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Abstract

While shallow decision trees may be interpretable, larger en-
semble models like gradient-boosted trees, which often set
the state of the art in machine learning problems involving
tabular data, still remain black box models. As a remedy,
the Shapley value (SV) is a well-known concept in explain-
able artificial intelligence (XAI) research for quantifying ad-
ditive feature attributions of predictions. The model-specific
TreeSHAP methodology solves the exponential complexity
for retrieving exact SVs from tree-based models. Expand-
ing beyond individual feature attribution, Shapley interac-
tions reveal the impact of intricate feature interactions of any
order. In this work, we present TreeSHAP-IQ, an efficient
method to compute any-order additive Shapley interactions
for predictions of tree-based models. TreeSHAP-IQ is sup-
ported by a mathematical framework that exploits polynomial
arithmetic to compute the interaction scores in a single recur-
sive traversal of the tree, akin to Linear TreeSHAP. We apply
TreeSHAP-IQ on state-of-the-art tree ensembles and explore
interactions on well-established benchmark datasets.

1 Introduction

Tree-based ensemble methods, in particular gradient-
boosted trees (Friedman 2001), such as XGBoost (Chen and
Guestrin 2016) or LightGBM (Ke et al. 2017), are among
the most popular machine learning (ML) models and often
achieve state-of-the-art (SOTA) performance on tabular data
without extensive hyperparameter tuning (Shwartz-Ziv and
Armon 2022). These ensemble methods utilize intricate pre-
diction functions by employing tree structures of high depth,
thereby obstructing interpretation of the model’s internal
reasoning. Yet, understanding a model’s prediction is neces-
sary for safe and reliable deployment, alongside addressing
ethical and regulatory considerations (Adadi and Berrada
2018). Additive feature attributions, which split the individ-
ual features’ contributions to the prediction, are a prevalent
approach to improving the local interpretation of ML mod-
els (Lundberg and Lee 2017; Covert and Lee 2021; Chen
et al. 2023). However, in complex real-world applications,
such as bioinformatics (Lunetta et al. 2004; Boulesteix et al.
2012; Winham et al. 2012; Wright, Ziegler, and Konig 2016)
or language-related tasks (Tsang, Rambhatla, and Liu 2020)
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Figure 1: Network Plot after (Inglis, Parnell, and Hurley
2022) for a test instance of the German Credit dataset for
visualizing local feature attribution and interaction.

features only attain meaningfulness when interacting with
other features. In such scenarios, information about interac-
tions complements additive feature attributions, which only
show part of the picture (Wright, Ziegler, and Konig 2016).
In this work, we are interested in model-specific local
XAI measures for tree-based models, such as XGBoost. In
particular, the extension of predominant attribution mea-
sures based on the Shapley value (SV) (Shapley 1953) to
any-order additive Shapley-based interactions to explain sin-
gle predictions locally. Our work extends path dependent
TreeSHAP (Lundberg et al. 2020), which exploits the struc-
ture of trees to reduce time complexity from exponential to
polynomial, to any-order Shapley-based interactions.

Related Work. The SV (Shapley 1953) is a concept from
cooperative game theory that has been proposed for model-
agnostic explanations for local (Strumbelj and Kononenko
2014; Lundberg and Lee 2017) and global (Casalicchio,
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Figure 2: Force plots of positive (red) and negative (blue) SVs and n-SII scores for an instance of the California dataset The
longit. feature has a high contribution, describing the proximity to the ocean, which affects the price. TreeSHAP (so = 1)
reveals this contribution. It also shows that latit. contributed positively. TreeSHAP-IQ, e.g. so > 2, reveals that this contribution
can be (mostly) attributed to the interaction latit. x longit., which reveals that the exact location, and not latit., is meaningful.

Molnar, and Bischl 2018; Covert, Lundberg, and Lee 2020)
interpretation. In a model-agnostic setting, efficient approx-
imations techniques, based on Monte Carlo (Castro, Gémez,
and Tejada 2009; Castro et al. 2017; Kolpaczki et al. 2023;
Fumagalli et al. 2023) or the representation of the SV as a
constrained weighted least square problem (Lundberg and
Lee 2017; Covert and Lee 2021; Jethani et al. 2022) have
been proposed to overcome the exponential complexity.
For tree-based models the SV can be computed in poly-
nomial time using TreeSHAP (Lundberg et al. 2020) with
more efficient variants (Yang 2021). Linear TreeSHAP (Yu
et al. 2022) establishes a theoretical foundation that connects
the computation to polynomial arithmetic, achieving SOTA
computational and storage efficiency.

Limitations of the SV due to correlations and interac-
tions have been widely studied by Slack et al. (2020),
Sundararajan and Najmi (2020), and Kumar et al. (2020,
2021). Extensions to interactions have been proposed with
the Shapley Interaction Index (SII) (Grabisch and Roubens
1999), its aggregation as n-Shapley Values (n-SII) (Bordt and
von Luxburg 2023), the Shapley Taylor Interaction Index
(STD (Sundararajan, Dhamdhere, and Agarwal 2020) and
the Faithful Shapley Interaction Index (FSI) (Tsai, Yeh, and
Ravikumar 2023). All of these are subsumed in the broad
class of the Cardinal Interaction Index (CII) (Grabisch and
Roubens 1999). Model-agnostic approximations have been
proposed for general ClIIs (Fumagalli et al. 2023), STI (Sun-
dararajan, Dhamdhere, and Agarwal 2020), SII and for FSI
(Tsai, Yeh, and Ravikumar 2023). Local pairwise interac-
tions for tree-based models were computed by Lundberg
et al. (2020) and for interventional SHAP by Zern, Broele-
mann, and Kasneci (2023).

Other interaction scores were introduced by Tsang,
Rambhatla, and Liu (2020), Zhang et al. (2021), Patel, Stro-
bel, and Zick (2021), Harris, Pymar, and Rowat (2022), and
Hiabu, Meyer, and Wright (2023). Interaction scores are

further linked to functional decomposition (Hooker 2004,
2007; Lengerich et al. 2020; Herbinger, Bischl, and Casal-
icchio 2023). For tree-based models, limitations of feature
attribution measures (Wright, Ziegler, and Konig 2016), and
efficient implementations for interactions (Lengerich et al.
2020; Hiabu, Meyer, and Wright 2023) were discussed.

So far, any-order Shapley interactions have only been
studied in a model-agnostic setting, where the exponential
complexity problem is approximately solved. Tree-based ap-
proaches have not considered the efficient computation of
local any-order Shapley interactions.

Contribution. Our main contributions include;

1. TreeSHAP-IQ (Section 3): An efficient algorithm for
computing any-order SII scores for tree ensembles.
TreeSHAP-IQ is supported by a mathematical frame-
work based on polynomial arithmetic, akin to Linear
TreeSHAP (Section 2).

2. Unified Framework: Application of TreeSHAP-IQ to the
broad class of any-order ClIs.

3. Application: We efficiently implement TreeSHAP-1IQ on
SOTA tree-based models, such as XGBoost, and show-
case how interaction scores enrich single feature attribu-
tion measures on several benchmark datasets (Section 4).

2 Local Shapley-Based Explanations

Local Shapley-based explanations consider a model f on
an n-dimensional feature space X with features N :=
{1,...,n}. The goal is to explain the prediction f(z) € R
for a selected explanation point z € X and find an ad-
ditive attribution ¢ = ($[1],...,¢[n]) € R™, such that
f(x) = bo 4 >, cn ®li], where by € R is the baseline pre-
diction, i.e. the prediction of z, if no feature information is
available. To compute a unique attribution score ¢|[¢] for each
feature 7 € N, we extend the model with subsets of features
f X xP(N) — R, where P(N) is the power set of N



and f(z,T) refers to the prediction of f at x, if only the
features in 7' C N are known. In the following, if we omit
the subset, then T = N, ie. f(z) := f(x,N). We further
omit the explanation point z if it is clear from context, and
set f(T) := f(x,T) and by := f(x, (). The contribution of
each feature + € N is then the SV (Shapley 1953)

1
O(f,i)i= Y.~ [T Ui - F(T)]-
Ten\(i) Y ( T )

The SVs define the unique attribution measure satisfying the
following axioms: linearity (in f), symmetry (ordering does
not impact ¢), dummy (no impact on f implies ¢(f,7) = 0)
and efficiency f(z) = bo + >,y ¢(f,7) (Shapley 1953).

In many real-world applications, single feature impor-
tance scores are not sufficient to understand a model, where
features become only meaningful when interacting with oth-
ers. The SV does not give any information about such inter-
actions between two or more features. The SII has been the
first extension of the SV to interactions of feature subsets.

Definition 1 (SII, Grabisch and Roubens 1999). The SII for
an interaction S C N is defined as

sU(f,8) = L Ss(f,T),
(£.5) TgNj\S I EEETN s(.7)

where g is the S-derivative of f for T C N\ S, i.e.
0s(£, 1) =Y ()T U L),

LCS

The SII is the unique attribution measure that fulfills the
(generalized) linearity, symmetry and dummy axiom, as well
as a novel recursive axiom that links higher to lower or-
der interactions (Grabisch and Roubens 1999). In contrast
to the SV, the SII does not fulfill the (generalized) efficiency
axiom, which states that the sum of interaction scores (in-
cluding bg) up to a maximum order sg equals the model
prediction f(x). This axiom is particularly useful in the
ML context. Recently, Bordt and von Luxburg (2023) pro-
posed a specific aggregation, known as n-SII of order s,
which yields a unique index that satisfies the (generalized)
efficiency axiom. A more general class constitutes the CII,
where it was shown that every interaction index fulfilling the
linearity, symmetry and dummy axiom can be represented
as a CII (Grabisch and Roubens 1999, Proposition 5). Other
ClIIs were proposed that introduce a unique interaction index
of order s( and require the efficiency axiom directly, such as
the STI (Sundararajan, Dhamdhere, and Agarwal 2020) or
the FSI (Tsai, Yeh, and Ravikumar 2023). While the com-
putation of the SV and SlIs are of exponential complexity,
it has been shown that the complexity for the SV can be re-
duced to polynomial time in the case of tree-based models.

2.1 The Shapley Value for Tree Ensembles

For tree-based models the computational complexity of the
SV can be drastically reduced by utilizing the additive tree
structure. Furthermore, there exists a natural way to handle
missing features, which can be used to define the extended
model f(x,T). For simplicity, we consider in the following
a single decision tree, where ensembles of trees can be sim-
ilarly computed due to the linearity of the SV.
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Figure 3: Notations in TreeSHAP-IQ and Linear TreeSHAP.

Notation. We consider a decision tree 7 = (V, E) as a
rooted directed tree with a set of vertices V, referred to as
decision nodes, and edges E. The root node is denoted as
r € V. Each decision node consists of a split feature : € N
with a threshold value and predictions V), at the leaf nodes.
For each node v € V, we let P, be the set of edges from the
root node to v and £(v) the set of leaf nodes reachable from
v, where L(T) = L(r) is the set of all leaf nodes in the tree.
For every edge e € E going from u to v, we denote u as the
tail of e and v as the head of e, h(e). We consider a weighted
tree with weights w, € (0, 1) for every edge ¢ € E, which
is defined as the proportion of observed data points at the
tail of e, that split to the head of e. Additionally, we label
each edge e € I with the feature associated with the tail of
e, i.e. the feature that was used to split the observations on
the decision node at the source of e. Further, P; ,, and F; are
the edges in P, and I with label : € NN. Our notation for
decision trees is illustrated in Figure 3.

We also require polynomial arithmetic and refer to the set
of polynomials with maximum degree d and coefficients in
R as R[z]4. Polynomial multiplication is denoted with ® and
division with | ¢ | or |a/b]|. We denote with (x,y) the inner
product of two vectors z, y € R? and refer to the inner prod-
uct of the coefficients, if polynomials are considered.

Extended Model f(x,T) for Decision Trees. A deci-
sion tree can be decomposed into distinct decision rules
RY : X — R for each leaf v € L(T), which predict V,, if
x reaches v and zero otherwise. Note that each R" induces
a subspace of A’ at which the prediction of f is constant.
The decision tree is thus given as f(z) = >, o) R"(2).
We now define R, the prediction rule restricted to a set
of active features 7' C N, where the remaining are con-



sidered to be unknown. If the split feature is unknown, we
split based on the weights w., which is a common prac-
tice (Yu et al. 2022). If all features are unknown, we de-
fine Ry := Rj(z) := V, [[.cp, we. When adding feature
i € N to the active set, the product of associated weights
is replaced by the split criterion. This is formalized as a re-
cursive property Rip ;= ¢io(2) R (x), where g; . is the
marginal effect of adding ¢ to the active set. To define g; ,,
we let z € m;(RY), if x[i] satisfies each split criterion re-
garding features ¢ in the path of v, i.e. 7;(R") is the region
of feature ¢ in the induced subspace of X by R". For v the
marginal effect of adding feature ¢ € N is then defined as

. 1
gip(z) = 1(z € m(RY)) H e (1)
ecP;
where 1(-) is the indicator function. Furthermore, for P; , =
() we define @i,» = 1. The restricted rule is thus defined as

R7(z) :== Rj H gjw(2). 2)

jeT

For atree T; and T' C N the restricted model at z is then

f(T):=f(x,T):= Y Ria)

veL(Ty)

In the following, we omit the argument x in the notation. We
proceed to compute the SV of f(T), which is known as path
dependent TreeSHAP (Lundberg et al. 2020).

Linear TreeSHAP. TreeSHAP exploits the tree structure
to compute the SV in polynomial time (Lundberg et al.
2020). Linear TreeSHAP improved this computation and
provided a theoretical framework by linking the computa-
tion to polynomial arithmetic (Yu et al. 2022). Plugging
(2) into the definition of the SV and using the fact that
gj» — 1 = 0, if a feature does not appear in the path, yields

RU
Z ﬁ H Qo 3)

TCF(R*)\{i} T/ jeT

P(R",0) = (giv — 1)

where F(R?) is the set of all features that appear in R". It
was shown that this sum can be efficiently stored using the
coefficients of a specific polynomial.

Definition 2 (Summary Polynomial (SP), Yu et al. 2022).
The SP of leaf node v is G5 (y) := R} jerrey (@0 +9)-

For feature © € N, Ry ZI;CI;F(R)\“} [l;es )0 is the
coefficient of y~*" in S, where d = |F(R")] is
the number of features in each path. Note that this cor-
responds to the non-weighted terms in the sum of (3) for
k=20,...,d— 1. The SV of a single decision rule can thus
be represented as

¢(R”,z‘)—(qi,v1)wq G J) )

Gip T Y

in

where ¢ : R[z]; — R is a function that properly weights
the coefficients, such that it corresponds to the sum in (3). It

is formally defined (Yu et al. 2022) as
d

_ {ABg) _ (d) .
Ya(4A) = with By(y) := y'. (5)
d d+1 d k; k

We write )(A) = 14(A), where d is the degree of A. It was
then shown that ) is additive and scale invariant.

Proposition 1 (Yu et al. 2022). For ¢ and p, q € R[z]q4,
ba(p+q) = $a(p) +valg) and ¢ (p © (1 +)*) = ¥(p).

Using (4) based on leaf nodes, a representation of the SV
in terms of edges is presented, which is explicitly computed
by recursively traversing the tree. For this representation, the
SP is extended to every edge in the path of F; ,, as

Gui= P GuwithG'aG” =G +G0(1+y)" %,
vEL(u)

where the order is such that d; > ds, i.e. @ is an oper-
ation on the set of polynomials @ : Rlz|q, x Rlz]q, —
R[2]max(d, ,d,) that sums the polynomial while scaling them
to the same degree. Note that due to the properties of ¥, we
have ¥(Gu) = > cr(u) ¥(Gy). For edge e € E and its

feature 7, we further introduce the inter-path value of g; ,, as

1
I o

e’ €P; pn(e)

Pe =1 (.’L‘ S Wh(e))

Note that p.« = ¢; ., if e* is the last edge in P; ,,. An edge-
based representation of the SV is then provided.

Theorem 1 (Yu et al. 2022). Let i € N and denote for e
the closest ancestor in the set E; by e, where ' = 1 and
pi, 1 = lin case it does not exist. Then,

as(f,i)—Z(pel)wQ%D

eckE; Y +pe

— (per — 1) ¥ <{Gh(e) O (y+ 1)de¢—deJ> |

Y + Det

Using this edge-based representation, Linear TreeSHAP
computes the SV by traversing once through the tree. To im-
prove efficiency, the SP is stored in a multipoint interpola-
tion form. For more details, we refer to Appendix B.

3 TreeSHAP-IQ: Computation of Local
Shapley Interactions for Tree Ensembles

Computing the exact SV for tree ensembles can reliably
quantify the impact of single features on the model’s pre-
dictions. However, in many applications, certain features be-
come only meaningful when interacting with other features.
In this case, the SV is not sufficient to understand how the
model predicts, and more complex explanations in terms of
Shapley interactions are necessary. In the following, we pro-
pose TreeSHAP Interaction Quantification (TreeSHAP-IQ),
an efficient algorithm for computing any-order SII scores,
which follows naturally by extending the SP to interactions.

TreeSHAP-IQ can further be applied to the broad class of
CIIs (Grabisch and Roubens 1999), which we briefly discuss
in Section 3.2. All proofs are deferred to Appendix A.



3.1 Theoretical Foundation of TreeSHAP-IQ

‘We now present the theoretical foundation of TreeSHAP-IQ.
The notations in this section extend on Linear TreeSHAP
(Yu et al. 2022) and are illustrated in Figure 3. We compute
the S-derivative for RY and T C N \ S as

3s(R*.T) =Ry > (1) ] ¢y, ©

LCS jeL

which follows from (2) and the recursive property. We thus
represent the SII for a single decision rule as follows.

Proposition 2. For a leaf v in Ty, it holds IS (R, S) =

EENEIR , G
LXQ;( ! qu v ({H;‘es(‘b}v‘ky)J)'

JjEL

Proposition 2 yields a compact representation in terms of
leaf nodes and decision rules, which reduces to the repre-
sentation of (4) for single feature subsets. Similar to Linear
TreeSHAP, the representation of SII in terms of leaf nodes is
not suitable for efficient computation. We thus again estab-
lish an edge-based representation, similar to Theorem 1. By
Proposition 2, the computation of an interaction for a subset
S C N requires knowledge of all ¢; , with ¢ € .S, which
have to be tracked during the traversal of the tree. We thus
first extend the inter-path values p. to every feature as

1
I o

E’EPLh(e)

Pie =1 (2 € T p(e))

where x € m;,, if z[i] satisfies each decision criterion in
P; . Note that pj e = pe and 7 p(e) = Th(e), if j is the
label of e. Our goal in the following is to provide an algo-
rithm similar to Linear TreeSHAP that traverses the decision
tree once and recursively computes the interaction scores.
The SP thereby remains unchanged, but we introduce fur-
ther polynomials of order | S| to efficiently maintain the sum
as well as the denominator in Proposition 2.

Definition 3 (Interaction Polynomial (IP)). The IP of S C
N and edge e is nge(y) = Hjes(pm — ).

Note that the coefficient of y* in Hg. is exactly

L|=|S|—k

S )T pje for k= 0,...,|S]. There-
fore, the sum of the coefficients of the IP equals the sum
in (6). We thus define the coefficient sum.

Definition 4 (Coefficient sum x). We define the function kg :
Riz]lg — Ras kq(A) = (A, yd + - +y + 1). We write
k(p) = ka(p), where d is the degree of p.

Applying & to the IP yields the following properties.
Proposition 3. For the sum of coefficients of the IP, it holds
s(HE) =Y (=D T o 0
LCS JEL
If there exists j € S with pj . = 1, then k(HY ) = 0.

Proposition 3 shows that x(Hg,) corresponds to the
edge-based representation of the sum in Proposition 2. If e is

the last edge in P ,, then p; . = gq;,, forall j € N and thus
r(Hg ) retrieves the sum in Proposition 2. Furthermore, if
Dje = 1, then it is intuitive that all inter-path contributions
with j € S are zero, since j does not impact the model’s
prediction in this part of the tree. This property allows us
to update interaction scores only if all features of the subset
have occurred in the path. We further describe the quotient
in Proposition 2 using another polynomial of order |S].

Definition 5 (Quotient Polynomial (QP)). The QP of S C
N and edge e is Hgi(y) = [Lies(Pje + )
If e is the last edge in P, of leaf node v that contains any

feature of S, then pj.: = g;,, for every j € S and hence
we can rewrite Proposition 2 using Proposition 3 as

YR, 8) = w(HE e (|Go/HE. ). ®)

Clearly, Proposition 2 reduces to (4) for the case of the SV.
In contrast to the SV, the edge-based computation includes
all inter-path values of p; . with j € S. To extend Theorem
2, we therefore need to extend the notion of ancestor edges
to ancestors with respect to a subset S C N.

Proposition 4. For a decision rule R" of a leaf node v and

a subset S C N, let Pg ,, := UieS P; ., and eg as the closest
ancestor of e in Pg ,,. The SII of R” is then given by

(R 8) = 3 K<Hé’fe>wQG”G(?’“)%_%D

oP
e€Pg HS,E

d + —d,
G, ®(y+1) <5
HP

S,egv

_ HIP
I{( 5’eg)w

Using Proposition 4, we can state our main theorem.
Theorem 2. For S C N, let Es := | J,cq E; be the set of
edges that split on any feature in S, and denote the closest
ancestor of e in Pg , as eg. The SII is then computed as

Gi(e
IETESEDY H<H§,’e>w< I;;S;J)
S,e

ecEg
Note that for S = {i}, Theorem 2 reduces to Theorem 1.

Implementation of TreeSSHAP-IQ. Theorem 2 allows for
an efficient computation of the SII, with the SP being han-
dled alike to Linear TreeSHAP. The 1Q and QP are updated
for each interaction subset that contains the feature of e. We
again use the multipoint interpolation form to store and up-
date the polynomials G, HY ., and H§", . TreeSHAP-IQ tra-
verses the decision tree once for every explanation point.
At each edge (decision node), TreeSHAP-IQ updates all
interactions that contain the currently encountered feature,
(Iglill) in total. However, the update can be restricted to
those interactions, where all features have been observed in
the path. We refer to Appendix B for more details.

- “(ngg)w




Complexity of TreeSHAP-IQ Consider m explanation
points, {7 := |£(T)| as the number of leaves and dyax as
the maximum depth of the tree.

Linear TreeSHAP has a computational complexity of
O(m-£1-dmax ) and storage complexity of O(d2,,,. +n) (Yu
et al. 2022). We now consider the complexity of TreeSHAP-
IQ, if all interactions of order s := |S| are computed. In
contrast to Linear TreeSHAP and the SP, where only the cur-
rent feature value has to be updated, TreeSHAP-IQ needs to
update the IP, the QP and the interaction scores for all in-
teraction subsets that contain the currently observed feature.
This increases the computational complexity by a factor of
('::11) Furthermore, all interaction scores have to be stored,
requiring storage of (Z) To store the IQ and QP, we require

further a storage capacity of O(d2,,, - (7)). The computa-

max

tional complexity is thus summarized as follows.

TreeSHAP-1IQ complexity for the SII of order s

Computational Complexity Storage Complexity

ofwir i (1)) ofe (2)

For the computation of the SV, the computational com-
plexity of TreeSHAP-IQ is similar to Linear TreeSHAP. The
storage capacity is increased by a factor n, as we store the
IP and QP for every feature. Moreover, for pairwise interac-
tions, TreeSHAP-IQ mirrors the complexity of the computa-
tion proposed by Lundberg et al. (2020) using Linear Tree-
SHAP. However, our method distinguishes itself by relying
on a single initialization of the tree parameters.

3.2 Extending TreeSHAP-IQ to General CIlIs

TreeSHAP-IQ can be extended to the broad class of CIIs. A
CII is defined as I°(f, S) := SrCn\S wS(|T)és(f,T)

with non-negative weights wS! that depend on the interac-

tion order s := | S| (Grabisch and Roubens 1999; Fumagalli
et al. 2023). This includes other approaches of extending the
SV to interactions, such as STI and FSI, as well as Banzhaf
interactions (Patel, Strobel, and Zick 2021). Observe from
the proofs, that different weights in ClIs solely impact the
SP, and in particular . To extend the SP for Clls, we let
d := |F(R")| and scale G, to the degree of n, which does
not impact v due to the scale invariance. We then observe

Gv@ 1+ n—d . -

TCN\S jes
where w3 (¢) is the CII weight for SII, cf. Definition 1. Re-

call from (5) that these weights are retrieved from the poly-

nomial B,,_s. Thus, we generalize 5" : R[z]; — R to
d
U (A) = (A, Wa) with W (y) = > wS,(k)y".
k=0

If G, is scaled to degree n, then ¢S is always evaluated
with a polynomial of degree d = n — |S|. Further, note that
for SII, we have ¢4(A) = ¥5(A), where the quotient d + 1
is included in the weights, i.e. W3(y) = By/(d + 1).

Datasets  # Instances # Features Target Speed-Up
Credit 1000 20 {0,1} ~ 10%
Bank 45211 16 {0,1} ~ 103
Adult 45222 14 {0,1} ~ 103
Bike 17379 12 R ~ 10!
COMPAS 6172 11 {0,1} ~ 102
Titanic 891 9 {0,1} ~ 10!
California 20640 8 R ~1

Table 1: Overview of datasets and speed-up compared to a
naive computation

hour.

hour. x worki.

temp. +42.53
hour. x worki. x feel t.
+32.98

hour. x feel t.

hour. x temp.

+28.02

year. x hour.

—20.51
other interactions +47.15

E[f(X)] 7 200 220 240 260 280 300 320

Figure 4: Waterfall chart for n-SII scores with sg = 3 and a
prediction of the Bike regression dataset.

Implementation of CIIs in TreeSHAP-IQ Using /",
any CII can be computed by TreeSHAP-IQ. In contrast to
= ’IZJSH, the scale invariance does not hold for CIIs. There-
fore, the SP cannot be reduced to the degree d := |F(R")|.
However, if we maintain the SP at the maximum degree
n, then all previous results apply. If the SP is stored in
multipoint interpolation form, then this merely requires a
multiplication with the corresponding term of (y + 1)"~¢,
which can be efficiently precalculated. Thus, the computa-
tional complexity is not affected by this extension. Provided
dmax > n, the storage complexity is not affected either.

4 Experiments

We apply TreeSHAP-IQ' on XGBoost (XBG) (Chen and
Guestrin 2016), gradient-boosted trees (GBTs), random for-
est (RF), and decision tree (DT) algorithms on the German
Credit (Hofmann 1994), Bank (Moro, Cortez, and Laure-
ano 2011), Adult Census (Kohavi 1996), Bike (Fanaee-T and
Gama 2014), COMPAS (Angwin et al. 2016), Titanic (Daw-
son 1995), and California (Kelley Pace and Barry 1997)
datasets, see Table 1. For further experimental results, in-
cluding a run-time analysis and detailed information on the
datasets, models, and pre-processing steps, we refer to Ap-
pendix C. We compute additive interactions for single pre-
dictions using TreeSHAP-IQ with n-SII of different order.

! All experimental code and the technical appendix can be found
at: github.com/mmschlk/TreeSHAP-IQ.
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Figure 5: Visualization of positive and negative n-SII scores
per feature with sy = 7 for an observation in German Credit.

TreeSHAP-IQ Reveals Intricate Feature Interactions.
Using TreeSHAP-1Q, we examine the model’s prediction
based on higher order interaction effects. We distinguish n-
SII scores that positively (red) and negatively (blue) impact
the prediction. In Figure 1, we visualize n-SII with sg = 2.
The width of the network vertices (order 1) and the network
edges (order 2) describes the absolute value of the corre-
sponding n-SII scores. We observe that there exist features
that strongly impact the prediction individually, such as the
information about a non-existing checking account. How-
ever, the present credit amount strongly impacts the predic-
tion only in interaction with the given installment rate (pos-
itively) and duration (negatively).

The force plots in Figure 2 illustrate how the additive lo-
cal explanations change, if higher order interactions are con-
sidered. We consider the n-SII scores for s = 1,2,3 for
the California housing dataset and an XGBoost regressor.
The force plot displays the positive and negative interaction
scores starting from the predicted value to the left and right,
respectively, sorted by their absolute value. We observe that
individual feature effects, such as Longitude, reduce when
higher order interactions are considered. The interaction of
Longitude and Latitude reveals the importance of the geo-
graphic location of this instance.

The waterfall chart in Figure 4 displays the explanations
of n-SII with order sy = 3 for an instance in the bike dataset.
For this instance, it can be seen that the interaction of the
evening hour with a non-working day affects the prediction
negatively, whereas the interaction with both temperature
features contribute positively.

n-SII Plots Quantify Interactions of Each Feature. To
assess the strength of interaction per individual feature, we
utilize the visualization of n-SII values presented by Bordt
and von Luxburg (2023). We compute exact n-SII scores up
to order so = 7 for the German Credit dataset. The positive
and negative interactions are distributed equally onto each
feature in the subset and displayed on the positive and neg-
ative axes, respectively. The sum of all stacked bars results
in the SV of each feature (Bordt and von Luxburg 2023). In

Figure 5, we observe that the interaction effects diminish at
order 5, with interactions of orders 6 and 7 being virtually
absent. Assuming that interactions decay with higher order,
this visualization can be used to find the maximum order to
explain the prediction (i.e. so = 5 from Figure 5).

5 Limitations

TreeSHAP-IQ applies to the broad class of ClIs, provided
that its representation in terms of a weighted sum of dis-
crete derivatives is known. For FSI, this representation is
only explicitly known for top-order interactions (Tsai, Yeh,
and Ravikumar 2023), as FSI is motivated as a solution to
a constrained weighted least square problem. Similar to the
SV, Shapley interactions strongly rely on how absent fea-
tures are modeled. In our work, we considered the path de-
pendent feature perturbation (Lundberg et al. 2020), which
is linked to the observational approach (Chen et al. 2020).
The interventional approach (Lundberg et al. 2020) can be
computed with TreeSHAP-IQ, akin to TreeSHAP, but simi-
larly increases the computational complexity by the number
of samples used in the background dataset. In this case, more
efficient variants should be used instead (Zern, Broelemann,
and Kasneci 2023). Both paradigms yield different explana-
tions, where the appropriate choice should be carefully done
depending on the application (Chen et al. 2020).

6 Conclusion and Future Work

We presented TreeSHAP-IQ, an efficient method to com-
pute any-order additive Shapley interactions that locally
explain single predictions for general ensembles of trees.
Akin to SOTA Linear TreeSHAP (Yu et al. 2022), our al-
gorithm is based on a solid theoretical foundation that ex-
ploits polynomial arithmetic. We applied TreeSHAP-IQ on
SOTA ML models, such as XGBoost (Chen and Guestrin
2016), and several benchmark datasets. We demonstrated
that TreeSHAP-IQ reveals intricate feature interactions,
which enrich Shapley-based feature attribution.

Utilizing well-known visualization and aggregation tech-
niques from machine learning (Lundberg and Lee 2017;
Bordt and von Luxburg 2023) and statistics (Inglis, Par-
nell, and Hurley 2022) we presented these scores in a man-
ner that is easily understandable and interpretable. While
interactions are widely studied in statistics, explaining lo-
cal predictions using interaction scores, in particular with
Shapley-based interactions, is an emerging line of research
in the field of XAl Due to the exponentially increasing num-
ber of interactions, we provided intuitive visualizations to
present TreeSHAP-IQ scores to practitioners. Nevertheless,
it would be beneficial to explore further human-centered
post-processing techniques and visualizations, as well as rig-
orously evaluate the explanatory capabilities of TreeSHAP-
1Q with user studies, especially to validate quantitatively that
the user’s understanding increases when higher order expla-
nations are presented. Additionally, the n-SII scores define
a local generalized additive model (GAM) (Bordt and von
Luxburg 2023) that could be further linked to functional de-
composition (Hiabu, Meyer, and Wright 2023).
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A Proofs
A.1 Proof of Proposition 2

For a leaf v in Ty, it holds ISU(RY, S) =

_1)lsI=Iz] , G
Lz;:s( 1) Eq]m ¢ (\‘Hjes(Qj,vﬁ‘y)J) .

Proof. Let R" be a decision rule of leaf node v € L(T). For the S-derivative it follows by the recursive property and (3) that

55(RY,T) = Ry > (=) T gy

LCS JEL
Plugging this representation into the definition of SII with
1
w(t) =
(n =151+ 1)- (")
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This sum is further simplified to
n—|S]| |T|=k
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We thus need to show that this term is equal to ¢ applied on

Hjes(qj’u‘f'y)_ 0 Hjes(Qj,v+y) 0
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With d := |F(R")| using the scale invariance of the SP, we can scale this polynomial to the degree of n, i.e. multiplying it with
(14 y) for every feature not present in F(R"), i.e. N \ F(R"). This yields with the above that

SP n—d
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where the last line follows from the fact that g; , = 1 if the feature is not present in the path. As v weights the coefficients of
this polynomial, we proceed by evaluating the coefficients. When writing the product as a sum, every combination 7’ C N \ S
of features appears exactly once, and thus
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Hence, it follows for the polynomial of degree n — | S| that

Gy o1 +yr

G (y) N
v (Hjes(qu + y)) =¥ <

)

[Lies(g0 +v)
RY n—|S| [IT|=n—|S|-k
:n—b?|+l<z Z qu,v ykan—|S>
k=0 TCN\S j€T
RY n—|S| [IT|=n—|S|-k
_ 0
7n_‘5|+1z Z Hqﬂv n|S|)
k=0 TCN\S j€T
n—|S| |T|=k
Rj 1
_ 0 )
7n_‘5'|_|_1 Z Z Hqﬂ*” ( n—|S| )
k=0 TCN\S jeT n—|S|—k
n—|S| |T|=k
Rj 1
_ 0 )
T n— |8 +1 Z Z H B (*-11)
k=0 \TCN\Sj€ET k
n—|S| |T|=k
-5 3 w9 3 Tl
k=0 TCN\S jeT
which is equal to (9) and finishes the proof. [
A.2  Proof of Proposition 3
For the sum of coefficients of the IP, it holds
K(HE) = (D) T pje- (10)
LCS jeL
If there exists j € S with p; . = 1, then k(HY,) = 0.
Proof. We first compute the coefficients of the IP as
15| |L|=k S| |L|=|S|—k
HE . (y) = [[ie =) =D D5 > T pie | 97 =D 08 > [ pse
JES k=0 LCS jEL k=0 LCS jeL
Hence,
S| |L|=]S|—k S| |L|=k
HE) =D 10" > JIpie=CD5Y 08 0 [T wie =D DFH [T pie,
k=0 LCS jeL k=0 LCS jeL LCS jeL
which finishes the first part of the proof.
Now, let p;, . = 1 for some jo € S. Then,
R(HE) = Y (=) ] pje
LCS jeL
= Z \SI |L] Hp + Z ISI |ZU{jo}| H Dje
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which finishes the proof. O



A.3 Proof of Proposition 4

For a decision rule R” of a leaf node v and a subset S C N, let Ps,, := |J, g P;» and eg as the closest ancestor of ¢ in Pg .

The SII of RY is then
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We can simplify the sum on the right hand side, as all terms except the last edge e € Ps,,, cancel out, to
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Proof. By Proposition 2, we need to show that the right hand side is equal to
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where we used the scale invariance of 1) and the definition of the QP. For the last edge e% in the path Pg , it holds that
Pier = Giw for all ¢ € S and thus the argument in v is equal to the argument in (11). Furthermore, for the IP, we have by

Proposition 3 that
S|— S|—
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which concludes the proof. O

A.4 Proof of Theorem 2
1

For S C N let Es := J;c g Ei be the set of edges that split on any feature in S and denote eg as the closest ancestor of e in
Pg ,,. The SII is then computed as

d
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Proof. The model f can be represented as a sum of decision rules as f(T") = >, . £(T7) % and thus by the linearity of SII and
Proposition 4 '
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where we added 0 = d. — d, to the scaling factor. Now we have that v € L(T;) Ae € Eg < v € L(h(e)), i.e. if vis aleaf and
e and edge in its path, then v is also reachable from the head of e, h(e), and vice versa. We can thus change the summation to

sy =3 > w(HE ({Gv oY+ 1)deva> - H(nggw G, ®(y+1)

QP
e€Es veL(h(e)) Hs,eg

(de—dv)+(de¢57de)

Note that G, ® (y + 1)%~% yields a polynomial of degree d. and the degree of H gpe is always equal to |S|. Hence, the
polynomials can be summed using the additivity of 1/, which yields

> w(HE)Y QG = (ilzpl)dedvb S ATIEDY {GUQ (y+1)deva
S,e
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L HS,e
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Similarly, for the other term
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which finishes the proof. O



B Implementations

In the following, we describe pseudo-code for TreeSHAP-IQ for SII (Section B.1) and general CIIs (Section B.2) and Linear
TreeSHAP (Section B.3), as well as its efficient implementation using the multipoint interpolation form for all polynomials.

B.1 TreeSHAP-IQ Algorithm
The pseudo-code for TreeSHAP-IQ is outlined in Algorithm 1.

Algorithm 1: TRAVERSETREE(v, C, O, O, a,) — TreeSHAP-1Q for SII

Require: Interaction order s, tree 7 = (V, E), leaf predictions V,, and empty decision rules Rj for all leaf nodes v € L(T).
For all edges e € E with label i: Weights w, and inter-path products p™*(e) := 1/ ], Pingey We'

For all edges e € E with label 7 and interaction subsets S with ¢ € S: Ancestors eg.

1: if v is not root then

2 e, 1 < edge with v as head and split feature ¢ of its source (parent of v)
3 pielr) < ag(v)p™(e)

4 C+CO([y+pieln))

5: Hgfe — CP[S] @ (—y + pic(z)),ifi € S, else C™[S]

6

7

8

9

HS + CP[S] O (y + pie(r)).if i € S, else CP[S]
if e has ancestor ¢! then

Piet () 4= az(h(eh))p™ (eT)

C  |C/(y+pier(2))]

10: HY, <« |HE./(—y+pier(2)], VS :ie S
11 HS « {Hgi/(y +pi76¢(x))J,VS cie S
12:  endif

13: end if

14: if v is leaf then

15: G, < C-Rj

16: else

17: v, < child nodes v, of v

18: Y. :ay(ve) ¢ 1(z € my,)

190 Vov.:G,, ¢ TRAVERSETREE(V., C, H,I}De,H?g,aw)
200 Gy @D, G,

21:  for all S withi € S do

2 18]« I[8] + w(HE )0 (| Go/HE,

23: if eg #_1 then
P dgp—de Qp
2 18] 118 = m(HP (| (Goo (4T /BT, )
Cg S
25: end if
26:  end for
27: end if

28: return GG,

B.2 Implementation of TreeSHAP-IQ for general CIIs
The pseudo-code of TreeSHAP-IQ applied to an arbitrary CII is outlined in Algorithm 2.

B.3 Implementation of Linear TreeSHAP
The pseudo-code of Linear TreeSHAP is outlined in Algorithm 3.

B.4 Efficient Implementation of Polynomial Operations using Multipoint Interpolation

Linear TreeSHAP and TreeSHAP-IQ rely on multiplication and division for polynomials, as well as evaluating the polynomial
coefficients using v and . These operations can be efficiently implemented by storing the polynomial in a multipoint interpo-
lation form. Instead of storing the poylnomial, we store its evaluation at base points ). Multiplication and division then transfer
to vector multiplication and division. The inner product of the coefficients of the polynomial, as required for ¢/ and &, can be
efficiently computed using the following lemma.



Algorithm 2: TRAVERSETREE(v, C, C™", O, a,) — TreeSHAP-IQ for ClIs

Require: Interaction order s, tree 7 = (V, E), leaf predictions ), and empty decision rules Rj for all leaf nodes v € L(T).
For all edges e € E with label i: Weights w, and inter-path products p™*(e) := 1/, Pipey We!
For all edges e € E with label 7 and interaction subsets S with ¢ € S: Ancestors eg.
1: if v is not root then
2 e, 1 < edge with v as head and split feature ¢ of its source (parent of v)
3 pie(x) < ax(v)p™(e)
4 C+CO(([y+pieln))
5: ng +— CP[S]® (—y + pic(x)), ifi € S, else CP[9]
6 Hg; — C®[S)© (y + pie(z)),ifi € S, else CX[S]
7:  if e has ancestor ¢! then
8 Pier (z) 4 ag(h(e"))p™ (eT)
9 C <« [C/(y + pier(2))]

;. HE, © [HE/(~y+pia@)].¥S i€ s
o HY < [HE /(g +pier ()| vS i€ s
12:  endif

13: end if

14: if v is leaf then

15: G, < C-Rj

16: else

17: v, < child nodes v, of v

18: Y. :ay(ve) ¢ 1(zx € my,)

19:  Vou.:G,, < TRAVERSETREE(v,, C, H.I}DQ,H?E,aw)

200 Gy @D, G,

21:  for all S withi € S do

2 1[8] < 18]+ n(HE (| (Gv ® (14 y)) /HE, |

23: if eg #_1 then

24 118)  11) = w(HE (| (G © (1L 4y)"~%) /HE |)
25: end if

26:  end for

27: end if

28: return G,




Algorithm 3: TRAVERSETREE(v, C, a,) — Linear TreeSHAP

Require: Interaction order s, tree 7 = (V, E), leaf predictions V), and empty decision rules R for all leaf nodes v € L(T).
For all edges e € E with label i: Weights w, inter-path products p™*(e) := 1/ [[..cp , (o, Wer and ancestors el

if v is not root then
e, 1 < edge with v as head and split feature ¢ of its source (parent of v)
Pe () <= az(v)p™(e)
C—CO(y+pe(r))
if e has ancestor ¢! then
Pet (2) < ag(h(eh))p™ (eT)
C |C/(y+pier(2))]
end if
end if
10: if v is leaf then
1: G, < C-Rj
12: else
13: v, < child nodes v, of v
14: Yo :az(ve) ¢ 1(z € )
15:  VYov.:G,, ¢ TRAVERSETREE(V., C, ay)
16: G, < D, G,

17 @[] < B[] + (e — )Y(|Go/(pe +y)]

18: ifel #1 then

19: i)  oli] — (p! = DY([Go/(per +9)])
20:  end if

21: end if

22: return G,

PRI R

Nl

Lemma 1 (Yu et al., 2022). Let p,q € Rlz]q with coefficients A, B, respectively. Then (p, q) = (A, B) = (p(Y),V(Y)~'B),
where V € RIIXAHL corresponds to the Vandermonde matrix with entries VY))i; =y
As proposed by Yu et al. (2022), we use the Chebyshev points ) to evaluate the polynomial, as they are optimal in terms

of numerical stability. Using the Chebyshev points ), the values V()))~*C have to be precomputed, where C' refers to the
coefficients of B. It is thus required to precompute as many values as the degree of the given polynomial.



C Experiments

This section contains further information on the experiments and additional results like a run-time analysis in Section C.2

C.1 Dataset and Model Descriptions
This section contains detailed information about the datasets, the required pre-processing steps and the model fitting.

Models The following tree-based models are used in our experiments.

XGBoost (XBG) (Chen and Guestrin 2016)

XGBoost is an ensemble learning algorithm based on gradient boosting. It utilizes decision trees as base learners and opti-
mizes a user-defined loss function through an iterative process. XGBoost incorporates regularization techniques to control
model complexity and improve generalization. In our experiments, we relied on the XGBoost library?.

Gradient-Boosted Tree (GBT)

Gradient-Boosted Trees are an ensemble learning method that combines multiple weak learners, here decision trees,
in a sequential manner. It trains each tree to correct the errors made by the previous ones, effectively reducing
the overall prediction error. We used the default parametrization of the GradientBoostingClassifier and
GradientBoostingRegressor classes from the scikit—learn library (Pedregosa et al. 2011)

Random Forest (RF)

Random Forest is an ensemble learning algorithm that constructs a collection of decision trees by using bootstrapped subsets
of the training data and random feature selection. The predictions from individual trees are then aggregated to make a
final prediction. This technique reduces overfitting and enhances model robustness compared with single decision trees.
We used the default parametrization of the RandomForestClassifier and RandomForestRegressor classes for
classification and regression tasks, respectively (Pedregosa et al. 2011).

Decision Tree (DT)

A Decision Trees is a simple yet powerful model that makes predictions by recursively splitting the data based on the most
informative features. Each internal node represents a decision based on a feature, and each leaf node represents a prediction.
Decision Trees are prone to overfitting, but they serve as the fundamental building blocks for ensemble methods like Ran-
dom Forest and Gradient-Boosted Trees. We used the default parameterization of the DecisionTreeClassifier and
DecisionTreeRegressor classes in the scikit—learn library (Pedregosa et al. 2011).

Datasets The following dataset are used in our experiments. The data was either directly retrieved from the cited sources or
via scikit—-learn (Pedregosa et al. 2011) or openml (Feurer et al. 2020).

L]

German Credit (Hofmann 1994)

The German Credit dataset consists of credit applicants’ information from a German bank, including 20 attributes such as
age, employment status, credit history, and risk assessment outcomes. It contains 1,000 instances, and the primary prediction
task involves classification to determine whether an applicant is a “good” or “bad” credit risk based on their attributes. The
dataset was retrieved from the UCI repository>.

Bank (Moro, Cortez, and Laureano 2011)

The Bank dataset originates from a Portuguese banking institution and includes customer-related attributes, marketing cam-
paign details, and the outcome of customers subscribing to term deposits. It contains 45,211 instances, and the primary
prediction task is classification, aiming to predict whether a customer will subscribe to a term deposit or not. We retrieved
the dataset via openml and the identifier /461.

Adult Census (Kohavi 1996)

Also known as the “Census Income” or “Adult Income” dataset, it contains socio-demographic attributes of individuals
along with their income levels. It contains 45,222 instances and 14 attributes, and the main prediction task is classification,
aiming to predict whether an individual’s income exceeds 50, 000 per year. We retrieved the dataset via openml and the
identifier 7590.

Bike (Fanaee-T and Gama 2014)

This dataset involves information from a bike-sharing program, encompassing attributes like weather conditions, time, and
bike rental counts. It contains 17,379 instances and 12 attributes, and the primary prediction task is regression, aiming to
predict the count of bike rentals (a continuous value) based on the provided attributes. We retrieved the dataset via openml
and the identifier 42712.

COMPAS (Angwin et al. 2016)

The COMPAS dataset comprises criminal defendant attributes and recidivism predictions generated by a proprietary soft-
ware tool. It contains 6,172 instances and 11 attributes, and the main prediction task is classification, aiming to predict
whether a criminal defendant is likely to recidivate or not. We retrieved the “simplified” dataset from Kaggle*, which was

Zhttps://xgboost.readthedocs.io/en/stable/

3http://archive.ics.uci.edu/dataset/144/statlog+german-+credit+data
*https://www.kaggle.com/datasets/danofer/compass



Datasets # Instances # Features Target Performance (R? or Accuracy)
XGB GBT RF DT

German Credit 1000 20 {0,1} 0.7542 0.7700 0.7533 0.6833
Bank 45211 16 {0,1} 0.9064 0.9031 0.9020 0.8941
Adult Census 45222 14 {0,1} 0.8715 0.8655 0.8568 0.8524
Bike 17379 12 0.9464 0.8442 0.8840 0.8796
COMPAS 6172 11 {0,1} 0.6695 0.6776 0.6646 0.6609
Titanic 891 9 {0,1} 0.7761 0.8059 0.7947 0.7723
California 20640 8 0.8315 0.8317 0.7723  0.5945

Table 2: Overview of datasets used in the experiments with performance

presented in a blog post>.

¢ Titanic (Dawson 1995)
The Titanic dataset records passenger information from the ill-fated Titanic voyage, including features like age, gender,
class, and survival status. It contains 891 instances and 9 attributes, and the core prediction task is classification, aiming to
predict whether a passenger survived the Titanic disaster or not. The data was retrieved from Kaggle®.

« California (Kelley Pace and Barry 1997)
The California housing dataset encompasses housing-related attributes for various geographical regions in California. It
contains 20,640 instances and 8 attributes, and the primary prediction task is regression, aiming to predict the median value
of owner-occupied homes in California based on the provided attributes. The dataset was retrieved from scikit-learn.

Pre-processing and Model Training The following list contains all pre-processing steps for each dataset to reproduce the
experiments. For further details we refer to the technical supplement containing all experiment scripts and these steps. We base
most of the data transformation on scikit-learn (Pedregosa et al. 2011). All models were trained with a 70%, 30% training
split and fixed random seeds.

CLINT3 99 <

* German Credit: We transform the categorical columns (“checkingstatus”, “history”, “purpose”, “savings”, “employ”, “sta-
RT3 RT3 SN 13 9% <6y

tus”, “others”, “property”, “otherplans”, “housing”, “job”, “tele”, and “foreign”) into integer values via an ordinal encoding.
We binarize the label into 0 and 1.

e Bank: We transform the categorical columns (*“job”, “marital”, “education”, “default”, “housing”, “loan”, “contact”, “day”,

“month”, “campaign”, and “poutcome”) into integer values via an ordinal encoding. We binarize the label into 0 and 1.
Lastly, we drop rows containing null values.

e Adult Census: We drop rows containing null values and transform the categorical columns (“workclass”, “education”,

99 EEINNT3 CEIY3 9% ¢ EEINT3

“marital-status”, “occupation”, “relationship”, “race”, “sex”, “native-country”, and “education-num”) into integer values.

@ CERNY3 9

* Bike: We transform the categorical columns (‘“season”, “year”, “month”, “holiday”, “weekday”, “workingday”, and
“weather”) into integer values via an ordinal encoding and drop rows containing null values.

* COMPAS: The dataset was used as-is and no data transformation was applied.

 Titanic: We transform the categorical columns (“Sex”, “Ticket”, “Cabin”, and “Embarked”) into integer values via an ordi-
nal encoding. We impute missing values in categorical and numerical features with the mode and median values respectively.

* California: The dataset was used as-is and no data transformation was applied.

Shttps://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box- predictive-models.html
Shttps://www.kaggle.com/c/titanic/data



C.2 Run-time Analysis

In this section, we provide a run-time analysis that validates our theoretical finding about the runtime complexity of
our algorithm. As described in Section 3.1, the run-time complexity of TreeSHAP-IQ for all interactions of order s is

s—1
depth of the tree and ¢ is the number of leaves in the tree. Clearly, there are three components that affect the run-time. First,
the number of explanation points scales linearly, which is clear and will not be further considered. We thus will keep m = 1
in the following. Second, the free complexity, given by both, the number of leaves and depth of the tree affect the complexity
jointly. Note, that these values are highly dependent on each other. Third, the order of interactions affects the complexity in an
exponential manner, given by the binomial coefficient. In the following, to account for irregularities in the processing times, we
run every explanation 10 times and average over the run-times and show the corresponding standard deviations.

O (m A7 dmax ("*1)>, where m corresponds to the number of explanation points, dy,.x corresponds to the maximum

Naive Comparison We compare TreeSHAP-IQ’s run-time for computing SII values up to order sy < 5 with a naive com-
putation of SII. For this comparison, we create a separate synthetic classification dataset of 5000 samples and n number of
features for all n € [9,15] (we use the make_classification function from sklearn). We fix the tree-depth to 8 and
fit a decision tree for each dataset. We make sure that the trees all consists of approximately the same number of nodes (i.e.
all trees reach the maximum depth). We then compute the SII values up to order sg with TreeSHAP-IQ and through a naive
brute force computation over all combinations of subsets. We plot the log run-time of TreeSHAP-IQ and the naive SII com-
putation in Figure 6. The comparison shows that the naive calculation scales exponentially with the number of features, while
TreeSHAP-IQ scales polynomially for each interaction order sg.

102 { —@— TreeSHAP-IQ
— Naive Sl
— 50=2 ”““AX“_‘/./

——- 50=3 X/

101 B

—- 50=4 ,.x;"-'/' -
1004 ..... = T -
S0=3 L

10714 %~

avg. log run-time (s)

1072 4

9 10 11 12 13 14 15
number of features (n)

Figure 6: Log run-time of computing SII scores with TreeSHAP-IQ (blue) compared to naive calculation (grey). Naive compu-
tation scales exponentially.

Run-time by Tree Complexity We now illustrate the run-time by the tree complexity, where we compute always pairwise
interactions (s = 2). The results are shown in Figure 7. We observe a linear relationship of the run-time and the number
of vertices, as well as the number of leaves. The run-time compared with the maximum depth of the tree admits a sub-linear
behavior at higher depths. This can be explained by the increasing number of paths in the DT that are shorter than the maximum
depth, which increasingly occurs at higher depths. Lastly, we also observe this sub-linear behavior in terms of the number of
leaves times the depth, which again is explained by the overestimation of operations.

Run-Time by Number of Interactions We illustrate the run-time depending on the number of interactions for a fixed DT
of depth 20. The results are shown in Figure 8. Note that interactions are only updated, if all features have appeared in the
observed path. This is results in far less evaluations, especially for higher order interactions. Again, this is a consequence of the
structure of the DT, where only very few paths admit the maximum depth.
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Figure 7: Run-time analysis of TreeSHAP-IQ for a single DT with varying tree complexity parameters
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C.3 Additional n-SII Plots

In this section, we compare the strength and nature of interactions present in different model architectures. We generate the
n-SII plots of order sy = 6 for the predictions of two randomly selected instances in the Bike and Adult Census dataset. The
results for the bike dataset are shown in Figure 9 and Figure 10. The results for the Adult Census dataset are shown in Figure 11
and Figure 12.

We observe that the levels of interaction effects differ significantly among different predictions and different model architec-
tures. For the Bike dataset, the prediction in Figure 10 has higher interaction effects than the prediction in Figure 9. Further, it
can be seen that the well-performing XGB model exhibits a high amount of interaction, whereas the relatively poor-performing
GBT has little interactions present. Furthermore, as expected the DT exhibits a high level of interaction effects among both
predictions, as this method is not an esemble of weak learning algorithms, which are expected to have less interaction effects.

In the Adult Census dataset, we observe a similar pattern for XBG and GBT. Notably, for these instances, XGB exhibits
less interaction effects than RF, although the overall performance of XGB is superior. Again, we observe a high amoung of
higher order interactions present in the DT. However, its performance is worse than for all ensemble methods. Notably, the RF
and the DT exhibit more similar interaction effects than the other models. This could be seen as an indication that the learned
functional relationship in gradient boosting approaches differs from classical DT learning schemes. However, observing two
local interaction effects does not allow to conclude this rigorously, which would require a global study of interaction effects in
the corresponding models.

Bike DT: n-SlI plot for instance 12830 Bike RF: n-SlI plot for instance 12830
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Figure 9: n-SII values up to order sg = 6 for a randomly selected instance of the Bike dataset.



Bike DT: n-SlI plot for instance 8688 Bike RF: n-SlI plot for instance 8688
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Figure 10: n-SII values up to order sg = 6 for a randomly selected instance of the Bike dataset.
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Figure 11: n-SII values up to order sy = 6 for a randomly selected instance of the Adult Census dataset.



Adult Census DT: n-SlI plot for instance 47537 Adult Census RF: n-SllI plot for instance 47537
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Figure 12: n-SII values up to order so = 6 for a randomly selected instance of the Adult Census dataset.



C.4 Further Experimental Results on Benchmark Datasets

German Credit Dataset We display n-SII interaction effects up to order sy = 2 in a network plot and effects up to order
so = 3 in a waterfall chart for two randomly selected instances of the German Credit dataset predicted with a XGB. The results
are shown in Figure 13.
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Figure 13: n-SII scores for order sy = 2 in a network plot (top) and so = 3 in a waterfall chart (bottom) for two randomly

Model output: 1, True label: 1

savin.

selected instances of the German Credit dataset predicted with a XGB



Bank Dataset We display n-SII interaction effects up to order so = 2 in a network plot and effects up to order s) = 3 in a
waterfall chart for two randomly selected instances of the Bank dataset predicted with XGB. The results are shown in Figure 14.
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Figure 14: n-SII scores for order so = 2 in a network plot (top) and so = 3 in a waterfall chart (bottom) for two randomly

selected instances of the Bank dataset predicted with XGB




Adult Census Dataset We display n-SII interaction effects up to order so = 2 in a network plot and effects up to order so = 3
in a waterfall chart for two randomly selected instances of the Adult Census dataset predicted with XGB. The results are shown
in Figure 15.
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Figure 15: n-SII scores for order so = 2 in a network plot (top) and so = 3 in a waterfall chart (bottom) for two randomly
selected instances of the Adult Census dataset predicted with XGB



Bike Dataset We display n-SII interaction effects up to order sy = 2 in a network plot and effects up to order so = 3 in a
waterfall chart for two randomly selected instances of the Bike dataset predicted with XGB. The results are shown in Figure 16.
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Figure 16: n-SII scores for order sy = 2 in a network plot (top) and so = 3 in a waterfall chart (bottom) for two randomly
selected instances of the Bike dataset predicted with XGB



COMPAS Dataset We display n-SII interaction effects up to order sg = 2 in a network plot and effects up to order so = 3 in
a waterfall chart for two randomly selected instances of the COMPAS dataset predicted with a GBT. The results are shown in
Figure 17.
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Titanic Dataset We display n-SII interaction effects up to order so = 2 in a network plot and effects up to order sp = 3
in a waterfall chart for two randomly selected instances of the Titanic dataset predicted with a DT. The results are shown in
Figure 18.
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Figure 18: n-SII scores for order sp = 2 in a network plot (top) and sy = 3 in a waterfall chart (bottom) for two randomly
selected instances of the Titanic dataset predicted with a DT



California We display n-SII interaction effects up to order sy = 2 in a network plot and effects up to order s = 3 ina
waterfall chart for two randomly selected instances of the California dataset predicted with a GBT. The results are shown in
Figure 19.
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Figure 19: n-SII scores for order so = 2 in a network plot (top) and so = 3 in a waterfall chart (bottom) for two randomly
selected instances of the California dataset predicted with a GBT



