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

Corollary 4. Fix any player i ∈ N and δ ∈ (0, 1]. The estimate ϕ̂i deviates from ϕi by a margin of ε or greater with
probability not greater than δ, i.e.,

P
(
|ϕ̂i − ϕi| ≥ ε

)
≤ δ for ε =

√√√√2 log n

δnT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

Lemma 14. For any i ∈ N and fixed ε > 0 holds:

• P(|ϕ̂+
i,ℓ − ϕ+

i,ℓ| ≥ ε | m+
i,ℓ) ≤ 2 exp

(
− 2m+

i,ℓε
2

r+i,ℓ
2

)
for all ℓ ∈ L+
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• P(|ϕ̂−
i,ℓ − ϕ−

i,ℓ| ≥ ε | m−
i,ℓ) ≤ 2 exp

(
− 2m−

i,ℓε
2

r−i,ℓ
2

)
for all ℓ ∈ L−

Proof. We prove the statement for ϕ̂+
i,ℓ by making use of Hoeffding’s inequality in combination with the unbiasedness

of the strata estimates shown in Lemma 9. The proof for ϕ̂−
i,ℓ is analogous.

P(|ϕ̂+
i,ℓ − ϕ+

i,ℓ| ≥ ε | m+
i,ℓ)

= P
(
|ϕ̂+

i,ℓ − E[ϕ̂+
i,ℓ]| ≥ ε | m+

i,ℓ

)

= P



∣∣∣∣∣

m+
i,ℓ∑

k=1

ν(A+
i,ℓ,k)− E



m+

i,ℓ∑

k=1

ν(A+
i,ℓ,k)



∣∣∣∣∣ ≥ m+

i,ℓε | m+
i,ℓ




≤ 2 exp

(
−
2m+

i,ℓε
2

r+i,ℓ
2

)
.

Lemma 15. For any i ∈ N and fixed ε > 0 holds:

• P
(
|ϕ̂+

i,ℓ − ϕ+
i,ℓ| ≥ ε

)
≤ exp

(
− T̄

8n2(logn)2

)
+ 2

exp

(
− 2ε2

r
+
i,ℓ

2

)⌊ T̄
4n log n⌋

exp

(
2ε2

r
+
i,ℓ

2

)
−1

for all ℓ ∈ L+

• P
(
|ϕ̂−

i,ℓ − ϕ−
i,ℓ| ≥ ε

)
≤ exp

(
− T̄

8n2(logn)2

)
+ 2

exp

(
− 2ε2

r
−
i,ℓ

2

)⌊ T̄
4n log n⌋

exp

(
2ε2

r
−
i,ℓ

2

)
−1

for all ℓ ∈ L−

Proof. We prove the statement for ϕ̂+
i,ℓ. The proof for ϕ̂−

i,ℓ is analogous. To begin with, we derive with the help of

Hoeffding’s inequality for binomial distributions a bound for the probability of m̄+
i,ℓ not exceeding T̄

4n logn :

P
(
m̄+

i,ℓ ≤
T̄

4n log n

)

≤ P
(
E
[
m̄+

i,ℓ

]
− m̄+

i,ℓ ≥ E
[
m̄+

i,ℓ

]
− T̄

4n log n

)

≤ exp


−

2
(
E
[
m̄+

i,ℓ

]
− T̄

4n logn

)2

T̄




≤ exp

(
− T̄

8n2(log n)2

)
,
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where we used the lower bound on E
[
m̄+

i,ℓ

]
shown in Lemma 11. Next, we derive with the help of Lemma 14 a

statement of technical nature to be used later:

T̄∑

m=⌊ T̄
4n log n⌋+1

P
(
|ϕ̂+

i,ℓ − ϕ+
i,ℓ| ≥ ε | m+

i,ℓ = m
)

≤ 2

T̄∑

m=⌊ T̄
4n log n⌋+1

exp

(
−2mε2

r+i,ℓ
2

)

= 2

T̄∑

m=0

exp

(
− 2ε2

r+i,ℓ
2

)m

− 2

⌊ T̄
4n log n⌋∑

m=0

exp

(
− 2ε2

r+i,ℓ
2

)m

= 2

exp

(
− 2ε2

r+i,ℓ
2

)⌊ T̄
4n log n⌋

− exp

(
− 2ε2

r+i,ℓ
2

)T̄

exp

(
2ε2

r+i,ℓ
2

)
− 1

≤ 2

exp

(
− 2ε2

r+i,ℓ
2

)⌊ T̄
4n log n⌋

exp

(
2ε2

r+i,ℓ
2

)
− 1

.

At last, putting both findings together, we derive our claim:

P
(
|ϕ̂+

i,ℓ − ϕ+
i,ℓ| ≥ ε

)

=

T̄∑

m=1

P
(
|ϕ̂+

i,ℓ − ϕ+
i,ℓ| ≥ ε | m+

i,ℓ = m
)
· P
(
m+

i,ℓ = m
)

=

⌊ T̄
4n log n⌋∑

m=1

P
(
|ϕ̂+

i,ℓ − ϕ+
i,ℓ| ≥ ε | m+

i,ℓ = m
)
· P
(
m+

i,ℓ = m
)

+

T̄∑

m=⌊ T̄
4n log n⌋+1

P
(
|ϕ̂+

i,ℓ − ϕ+
i,ℓ| ≥ ε | m+

i,ℓ = m
)
· P
(
m+

i,ℓ = m
)

≤ P
(
m̄+

i,ℓ ≤
⌊

T̄

4n log n

⌋)
+

T̄∑

m=⌊ T̄
4n log n⌋+1

P
(
|ϕ̂+

i,ℓ − ϕ+
i,ℓ| ≥ ε | m+

i,ℓ = m
)

≤ exp

(
− T̄

8n2(log n)2

)
+ 2

exp

(
− 2ε2

r+i,ℓ
2

)⌊ T̄
4n log n⌋

exp

(
2ε2

r+i,ℓ
2

)
− 1

.

Lemma 16. For any i ∈ N and fixed ε > 0 the probabilities that the estimates ϕ̂+
i and ϕ̂−

i deviate from ϕ+
i ,

respectively ϕ−
i are bounded by:

• P
(
|ϕ̂+

i − ϕ+
i | ≥ ε

)
≤ (n− 3)


exp

(
− T̄

8n2(logn)2

)
+ 2

exp

(
− 2ε2n2

R
+
i

2

)⌊ T̄
4n log n⌋

exp

(
2ε2n2

R
+
i

2

)
−1


,
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• P
(
|ϕ̂−

i − ϕ−
i | ≥ ε

)
≤ (n− 3)


exp

(
− T̄

8n2(logn)2

)
+ 2

exp

(
− 2ε2n2

R
−
i

2

)⌊ T̄
4n log n⌋

exp

(
2ε2n2

R
−
i

2

)
−1


 .

Proof. We prove the statement for ϕ̂+
i using Lemma 15. The proof for ϕ̂−

i is analogous.

P
(
|ϕ̂+

i − ϕ+
i | ≥ ε

)

= P

(∣∣∣ 1
n

n−1∑

ℓ=0

ϕ̂+
i,ℓ − ϕ+

i,ℓ

∣∣∣ ≥ ε

)

≤ P

(
1

n

n−1∑

ℓ=0

|ϕ̂+
i,ℓ − ϕ+

i,ℓ| ≥ ε

)

= P

(
n−3∑

ℓ=1

|ϕ̂+
i,ℓ − ϕ+

i,ℓ| ≥ εn

)

≤
n−3∑

ℓ=1

P

(
|ϕ̂+

i,ℓ − ϕ+
i,ℓ| ≥

εnr+i,ℓ
R+

)

≤ (n− 3)


exp

(
− T̄

8n2(log n)2

)
+ 2

exp
(
− 2ε2n2

R+2

)⌊ T̄
4n log n⌋

exp
(

2ε2n2

R+2

)
− 1




Theorem 8 For any i ∈ N and fixed ε > 0 the probability that the estimate ϕ̂i deviates from ϕi by a margin of ε or
greater is bounded by

P
(
|ϕ̂i − ϕi| ≥ ε

)
≤ 2(n− 3)



exp

(
− T̄

8n2(log n)2

)
+ 2

exp

(
− 2ε2n2

(R+
i +R−

i )
2

)⌊ T̄
4n log n⌋

exp

(
2ε2n2

(R+
i +R−

i )
2

)
− 1




.

Proof. We apply Lemma 16 and obtain:

P
(
|ϕ̂i − ϕi| ≥ ε

)

= P
(
|(ϕ̂+

i − ϕ+
i ) + (ϕ−

i − ϕ̂−
i )| ≥ ε

)

≤ P
(
|ϕ̂+

i − ϕ+
i |+ |ϕ̂−

i − ϕ−
i | ≥ ε

)

≤ P
(
|ϕ̂+

i − ϕ+
i | ≥

εR+
i

R+
i +R−

i

)
+ P

(
|ϕ̂−

i − ϕ−
i | ≥

εR−
i

R+
i +R−

i

)

≤ 2(n− 3)


exp

(
− T̄

8n2(log n)2

)
+ 2

exp
(
− 2ε2n2

(R+
i +R−

i )2

)⌊ T̄
4n log n⌋

exp
(

2ε2n2

(R+
i +R−

i )2

)
− 1


 .
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E Cooperative Games

E.1 Synthetic games

We provide formal definitions of the synthetic games and their Shapley values used in our empirical evaluation (see
Section 6), and describe the process of how we randomly generated some of these.

E.1.1 Shoe Game

The number of players n in the Shoe game has to be even. The player set consist of two halves A and B of equal size,
i.e.,N = A∪B with A∩B = ∅ and |A| = |B| = n

2 . The value function is given by ν(S) = min{|S ∩A|, |S ∩B|}.
All players share the same Shapley value of ϕi =

1
2 .

E.1.2 Airport Game

The Airport game entails n = 100 players. Each player i has an assigned weight ci. The value function is the
maximum of all weights contained in the coalition, i.e., ν(S) = maxi∈S ci. The weights and resulting Shapley values
are:

ci =





1 if i ∈ {1, . . . , 8}
2 if i ∈ {9, . . . , 20}
3 if i ∈ {21, . . . , 26}
4 if i ∈ {27, . . . , 40}
5 if i ∈ {41, . . . , 48}
6 if i ∈ {49, . . . , 57}
7 if i ∈ {58, . . . , 70}
8 if i ∈ {71, . . . , 80}
9 if i ∈ {81, . . . , 90}
10 if i ∈ {91, . . . , 100}

, ϕi =





0.01 if i ∈ {1, . . . , 8}
0.020869565 if i ∈ {9, . . . , 20}
0.033369565 if i ∈ {21, . . . , 26}
0.046883079 if i ∈ {27, . . . , 40}
0.063549745 if i ∈ {41, . . . , 48}
0.082780515 if i ∈ {49, . . . , 57}
0.106036329 if i ∈ {58, . . . , 70}
0.139369662 if i ∈ {71, . . . , 80}
0.189369662 if i ∈ {81, . . . , 90}
0.289369662 if i ∈ {91, . . . , 100}

.

E.1.3 SOUG Game

A Sum of unanimity games (SOUG) is specified by M many sets S1, . . . , SM ⊆ N and weights c1, . . . , cM ∈ R. The

value functions is defined as ν(S) =
M∑

m=1
cm · ISm⊆S leading to Shapley values ϕi =

M∑
m=1

cm
|Sm| · Ii∈Sm

, which can

be computed in polynomial time if knowledge of sets and coefficients is provided. We generate SOUG games with
M = 50 randomly by selecting for each Sm to be drawn a size uniformly at random between 1 and n, and then draw
the set Sm with that size uniformly. We draw the coefficients uniformly at random from [0, 1].

E.2 Explainability games

In the following, we describe the three explainability games introduced in Section 6; namely, the NLP sentiment
analysis game (see Section E.2.1), the image classifier game (see Section E.2.2), and the adult classification (see
Section E.2.3), and explain the value function of each resulting cooperative game. Since there exists no efficient
closed-form solution, we compute the Shapley values exhaustively (via brute force) in order to allow the tracking
of the approximation error of the different algorithms. Due to constraints in computational power this limits us to
n = 14 players per game, which necessitates 214 = 16 384 model evaluation to exhaustively traverse the powerset of
all coalitions. Note that after a budget of T = 214 both KernelSHAP and Stratified SVARM+ have an approximation
error of zero because both have observed all coalition values and thus have seen the cooperative game in its entirety.

E.2.1 NLP sentiment analysis

The NLP sentiment game describes an explainability scenario for local feature importance of a sentiment classification
model. The sentiment classifier3 is a fine-tuned version of the DistilBERT transformer architecture Sanh et al. [2019].
The model was fine-tuned on the IMDB dataset Maas et al. [2011]. The model expects a natural language sentence as
input, transforms the sentence into a tokenized form and predicts a sentiment score ranging from [−1, 1]. We randomly
select sentences from the IMDB dataset, that contain no more than 14 tokens. For a sentence the local explainability

3https://huggingface.co/dhlee347/distilbert-imdb.
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game consists of presenting the model a coalition of players (tokens) and observing the predicted sentiment as the
value of a coalition. Absent players are removed in the tokenized representation (i.e. tokens are removed).

E.2.2 Image classifier

The image classifier game is similar to the NLP sentiment analysis game (Section E.2.1) a local explanation scenario.
For this we explain the output of an image classifier given random images from ImageNet Deng et al. [2009]. The
model to be explained is a ResNet184 He et al. [2016] trained on ImageNet Deng et al. [2009]. To restrict the number
of players, we apply SLIC Achanta et al. [2012] to summarize individual pixels with 14 super-pixels. The super-pixels
then make up the players in the image classification game. A coalition of players, thus, consists of the corresponding
super-pixels. The super-pixels of absent players are removed via mean-imputation by setting all their pixels to grey.
The worth of a coalition is determined by the output of the model (using only the present super-pixels given by the
coalition) for the class of the original prediction which was made with all pixels being present.

E.2.3 Adult classification

Similar to the preceding two games, the adult classification game is also a local explanation scenario. We train a
gradient-boosted tree classifier (sklearn) on the adult dataset Becker and Kohavi [1996] to classify whether an adult
has an income below or above 50 000. Each game is based on a randomly chosen datapoint for which the players
correspond to features. A coalition is formed by removing the absent feature values of the selected datapoint via mean
imputation. The worth of a coalition is the predicted class probability of the true income class given the manipulated
datapoint after mean imputation of absent features.

4https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html.
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F Further Empirical Results

The plots shown in Figure 3 hardly visualize the performance differences between the algorithms with low MSE
values. Thus, we present our findings in Figure 4 to Figure 9 in higher resolution.

Figure 4: Airport game with 100 players: Averaged MSE over 100 repetitions in dependence of fixed budget T, shaded
bands showing standard errors.

Figure 5: SOUG game with 20 players: Averaged MSE over 100 repetitions in dependence of fixed budget T, shaded
bands showing standard errors.

Figure 6: Shoe game with 50 players: Averaged MSE over 100 repetitions in dependence of fixed budget T, shaded
bands showing standard errors.
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Figure 7: NLP game with 14 players: Averaged MSE over 100 repetitions in dependence of fixed budget T, shaded
bands showing standard errors.

Figure 8: Image classifier game with 14 players: Averaged MSE over 100 repetitions in dependence of fixed budget
T, shaded bands showing standard errors.

Figure 9: Adult classification with 14 players: Averaged MSE over 100 repetitions in dependence of fixed budget T,
shaded bands showing standard errors.
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