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Abstract. Removal-based explanations are a general framework to pro-
vide feature importance scores, where feature removal, i.e. restricting a
model on a subset of features, is a central component. While many machine
learning applications require dynamic modeling environments, where dis-
tributions and models change over time, removal-based explanations and
feature removal have mainly been considered in a static batch learning
environment. Recently, an interventional and observational perturbation
method was presented that allows to remove features efficiently in dynamic
learning environments with concept drift. In this paper, we compare these
two algorithms on two synthetic data streams. We showcase how both
yield substantially different explanations when features are correlated and
provide guidance on the choice based on the application.

1 Introduction

Feature importance (FI) is a prominent technique to understand black-box ma-
chine learning (ML) models. FI scores are assigned to individual features to
quantify their impact on the model’s decision. Recently, many existing FI mea-
sures were summarized in the removal-based explanation framework [1] using
three components: Feature removal, model behavior, and summary technique.
Therein, the impact of individual features, referred to as FI scores, is quanti-
fied with respect to the model behavior, a specific property of the ML model.
This model behavior is then evaluated by measuring the impact of removing a
group of features and summarizing these evaluations in a single FI score for each
feature. Among other insights, it was shown that the specific feature removal
technique yields different views on the process and hence substantially different
meaningful explanations [2, 3, 4, 5]. Chen et al. [2] provide first guidance based
on the application. While FI has been mainly considered in a static environ-
ment, many contemporary real-world applications require dynamic models that
quickly adapt over time. Providing explanations, such as FI, in non-stationary
environments is a challenging task, as access to previous observations is limited,
and FI scores may change abruptly due to adaptation of the model caused by
concept drift. Online learning constitutes an important technology when models
need to deal with possibly non-stationary environments in realistic scenarios [6].
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This leads to the algorithmic challenge how to efficiently adapt models based
on novel data, and the learning challenge how to reliably deal with a possibly
changing underlying data distribution. Since the latter is ill-posed, explanations
play a particularly relevant role in the context of potential concept drift.

In this work, we are interested in algorithmic approaches for efficient feature
removal in dynamic environments, that can be applied to FI in online learning
scenarios on data streams and are updated incrementally with new observations.
We compare a realization of two canonical choices of measures for feature re-
moval, referred to as the interventional (int.) and observational (obs.) approach,
respectively. We apply both on synthetic data streams using global FI measures
and demonstrate that there are substantial semantically meaningful differences
of these approaches. We further provide supporting arguments for the claim in
[2] that the obs. approach is “true to the data”, i.e., reflects the causal structure
of the features, and the int. approach is “true to the model”, i.e., considers the
model independent of the causal structure of the inputs.

Related Work

Feature removal has been introduced as part of the removal-based explanation
framework [1] that summarizes many popular FI measures. For model behavior,
common choices include the dataset loss (global explanation), such as permuta-
tion tests [7] and SAGE [8], or an individual prediction (local explanation), such
as SHAP [9].The Shapley value [10], due to its axiomatic structure, often con-
stitutes the preferred summary technique over pairwise subset comparisons. For
feature removal, perturbing inputs is a widely applied approach, which does not
require to fit a new model. Perturbation techniques are distinguished in the int.
and obs. approach [2], which either break or maintain the feature dependencies,
respectively. They are also referred to as marginal expectation and conditional
expectation [3] or off- and on-manifold explanations [4]. The int. approach has
been used in permutation tests [7]. The obs. approach is a more general concept,
that reduces to marginal distributions in case of feature independence [9]. It has
been approximated using unsupervised models [4], tree-based model structure
[11] or assumptions on the structure of the conditional distribution [5]. The obs.
approach is often approximated using the marginal distribution, i.e. assuming
feature independence and using the int. approach [9, 8] and both methods have
been discussed in the literature [2, 3, 4, 5]. It was argued in favor of the obs. ap-
proach [4, 5] and the int. approach [3], whereas in [2] the authors argue that this
choice depends on the application scenario and neither is preferable in general.

While XAI has mainly considered static environments so far, recent advances
have considered explanations in the context of dynamic environments, such as
online learning on data streams. In the context of removal-based explanations,
global FI measures have been introduced that generalize SAGE [12] and PFI [13],
where incremental extensions of the int. and obs. approach were introduced.
These recent developments enable us to dive deeper into the effects of int. and
obs. approaches in the incremental setting.
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Fig. 1: The obs. (red) and int. (blue) approach lead to different perturbations on
independent (left) and dependent (right) features. Int. removal creates synthetic
data points that lie outside the data distribution.

2 Feature Removal in Dynamic Environments

In dynamic environments, we consider an unbound stream of data at time t
as (x0, y0), . . . , (xt, yt) with a time-dependent model ft, updated incrementally
with each observation, and data-generating random variables (Xt, Yt) at time t.
Feature removal is a component of removal-based explanations [1], where the goal
in a dynamic environment is to restrict the model ft : X → Y on a d-dimensional
input space X with features D := {1, . . . , d} to a subset S ⊂ D, while preserving
accuracy. Formally, feature removal is executed by a (time-dependent) function
Ft : X ×P(D) → Y, where P(D) refers to the power set of D, which enables the
evaluation of the model for unknown features in S̄ := D \ S. While retraining
the model on each subset of features is computationally prohibitive, we rely on
a perturbation of the inputs of S̄ for a given model ft. One can distinguish
between the int. and obs. approach [2]. The int. approach perturbs the features
in S̄ by using the marginal distribution, which breaks the feature dependency.
In contrast, the obs. approach perturbs the features by using the conditional
distribution given the present input values of features in S. Formally, these are
defined [12] as

F int
t (x, S) := E

[
ft(x

(S), X
(S̄)
t )

]
and F obs

t (x, S) := E
[
ft(Xt) | X(S)

t = x(S)
]
,

where we write ft(x
(S), x(S̄)) to distinguish between inputs of ft in S, x(S), and

inputs of ft in S̄, x(S̄). As the true data-generating distribution, in practice,
is inaccessible, the expectation is approximated using Monte-Carlo integration,
e.g. efficient implementations as proposed in the work [12, 13]. The int. approach
relies on geometric sampling [13], where a reservoir of length L of observed data
points is stored. Each new observation uniformly replaces an existing obser-
vation in the reservoir. To approximate F int

t (x, S), a random observation x̃ is
drawn from the reservoir, where the feature values in S̄ are considered, i.e. the
model is evaluated with ft(x

(S), x̃(S̄)). This yields to a geometric distribution
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Fig. 2: Global FI for the Agrawal data stream using iPFI (left) and a synthetic
multivariate Gaussian stream using iSAGE (right). Correlated features result in
profoundly different FI scores.

for the probability of an observation to be chosen after r > 0 time steps. The
obs. approach relies on a conditional subgroup approach [14], where a reservoir
of length L is maintained using geometric sampling [13] for each conditional sub-
group, which is represented as the leaf node of a decision tree. Similar to Molnar
et al. [14], the subgroups are found individually for each feature by modeling each
feature with respect to the rest. To maintain the subgroups dynamically, we use
a Hoeffding Adaptive Tree (HAT) [12, 15]. For a subset S ⊂ D, the feature
values for S̄ are then inferred individually based on the reservoirs of the corre-
sponding HAT. To find the subgroup, the HAT is traversed using the input x
and the features in S, where the child is chosen based on random sampling, if a
split node with features in S̄ is encountered. This random sampling is based on
the ratio of observed data points of each child node, which is an inherent statis-
tic for HATs and parallels the TreeSHAP methodology [11]. The obs. approach
thereby directly extends the conditional subgroup approach to arbitrary feature
subsets and the incremental setting.

3 Experiments

We compare the int. and obs. approach on two synthetic data streams using the
incremental variants of the global FI measures iPFI [13] and iSAGE [12]1.

Agrawal data stream. The Agrawal stream [16] is a well-established synthetic
data stream for binary classification. In this experiment, we train an ARF
[17] for concept 5 [16] and consider the salary Xsal. and commission Xcom.

feature. The commission feature depends on the uniformly distributed salary
feature Xsal. ∼ unif(20k, 150k) with Xcom. = 1(Xsal. ≤ 75k) · Z with Z ∼
unif(10k, 75k), where 1 is the indicator function. The int. and obs. iPFI yield
different perturbations for Xsal. and Xcom. , as illustrated in Fig. 1 (right), in

1For the implementation we refer to https://github.com/mmschlk/On-Feature-Removal-

for-Explainability-in-Dynamic-Environments.
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contrast to the independent variables (left). Different perturbations then result
in profoundly different explanations, as shown in Fig. 2 (left).

Obs. iPFI assigns a low FI score to Xcom., as the information is inferred
from Xsal.. On the other hand, int. iPFI assigns a high FI score to Xcom., as the
model uses this feature for prediction of the target variable in addition to Xsal..
Perturbing the inputs of the model with int. iPFI reveals this dependency, as
the perturbed values for Xcom. do not depend on Xsal..

Multivariate Gaussian distribution. In this experiment, we consider a multi-
variate Gaussian distribution Xt ∼ N (0,Σt). The target variable does only

depend on X
(1)
t and is defined as Yt := 1(X

(1)
t > 0). At time t0 = 10k, we

induce a sudden concept drift: For t < t0 we specify Σt = 5 · J, where J is a
matrix of only ones, i.e. all features are highly correlated. For t > t0, we specify
Σt = I, where I is the identity matrix, i.e. all features are uncorrelated. The
resulting int. and obs. iSAGE values are shown in Fig. 2 (right).

When features are highly correlated or dependent, int. and obs. iSAGE yield
profoundly different explanations. In the correlated setting, the HAT starts to
split after around 2500 samples on X(2), as this variable is highly correlated with
X(1), which is used in the classification function. This is reflected in a high FI
score for X(2) of int. iSAGE, whereas all obs. iSAGE values remain relatively
close, as the information of X(2) can be inferred from the remaining variables.
After the concept drift, the features are independent and the HAT is forced to
split on X(1) instead, which reflects the true classification function. Both, int.
and obs. iSAGE then assign a high FI score to X(1), which confirms that both
approaches yield similar results, if features are independent.

4 Conclusion

We compared incremental variants for int. and obs. feature removal in a dynamic
environment. Our results confirm that this conceptional choice yields profoundly
different explanations, in line with literature for the static setting [2, 3, 4, 5]. The
difference in explanations arises from correlated features, which is expected as the
obs. approach reduces to the int. approach in case of feature independence. We
have shown on synthetic data streams that the int. approach reveals the model
structure more reliably than the obs. approach, which aligns with the “true to
the model” claim by Chen et al. [2]. In contrast, the obs. approach reveals
the causal structure of the classification function more accurately, as it does not
assign high FI scores to features that are replaceable by others, even though the
model has learned to predict based on them. This confirms the notion of obs.
explanations being “true to the data” [2]. Modeling perturbations for the obs.
approach remains a challenging task, where we have discussed and compared one
possible implementation using an extension of the conditional subgroup approach
[14]. In future research other perturbation techniques, such as the unsupervised
learning approach [4], can be extended to dynamic environments and analyzed
rigorously to establish further guidance.
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