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Abstract. Existing methods for explainable artificial intelligence (XAI),
including popular feature importance measures such as SAGE, are mostly
restricted to the batch learning scenario. However, machine learning is
often applied in dynamic environments, where data arrives continuously
and learning must be done in an online manner. Therefore, we propose
iSAGE, a time- and memory-efficient incrementalization of SAGE, which
is able to react to changes in the model as well as to drift in the data-
generating process. We further provide efficient feature removal methods
that break (interventional) and retain (observational) feature dependen-
cies. Moreover, we formally analyze our explanation method to show
that iSAGE adheres to similar theoretical properties as SAGE. Finally,
we evaluate our approach in a thorough experimental analysis based on
well-established data sets and data streams with concept drift.

1 Introduction

If machine learning is used for high-stake decision-making, e.g., in healthcare [53]
or energy consumption analysis [23], models learned on data should be transpar-
ent and explainable. However, as the best performing models are often opaque
in nature, this is typically not the case. The field of explainable artificial intelli-
gence (XAI) addresses this problem by developing methods to uncover the inner
working of black box models and to make the input-output relationships rep-
resented by such models more understandable [2]. Notably, this includes global
feature importance (global FI) methods, which quantify the influence of individ-
ual input features on the model predictions, and seek to rank the features in
terms of their importance.

So far, XAI has mainly focused on static learning scenarios, where a sin-
gle model is learned from data in a batch mode. However, in modern machine
learning applications such as online credit risk scoring for financial services [13],
intrusion detection in networks [4], or sensor network analysis [5, 16], data is
not static but coming in the form of a continuously evolving stream of data. In
applications of that kind, online algorithms are needed for learning in an incre-
mental mode, processing data in a sequential manner one by one. Incremental
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Fig. 1. An incremental model is fitted on a data stream. Incrementally explaining this
model with iSAGE efficiently distributes the FI scores according to the model’s loss
evolving the user understanding of the model over time.

learning should not only be time- and memory-efficient, but must also account
for possible changes in the underlying data distribution, which is referred to as
concept drift. Such drift may occur in different forms and for different reasons,
e.g., as a change of energy consumption patterns or hospital admission criteria
due to pandemic-induced lockdowns [17].

In dynamic scenarios, where models are constantly evolving and reacting to
their changing environment, static explanations do no longer suffice. Instead,
explanations for monitoring dynamic models should be updated in a continuous
manner, similar to the models themselves. In this work, we compute global FI
in an incremental manner, thereby also addressing the challenge of drifting data
distributions, where batch methods are likely to yield wrong explanations (cf.
Fig. 7 in Appendix C). Providing an incremental global FI method comes with
various challenges, not only conceptually and algorithmically, but also compu-
tationally, especially because the computation of many FI measures is already
prohibitive in the batch setting.

Contribution. We take a first step towards efficient explanations for changing
models on data streams and contribute:

– iSAGE ; a model-agnostic global FI algorithm that provides time- and memory-
efficient incremental estimates of SAGE values and is able to react to changes
in the model and concept drift.

– interventional and observational iSAGE ; two conceptual approaches to de-
fine SAGE values that extend on the existing discussion of appropriate fea-
ture removal techniques with an efficient incremental algorithm.

– open source implementation; a well-tested and general implementation of our
algorithms and experiments that integrates into the well-known River [41]
Python framework.3

Related Work. Global FI is an active part of XAI research, and various meth-
ods have been proposed [14]. Model-specific methods were developed based on

3 iSAGE is implemented in iXAI at https://github.com/mmschlk/iXAI.

https://github.com/mmschlk/iXAI
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the magnitude of weights for linear models and neural networks [25, 30], as
well as split heuristics for tree-based models [27]. Another common approach to
global FI is to aggregate local explanations, such as model-agnostic LIME [47]
and SHAP [39] or neural network specific methods [52, 57, 50, 51, 7]. Permuta-
tion Feature Importance (PFI) [8] is a well-established model-agnostic, global FI
method with various extensions [40, 9, 36]. SAGE is based on the Shapley value
[49], similar to SHAP [39] and LossSHAP [38] and overcomes computational
limitations of aggregating local SHAP explanations. Retricting a model to com-
pute FI is done either by retaining (observational) or breaking (interventional)
feature dependencies, where it was shown that both methods generate different
explanations and the choice should depend on the application [21, 1, 12].

Traditionally, XAI focuses on the batch learning scenario. However, recently
more methods that natively support incremental, dynamic learning environments
are proposed. For instance, online feature selection methods compute FI period-
ically [6, 56]. Haug et al. [28] propose a concept drift detection algorithm based
on clusterings and changes in SHAP’s base value. A model-specific approach for
tree-based models is measuring the mean decrease in impurity (MDI) [10, 24].
In the notion of explaining change [43], iPFI [22] is a related model-agnostic
approach that computes the traditional PFI [8] in an incremental manner. To
efficiently restrict the model [15], we rely on geometric sampling [22] (interven-
tional) and a combination of the conditional subgroup approach [40] and the
TreeSHAP methodology [38] (observational).

Existing online FI methods are either model-specific or interpretation of the
resulting feature importance scores is unintuitive, emphasizing the need for in-
cremental variants of Shapley-based explanations, such as SAGE.

2 Shapley Additive Global Importance (SAGE)

Many feature importance techniques have been proposed in recent years [15],
where each method allows to assess an importance ranking of the features. How-
ever, interpreting the exact scores and quantifying the difference between the
importance of features remains unintuitive in many cases. Shapley-based expla-
nations have attracted a lot of attention due to their unique mathematical prop-
erties, in particular the efficiency condition that ensures that the sum of these
values over all features equals a specified model property, referred to as model
behavior [15]. SHapley Additive Global Importance (SAGE) [14] is a well-known
Shapley-based explanation technique that quantifies global FI as the contribu-
tion of individual features to the model’s loss. SAGE is further a model-agnostic
method that only relies on model evaluations and does not make any assumption
about the inherent structure. In the following, we distinguish between the SAGE
values ϕ, a statistical concept to define Shapley-based global FI, and the SAGE
estimator ϕ̂SAGE, an efficient approximator of the SAGE values. For a model
f : X → Y, the SAGE values ϕ(i) for every feature i ∈ D are constructed, such
that the sum is equal to the expected improvement in loss over using the mean
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prediction ȳ := EX [f(X)], i.e.

ν(D) := EY [ℓ(ȳ, Y )]︸ ︷︷ ︸
no feature information

−E(X,Y ) [ℓ(f(X), Y )]︸ ︷︷ ︸
with feature information

=
∑
i∈D

ϕ(i),

where ℓ is a suitable loss (e.g, cross-entropy for classification, absolute error for
regression, or kendall tau for rankings) and (X,Y ) refers to the joint distribution
of the data-generating random variables X and Y . The quantity ν(D) is viewed
as the improvement in loss, if all features D are known to the model. It is then
also natural to define ν(∅) = 0, i.e. the improvement in loss is expected to be
zero, if no features are known to the model. To quantify the importance of single
features, the expected improvement in loss, if only a subset S ⊂ D of features
is known, is introduced. To restrict this loss, the model is restricted to a subset
of features S ⊂ D, by randomizing the features in D \ S. In the following, we
write f(x) = f(x(S), x(S̄)) to distinguish the features of x in S, x(S), and the
features of x in S̄ := D \ S, x(S̄). To randomize the features in S̄, we introduce
the notation f(x, S) with a set S ⊂ D and the observational approach [39, 14]

fobs(x, S) := E
[
f(x(S), X(S̄)) | X(S) = x(S)

]
and the interventional approach [12, 32]

f int(x, S) := E
[
f(x(S), X(S̄))

]
.

The essential difference between the two approaches is that f int breaks the de-
pendence between the features in S and S̄. The observational and interventional
approach are also referred to as on-manifold and off-manifold explanation [21],
or conditional and marginal expectation [32], respectively. While f int is easy to
approximate using the marginal distribution of the observed data points, ap-
proaches using fobs rely on further assumptions on the conditional distribution
[39, 1]. SAGE values are introduced using the observational approach but the
SAGE algorithm relies on the interventional approach for approximation, i.e.
assuming feature independence [14]. It was shown that both approaches yield
significantly different explanations, if features are correlated [12, 21, 32]. We
thus propose an algorithm for each approach and leave the choice of explana-
tion to the practitioner, as it was concluded that this choice depends on the
application scenario [12]. We define the restricted improvement in loss as

ν(S) := EY [ℓ(ȳ, Y )]− E(X,Y ) [ℓ(f(X,S), Y )] for f ∈ {f int, fobs}.

Then, ν : P(D) → R defines a function over the powerset P(D), known as set
function in cooperative game theory. The SAGE values [14] are then defined as
the Shapley value [49] of ν, i.e. the fair attribution of ν(D) to individual features
given its axiomatic propoerties.

Definition 1 (SAGE values [14]). The SAGE values are defined as

ϕ(i) :=
∑

S⊂D\{i}

1

d

(
d− 1

|S|

)−1

[ν(S ∪ {i})− ν(S)] .
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We refer to the interventional and observational SAGE values, if f int and fobs

are used for f in ν, respectively.

Due to the exponential complexity of the Shapley value, the SAGE estimator
uses a Monte-Carlo approximation [11] based on the representation

ϕ(i) =
1

d!

∑
π∈SD

ν(u+
i (π))− ν(u−

i (π)) = Eπ∼unif(SD)[ν(u
+
i (π))− ν(u−

i (π))],

where SD is the set of permutations over D and u+
i (π) and u−

i (π) refer to the set
of indices preceding feature i in π, in- and exclusively i. Plugging in the definition
of ν and using Monte-Carlo estimation, the SAGE estimator is constructed.

Definition 2 (SAGE Estimator [14]). Given data points (xn, yn)n=1,...,N

and permutations (π)n=1,...,N ∼ unif(SD) the SAGE estimator is defined as

ϕ̂SAGE(i) :=
1

N

N∑
n=1

ℓ(f̂(xn, u
−
i (πn)), yn)− ℓ(f̂(xn, u

+
i (πn), yn)),

with f̂(x, ∅) := 1
N

∑N
n=1 f(xn) and f̂(x, S) := 1

M

∑M
m=1 f(x

(S), x̃
(S̄)
m ) for ∅ ≠

S ⊂ D with x̃m sampled uniformly from x1, . . . , xN .

The mean prediction f̂(x, ∅) thereby differs to ensure that the SAGE val-
ues sum to the improvement in loss. For each permutation πn and observation
(xn, yn), the SAGE estimator can be efficiently computed by iterating through
the permutation and evaluating ν on the preceding elements [11, 14]. The per-
mutation sampling approach ensures that the efficiency condition of the Shapley
value is maintained and thus the SAGE estimates sum approximately to ν(D).
In contrast to other global FI measures, where interpretation of the scores are
unintuitive, SAGE yields a meaningful axiomatic interpretation.

3 Incremental Global Feature Importance

In the following, we consider a data stream, where at time t the observations
(x0, y0), . . . , (xt, yt) have been observed. On this data stream, a model ft is
incrementally learned over time by updating ft → ft+1 using the observation
(xt, yt). [5, 37] Our goal is to estimate the (time-dependent) SAGE values ϕt

alongside the incremental learning process using minimal resources. In particular,
in an online learning scenario, where the model is constantly adapting, huge
changes in global FI scores can occur, as has been observed in Haug et al. [28]
and Fumagalli et al. [22]. To guarantee the reliability of the learned models, it
is crucial to understand these global FI scores over time. The main challenge in
estimating the SAGE values in an online learning scenario is that the model ft
and the data-generating random variables (Xt, Yt) change over time and access

to observations to compute f̂t is limited.
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While the SAGE estimator provides efficient estimates of static SAGE values
for a given dataset, it does not react properly to changes in the model or concept
drift. In Appendix C, we show an example (Fig. 7) which illustrates that the
SAGE estimator yields wrong importance scores if the underlying distribution or
model is not static. Furthermore, computing the SAGE estimator repeatedly in
an incremental setting on a data stream quickly becomes infeasible. As a remedy,
we propose incremental SAGE (iSAGE), an incremental estimator, which reacts
to changing distributions and is able to explain dynamic, time-dependant models.
To compare iSAGE in an incremental learning setting, we first propose Sliding
Window SAGE (SW-SAGE), a time-sensitive baseline estimator that repeatedly
computes the SAGE estimator on a sliding window.

Sliding Window SAGE (SW-SAGE) A naive approach of approximating
SAGE values in an incremental manner is through repeated calculation within
a sliding window (SW), which we denote as SW-SAGE. Applying SW-SAGE,
necessitates storing all historical observations (xt, yt) for the last w (window
length) observations, and recomputing the SAGE estimator from scratch based
on the most up-to-date model ft. The main computational effort of SW-SAGE
stems from evaluating the model ft and thus scales linearly with the window
length w. The size w of the window has a profound effect on the resulting SAGE
estimates. Choosing a large value for w, may increase the quality of the estimated
SAGE values (larger sample), but can also lead to wrong importance scores, since
the window may contain outdated observations. Vice versa, a window size too
small leads to a high variance.

3.1 Incremental SAGE (iSAGE)

The high computational effort and the inability to reuse past results, because of
the dynamic nature of ft, strictly limits SW-SAGE in many scenarios, further
discussed in Section 4.1. As a result, we now propose a time- and memory-
efficient variant of SW-SAGE, which we refer to as incremental SAGE (iSAGE).
The iSAGE algorithm computes the (time-dependent) SAGE values ϕt at time
t and is able to react to changes in the model and concept drift, while updating
its estimates efficiently in an incremental fashion with minimal computational
effort. At each time step, we observe a sample (xt, yt) from the data stream,
and our goal is to update the estimate using the current model ft. We sample
πt ∼ unif(SD) to compute the marginal contribution for i ∈ D as

∆t(i) :=ℓ(f̂t(xt, u
−
i (πt)), yt)− ℓ(f̂t(xt, u

+
i (πt)), yt),

where f̂t(x, S) is a time-sensitive approximation of the restricted model, further
discussed in Section 3.2. These computations are then averaged over time, which
yields the iSAGE estimator, outlined in Algorithm 1.

Definition 3 (iSAGE). The iSAGE estimator is recursively defined as

iSAGE: ϕ̂t(i) = (1− α) · ϕ̂t−1(i) + α ·∆t(i),
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Algorithm 1 Incremental SAGE (iSAGE)

Require: stream {xt, yt}∞t=1, feature indices D = {1, . . . , d}, model ft, loss function
ℓ, and inner samples m

1: Initialize ϕ̂1 ← 0, ϕ̂2 ← 0, . . . , ϕ̂d ← 0, and smoothed mean prediction y∅ ← 0
2: for all (xt, yt) ∈ stream do
3: Sample π, a permutation of D
4: S ← ∅
5: y∅ ← (1− α) · y∅ + α · f(xt) {Udpate mean prediction}
6: lossPrev← ℓ(y∅, yt) {Compute mean prediction loss}
7: for j = 1 to d do {Iterate over π}
8: S ← S ∪ {π[j]}
9: y ← 0
10: for k = 1 to m do {Marginalize prediction with S}
11: Sample x

(S̄)
k ∼ Q(x,S)

t {interventional (Algorithm 2) or observational (Al-
gorithm 3)}

12: y ← y + ft(x
(S)
t , x

(S̄)
k )

13: end for
14: ȳ ← y

m

15: loss← ℓ(ȳ, yt)
16: ∆← lossPrev− loss
17: ϕ̂π[j] ← (1− α) · ϕπ[j] + α ·∆
18: lossPrev← loss
19: end for
20: end for
21: return ϕ1, ϕ2, . . . , ϕd

where α > 0 and computation starts at 0 < t0 < t with ϕ̂t0(i) := ∆t0(i).

The iSAGE estimator thus approximates ϕt by exponentially smoothing pre-
vious SAGE estimates, as E[∆t(i)] = ϕt(i). In the static batch setting, the SAGE
estimator computes the restricted model ft(x, S) by sampling uniformly from ob-
servations in the dataset. However, when ft is incrementally updated in the data
stream setting, access to previous observations is limited as observations are dis-
carded after the incremental update of the model. Furthermore, the distribution
of previous observations might change over time, so recently observed samples
should be preferred. We thus present two sampling strategies to implement the
observational and interventional approach in an incremental fashion.

3.2 Incremental Feature Removal Strategies

As mentioned in Section 2, SAGE is defined using the observational approach,
which is then approximated by the interventional approach, i.e. sampling from
the marginal distribution and assuming feature independence. Clearly, this con-
stitutes a strong assumption that is rarely satisfied in practice. Instead, we sam-
ple from the marginal distribution to compute interventional iSAGE and propose
a novel approach to compute observational iSAGE, by approximating the condi-
tional distribution. This aligns with [12], where it is claimed that the choices of
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feature removal is dependent on the application scenario. For both approaches
we now provide a time- and memory-efficient incremental sampling approach by
maintaining time-dependent reservoirs to estimate f(x, S).

Definition 4 (Estimator for f(x, S)). At time t, we define for ∅ ≠ S ⊂ D

f̂t(x, S) :=
1

M

M∑
m=1

ft(x
(S), x̃(S̄)

m ) with x1, . . . , xM ∼ Q(x,S)
t ,

where S̄ := D \ S and Q(x,S)
t is a sampling distribution over features in S̄.

Further, f̂t(x, ∅) := (1− α)ft−1(x, ∅) + αft(xt) and f̂t0(x, ∅) := ft0(xt0).

The interventional approach breaks the feature dependency and thus Q(x,S)
t

does not depend on the location x, whereas for the observational Q(x,S)
t does

depend on both, the location x as well as the subset S. We now describe incre-
mental sampling algorithms to sample from Q(x,S) for either approach.

Interventional iSAGE The interventional approach in the incremental learn-

ing setting is defined as f int
t (x, S) := E

[
ft(x

(S), X
(S̄)
t )

]
. The batch SAGE al-

gorithm samples uniformly from all observations from the given dataset. In an
incremental learning scenario, this approach has significant drawbacks. First, ac-
cess to previous observations is limited, as storing observations may be infeasible
for the whole data stream. Second, the distribution of Xt may change over time,
and it is, thus, beneficial to favor recent observations over older data points. The
geometric sampling strategy, proposed by Fumagalli et al. [22], accounts for both
of these challenges. Geometric sampling maintains one reservoir of length L, that
is updated at each time step with an incoming data point by uniformly replac-
ing a data point from the reservoir. Then, at each time step, observations x̃m

are uniformly chosen from the reservoir. The geometric sampling strategy (fully
initialized at time step L := t0) thus chooses a previous observation from time
r at time s with probability L−1(1− L−1)s−r−1 for r ≥ L, which clearly favors
more recent observations. The complete procedure is given in Algorithm 2. At
any time t, geometric reservoir sampling requires a storage space of O(L) data
points. It has been shown that the geometric sampling procedure is favorable
in scenarios with concept drift compared to memory-efficient uniform sampling
approaches, such as general reservoir sampling [22].

Observational iSAGE The interventional approach can generate unrealistic
observations when features are highly correlated, resulting in out-of-distribution
evaluations of the model. When understanding causal relationships, it might be
inappropriate to evaluate the model outside the data manifold [12], and we thus
propose an alternative approach that can incorporate feature dependence in the
incremental sampling process. The observational approach in the incremental

setting is defined as fobs
t (x, S) := E

[
ft(x

(S), X
(S̄)
t ) | X(S)

t = x(S)
]
. While ob-

serving data points xt, we train for every feature i ∈ D an incremental decision
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tree that aims at predicting x
(i)
t given the remaining feature values x

(D\{i})
t . We

then traverse the incremental decision tree using the input xt and maintain a
reservoir of length L at each leaf node, using the geometric sampling strategy
described above, i.e. uniformly replacing an observation in the leaf’s reservoir.
This yields a reservoir of length L at every leaf node of the incremental decision
tree, where both, the decision tree as well as the reservoir change over time. We
propose to use a Hoeffding Adaptive Tree (HAT), a popular incremental decision
tree [31], to adaptively maintain the structure. The approach can be viewed as
an incremental variant of the conditional subgroup approach [40]. Given a subset

S ⊂ D and an observation xt, we obtain the values of x̃
(S̄)
m separately for each

feature j ∈ S̄. Using xt, we traverse the HAT and at every decision node that
splits on a feature in S̄, we randomly split according to the split ratio of previ-
ous observed inputs, a statistic that is inherently available for a HAT. From the

reservoir at the resulting leaf node, we then uniformly sample values for x̃
(j)
m and

repeat this process for every feature j ∈ S̄ until we obtain all values for x̃
(S̄)
m .

This methodology parallels the TreeSHAP approach of traversing decision trees
for absent features, referred to as path dependent TreeSHAP [38]. Notably, our
approach allows to extend the conditional subgroup approach to an arbitrary
feature subset S ⊂ D while maintaining only one decision tree per feature and
further extends the approach to an incremental setting. The observational ap-
proach via HAT has a space complexity of O(d · TR · L) where R refers to the
HATs’ maximum tree depth, T is the maximum number of tree splits, and L is
the size of the reservoir at each leaf node.

3.3 Approximation Guarantees for Static Environments

We presented iSAGE as a time- and memory-efficient algorithm to estimate
SAGE values over time incrementally. In contrast to the SAGE estimator, iS-
AGE reacts to changes in the model as well as concept drift, which we demon-
strate empirically in Section 4. Analyzing iSAGE theoretically in an incremental
learning scenario would require strong assumptions on the data-generating ran-
dom variables (Xt, Yt) and the approximation quality of the learned model ft, as
the iid assumption in general is not fulfilled. Instead, we now show theoretically
that iSAGE has similar properties as the SAGE estimator in a static learning
environment. In the following, we assume that f ≡ ft is a constant model and
(X,Y ) ≡ (Xt, Yt) a stationary data generating process. We further assume that

Q(x,S)
t is the true marginal (interventional) or conditional (observational) distri-

bution and that samples are drawn iid, similar to Covert et al. [14].

Theorem 1. For iSAGE ϕ̂t(i) → ϕt(i) for M → ∞ and t → ∞.

Theorem 1 shows that iSAGE converges to the SAGE values. Further, the
variance is controlled by α.

Theorem 2. The variance of iSAGE is controlled by α, i.e. V[ϕ̂t(i)] = O(α).

Lastly, we show that iSAGE does not differ much from the SAGE estimator.
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Theorem 3. Given the SAGE estimator ϕ̂SAGE
t (i) computed at time t over all

previously observed data points, it holds for iSAGE with M → ∞, α = 1
t and

every ϵ > (1− α)t−t0+1 that P
(
|ϕ̂t(i)− ϕ̂SAGE

t (i)| > ϵ
)
= O( 1t ).

While iSAGE admits similar properties as the SAGE estimator in a static
environment, we showcase in our experiments that iSAGE is able to efficiently
react to model changes and concept drift in an incremental learning setting.

4 Experiments

We now utilize iSAGE in multiple experimental settings. In Section 4.1, we show
how iSAGE can be efficiently applied in dynamic environments with concept
drift. In Section 4.2, we construct a synthetic ground-truth scneario for a data
stream with concept drift and show that iSAGE is able to efficiently recover the
SAGE values. In Section 4.3, we illustrate the difference of interventional and
observational iSAGE, which yield profoundly different explanations. In Section
4.4, we show that iSAGE leads to the same results as the SAGE estimator in a
static environment validating our theoretical results. As our iSAGE explanation
technique is inherently model-agnostic, we train and evaluate our method on
different incremental and batch models. 4

4.1 iSAGE in Dynamic Environments with Concept Drift

In this experiment, we demonstrate the explanatory capabilities of iSAGE in a
dynamic learning scenario with concept drift. We illustrate how iSAGE uncovers
hidden changes in black box incremental models applied in real-world incremen-
tal learning scenarios where models are updated with every new observation. We
compare iSAGE with incremental permutation feature importance (iPFI) [22],
which is up to our knowledge, the only model-agnostic explanation method that
can be applied in an incremental learning setting. For additional experiments
and a comparison with the mean decrease in impurity (MDI) for tree-based
models [24], we refer to the supplement material (cf., D.3). Fig. 2 explains the
incremental learning procedure for an ARF classifier on the elec2 data stream.
Both methods detect similar feature importance rankings with varying abso-
lute values. In contrast to iPFI, iSAGE explanations sum to the time-dependent
difference in model loss over the loss using the mean prediction, due to the effi-
ciency axiom of the Shapley value, which naturally increases interpretability of
the method. Both methods correctly reveal the hidden changes in the model in-
duced by the concept drift in the well-studied elec2 [26]. The concept drift, which

4 All model implementations are based on scikit-learn [46], River [41], and torch [45].
The data sets and streams are retrieved from OpenML [19] and River. The data
sets are described in detail in Appendix D.1. https://github.com/mmschlk/iSAGE-
An-Incremental-Version-of-SAGE-for-Online-Explanation-on-Data-Streams.

https://github.com/mmschlk/iSAGE-An-Incremental-Version-of-SAGE-for-Online-Explanation-on-Data-Streams
https://github.com/mmschlk/iSAGE-An-Incremental-Version-of-SAGE-for-Online-Explanation-on-Data-Streams
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Fig. 2. iSAGE and iPFI of an ARF on elec2 (left) and iSAGE for an incrementally
fitted autoencoder for fault detection based on the reconstruction loss (right).

stems from the vicprice feature not having any values in the first ≈ 20k obser-
vations, would be obfuscated by solely plotting the model performance without
any online explanations.
Localization of sensor faults. As an illustrative example, we conduct an exper-
iment to show how online SAGE values can detect sensor faults in online sen-
sor networks, which constitutes a challenging predictive maintenance problem
[16, 54]. Similar to Hinder et al. [29], we simulate sensor network data of water
pressures including sensor faults (vertical lines in Fig. 2 denote the time points)
via the L-Town [55] simulation tool [34] and explain online learning models. We
incrementally fit 5 and explain a NN autoencoder on the sensor readings. Fig. 2
shows how the autoencoder’s reconstruction error is distributed onto the indi-
vidual senor values by iSAGE. Notably, the faulty sensor can easily be identified
through inspection of the iSAGE values after the sensor faulted.

4.2 Approximation quality with synthetic ground-truths.

We compare iSAGE to the inefficient baseline SW-SAGE, as well as synthetic
ground-truth (GT) values estimated using the SAGE estimator. Conducting GT
experiments in an incremental learning setting where models change with every
new observation is computationally prohibitive. Moreover, it is not defined what
constitutes a GT online explanation for real-world data streams with hidden
drifts. We construct a data stream that consists of multiple sub-streams, each
with different classification functions, i.e. inducing sudden concept drift when

5 We fit the autoencoder with each new data point by conducting a single gradient
update (i.e., batch size of 1). For further information about the experimental setup,
we refer to Appendix D.3.



12 M. Muschalik et al.

0.0

0.5

1.0

cr
os

s
en

tro
py mean prediction loss

model loss

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Samples

0.0

0.1

0.2

0.3

0.4

0.5

SA
GE

 v
al

ue
s

Features
salary
commission
age

elevel
loan
others

Methods
iSAGE (   0.001)
SW-SAGE (w = 2000)
ground-truth (GT)

Fig. 3. iSAGE (solid), SW-SAGE (dotted) and GT (dashed) values for an example GT
stream. SW-SAGE is computed with a stride of 100 (0.05 ·w) resulting in an overhead
20 times higher than iSAGE.

sub-streams are switched. Within each substream, we maintain a static pre-
trained model with a pre-computed (constant) GT explanation. We observe how
differently parameterized SW-SAGE and iSAGE estimators approximate the
pre-computed GT values, see Fig. 3, and measure the approximation quality
in terms of MSE and MAE. We repeat the complete experimental setup 20
times for each frequency scenario and summarize the resulting approximation
errors (MSE) in Table 2 and Fig. 3. Independently of the substantially increased
computational overhead (up to 20 times), SW-SAGE’s approximation quality is
substantially worse compared to iSAGE. In some scenarios, SW-SAGE reaches
the GT values faster than iSAGE. Yet, in the important phases of change, SW-
SAGE’ estimates are substantially worse than iSAGE’s (see Fig. 10 for a detailed
view). This is a result from SW-SAGE attributing equal weight to outdated
observations after a concept drift and the current model ft classifying the samples

Table 1. Approximation quality of iSAGE (incc) and SW-SAGE (SWc) on synthetic
GT data streams for 20 iterations (c denotes the factor of additional model evaluations
compared to iSAGE). The complete results are given in Table 2.

scenario high middle low
size (w) 500 1 000 500 1 000 500 1 000

MSE
(σ)

inc1
0.034
(0.021)

0.038
(0.022)

0.027
(0.023)

0.027
(0.026)

0.015
(0.012)

0.013
(0.009)

SW20
0.283
(0.262)

0.420
(0.360)

0.191
(0.271)

0.320
(0.487)

0.049
(0.043)

0.078
(0.081)

SW1
0.248
(0.198)

0.462
(0.413)

0.183
(0.200)

0.399
(0.792)

0.061
(0.067)

0.080
(0.079)



iSAGE: An Incremental Version of SAGE 13

differently than the model before. iSAGE, however, smoothly changes between
the different concepts.

4.3 Interventional and Observational iSAGE

In the presence of dependent variables, the choice of an interventional or obser-
vational approach has a profound effect on the SAGE values. In this experiment,
we compare both approaches using the efficient incremental algorithms presented
in Section 3.2. An ARF model is trained and explained on the synthetic agrawal
data stream. The synthetic classification function is defined in Appendix D.3. In
this stream the Xcommission feature (Xcom.) directly depends on Xsalary. When-
ever the salary of an applicant exceeds 75k, no commission is given (Xcom. = 0),
and otherwise the commission is uniformly distributed (Xcom. ∼ U(10k, 75k)).
Fig. 4 showcases how interventional and observational iSAGE differ.
No significant importance is distributed to the Xcom. feature, if observational
iSAGE is used, as the information present in Xcom. can be fully recovered by
the observational approach based on Xsalary. The importance is distributed onto
the remaining two important features Xsalary and Xage. However, when interven-
tional iSAGE is used, the importance is also distributed to Xcom., as the model
is evaluated outside the data manifold. The unrealistic feature values uncover
that the incremental model has picked up on the transient relationship between
the target values and the feature Xcom..

4.4 iSAGE and SAGE in Static Environments

We consider a static learning scenario, in which we compare interventional iS-
AGE with Covert et al. [14]’s original SAGE approach for well-established bench-
mark batch datasets. The models are pre-trained and then explained. We apply
Gradient Boosting Trees (GBTs) [20], LightGBM models (LGBM) [33], and neu-
ral networks (NNs). The original SAGE explanations are directly computed from
the batch datasets. iSAGE experiences the datasets as a randomly shuffled data
stream where the model is not updated incrementally. We run this explanation
procedure 20 times and illustrate the SAGE values on the california example
dataset in Fig. 5 (more datasets in Section D.3). Fig. 5 shows that iSAGE ap-
proximates SAGE in the static setting on average with a higher variance. The
higher variance is a direct result of the iSAGE having no access to future data
points and the exponential smoothing mechanism controlled by α. iSAGE, thus,
focuses more on recent samples, which is essential for non-stationary environ-
ments like incremental learning under concept drift.

5 Conclusion and Future Work

We propose and analyze iSAGE, a novel and model-agnostic explanation proce-
dure to compute global FI in dynamic environments based on time-dependent
SAGE values. In contrast to the batch SAGE algorithm [14], iSAGE is able to
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Fig. 5. SAGE values (median in red) per
feature of the california dataset for the
SAGE estimator (left), and interventional
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efficiently react to concept drift and changes in the model. We further extend
SAGE with the observational and interventional SAGE values as distinctive ob-
jectives and present efficient incremental iSAGE variants, that are able to esti-
mate these values over time and react to changes in the model and concept drift.
In particular, we present an incremental approximation for the observational ap-
proach that combines the conditional subgroup approach [40] and the TreeSHAP
methodology [38], which could also be used in a static learning environment to
further improve the SAGE algorithm. We empirically confirm profound differ-
ences in both explanations depending on the choice of approach, which yields
supporting arguments in the interventional and observational debate [21, 32, 12]
that the choice should depend on the application scenario [12]. In a static envi-
ronment, we prove that iSAGE has similar properties as SAGE and that both do
not differ significantly. We further illustrate the efficacy of incremental explana-
tions in multiple experiments on benchmark data sets and streams and conduct
a ground-truth comparison.
Still, approximating Shapley values remains a computationally challenging prob-
lem. Moreover, this approach does not address the problem of incrementally
decomposing the interactions between features, which requires further investi-
gation. Finally, the interaction between human users and incrementally created
explanations derived from methods like iSAGE need to be vigorously evaluated
to identify further research opportunities.
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planation of model change based on feature importance. KI - Künstliche
Intelligenz (2022). https://doi.org/10.1007/s13218-022-00766-6

[44] Nahmias, S., Olsen, T.L.: Production and operations analysis. Waveland
Press, Illinois (2015)

[45] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch.
In: Advances in Neural Information Processing Systems 30 (NeurIPS 2017)
Workshop (2017)

[46] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research
12, 2825–2830 (2011)

[47] Ribeiro, M.T., Singh, S., Guestrin, C.: ”Why Should I Trust You?”: Ex-
plaining the Predictions of Any Classifier. In: Proceedings of International
Conference on Knowledge Discovery and Data Mining, San Francisco. pp.
1135–1144 (2016)

[48] Schlimmer, J.C., Granger, R.H.: Incremental learning
from noisy data. Machine Learning 1(3), 317–354 (1986).
https://doi.org/10.1023/A:1022810614389

[49] Shapley, L.S.: A Value for n-Person Games. In: Contributions to the Theory
of Games (AM-28), Volume II, pp. 307–318. Princeton University Press
(1953). https://doi.org/10.1515/9781400881970-018

[50] Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features
through propagating activation differences. In: Proceedings of the 34th In-
ternational Conference on Machine Learning ICML 2017. Proceedings of
Machine Learning Research, vol. 70, p. 3145–3153. PMLR (2017), http:
//proceedings.mlr.press/v70/shrikumar17a.html

[51] Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving
for simplicity: The all convolutional net. In: 3rd International Conference

https://arxiv.org/abs/2006.04628
https://arxiv.org/abs/2006.04628
http://jmlr.org/papers/v22/20-1380.html
https://doi.org/10.1007/s13218-022-00766-6
https://doi.org/10.1023/A:1022810614389
https://doi.org/10.1515/9781400881970-018
http://proceedings.mlr.press/v70/shrikumar17a.html
http://proceedings.mlr.press/v70/shrikumar17a.html


20 M. Muschalik et al.

on Learning Representations, ICLR 2015 (2015), http://arxiv.org/abs/
1412.6806

[52] Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep
networks. In: Proceedings of the 34th International Conference on Ma-
chine Learning ICML 2017. Proceedings of Machine Learning Research,
vol. 70, p. 3319–3328. PMLR (2017), http://proceedings.mlr.press/
v70/sundararajan17a.html

[53] Ta, V.D., Liu, C.M., Nkabinde, G.W.: Big data stream computing in health-
care real-time analytics. In: Proceddings of International Conference on
Cloud Computing and Big Data Analysis (ICCCBDA 2016). p. 37–42
(2016). https://doi.org/10.1109/ICCCBDA.2016.7529531

[54] Vaquet, V., Artelt, A., Brinkrolf, J., Hammer, B.: Taking care
of our drinking water: Dealing with sensor faults in water distribu-
tion networks. In: Artificial Neural Networks and Machine Learning –
(ICANN 2022. pp. 682–693. Springer Nature Switzerland, Cham (2022).
https://doi.org/10.1007/978-3-031-15931-2 56

[55] Vrachimis, S., Eliades, D., Taormina, R., Kapelan, Z., Ostfeld, A.,
Liu, S., Kyriakou, M., Pavlou, P., Qiu, M., Polycarpou, M.: Bat-
tle of the leakage detection and isolation methods. Journal of Wa-
ter Resources Planning and Management 148, 04022068 (05 2022).
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001601

[56] Yuan, L., Pfahringer, B., Barddal, J.P.: Iterative subset selection for feature
drifting data streams. In: Proceedings of the 33rd Annual ACM Symposium
on Applied Computing. pp. 510–517 (2018)

[57] Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional net-
works. In: Computer Vision (ECCV 2014). Lecture Notes in Computer Sci-
ence, vol. 8689, pp. 818–833. Springer (2014). https://doi.org/10.1007/978-
3-319-10590-1 53

http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://proceedings.mlr.press/v70/sundararajan17a.html
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.1109/ICCCBDA.2016.7529531
https://doi.org/10.1007/978-3-031-15931-2_56
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001601
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53


iSAGE: An Incremental Version of SAGE 21

6 Ethical Statement

We propose iSAGE as a novel XAI method that enables explanations for any in-
crementally trained and dynamic black-box model. This is a novel research direc-
tion, which could lead to various use cases. Models, that could not be evaluated
before, because of computational restrictions can be investigated with iSAGE.
This enables high-performing models to be applied in various critical application
domains such as healthcare [53], energy consumption analysis [23], credit risk
scoring [13]. These application domains could greatly benefit from XAI methods
such as iSAGE, since they can help in uncovering inherent biases or problems
with fairness. This could help with more targeted regulation and scrutinization
of opaque, yet high-performing, technologies than without explanations. On the
other hand, improved interpretability may also lead to an increased acceptance
and exploitation of potentially harmful applications using black box models.
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Organization of the Supplement Material

The proofs of our Theorems are given in Section A. Section B contains technical
details about the two feature removal strategies. Section C contains Covert et
al. [14]’s original batch SAGE algorithm and illustrates the pitfalls of applying
it in an dynamic learning environment. Finally, Section D contains additional
information about the data sets and streams, models and experimental setup
used in Section 4. Section D also includes further experimental results.

A Proofs

All proofs are based on the static environment assumption, i.e. ft ≡ f , (Xt, Yt) ≡
(X,Y ) and Q(x,S)

t is the true marginal (interventional) or conditional (observa-
tional) distribution with samples are drawn iid, similar to Covert et al. [14].

A.1 Proof of Theorem 1

Proof. With M → ∞ and sampling iid from the true marginal distribution for
the interventional approach and the conditional distribution for the observational
approach, the law of large numbers ensures that the approximation converges,
i.e. f̂t(x, S) → ft(x, S) for every t and ∅ ≠ S ⊂ D almost surely. Furthermore,
for S = ∅, the smoothed mean prediction fulfills

E[f̂t(x, ∅)] = α

t∑
s=t0

(1− α)t−sE[fs(xs)]
t→∞→ EX [f(X)].

Hence,

Eπt
[E(X,Y )[∆t(i)]] = Eπt

[E(X,Y )[ℓ(f̂t(xt, u
−
i (πt)), yt)− ℓ(f̂t(xt, u

+
i (πt)), yt)]]

M→∞→ Eπt
[ν(u−

i (πt))− ν(u+
i (πt))] = ϕt(i) = ϕ(i),

as f ≡ ft. Then, ϕ̂t(i) can be written as a weighted sum ϕ̂t(i) = α
∑t

s=t0
(1 −

α)t−s∆s(i) and thus

E[ϕ̂t(i)] = α

t∑
s=t0

(1− α)t−sE[∆s(i)]

M→∞→ α

t∑
s=t0

(1− α)t−sϕ(i) = ϕ(i)(1− (1− α)t−t0+1)
t→∞→ ϕ(i).

A.2 Proof of Theorem 2

Proof. The variance of ∆t(i) is constant and we denote σ2 := V[∆t(i)], where
the variance is taken over the distribution of (X,Y, πt, X̃1, . . . , X̃M ), where πt ∼
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unif(SD) and X̃1, . . . , X̃M ∼ Q(x,S)
t . Furthermore, for two time steps s, t the

random variables ∆s(i), ∆t(i) are independent. Hence,

V[ϕ̂t(i)] = α2
t∑

s=t0

(1− α)2(t−s)V[∆t(i)] ≤ σ2 α

2− α
= O(α),

where we have used the geometric series for (1− α)2 as an upper bound.

A.3 Proof of Theorem 3

Proof. It was shown in [14] that the SAGE estimator using t samples fulfills

V[ϕ̂(SAGE)
t ] = O( 1t ) and thus

P
(
|ϕ̂t(i)− ϕ̂SAGE

t (i)| > ϵ
)
≤ P

(
|ϕ̂t(i)− ϕt(i)|+ |ϕt(i)− ϕ̂SAGE

t (i)| > ϵ
)

≤ P
(
|ϕ̂t(i)− ϕt(i)| > ϵ

)
+ P

(
|ϕt(i)− ϕ̂SAGE

t (i)| > ϵ
)

= P
(
|ϕ̂t(i)− ϕt(i)| > ϵ

)
+O(

1

t
).

Now, for M → ∞, the expectation of ϕt(i) is given as

E[ϕt(i)] = α

t∑
s=t0

(1− α)t−sE[∆s(i)]

M→∞→ α

t∑
s=t0

(1− α)t−sϕ(i) = ϕ(i)(1− (1− α)t−t0+1).

Hence, by Chebyshev’s inequality and Theorem 2

P
(
|ϕ̂t(i)− ϕt(i)| > ϵ

)
≤ P

(
|ϕ̂t(i)− E[ϕ̂t(i)]|+ |E[ϕ̂t(i)]− ϕt(i)| > ϵ

)
= P

(
|ϕ̂t(i)− E[ϕ̂t(i)]|+ |(1− α)t−t0+1ϕ(i)| > ϵ

)
= P

(
|ϕ̂t(i)− E[ϕ̂t(i)]| > ϵ− |(1− α)t−t0+1ϕ(i)|

)
≤ O(V[ϕ̂t(i)]) = O(α) = O(

1

t
),

where the assumption ensures that ϵ− |(1− α)t−t0+1ϕ(i)| > 0. Finally,

P
(
|ϕ̂t(i)− ϕ̂SAGE

t (i)| > ϵ
)
= O(

1

t
).
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B Interventional and Observational Removal Strategies

We propose two distinct feature removal strategies for the interventional and the
observational iSAGE as described in Section 2 and in particular Section 3.2. For
the interventional approach, we propose to approximate the marginal feature
distribution incrementally (see Appendix B.1). For the observational approach
we propose to approximate the conditional data distribution (see Appendix B.2).
Both approximation strategies can be efficiently computed and used to sample
replacement values to restrict the model function for calculating the SAGE val-
ues.

Fig. 6, shows how both sampling approaches approximate the data distribu-
tion over time. The observational sampling approach (depicted with red crosses)
clearly adheres to the dependencies in the data distribution, whereas the in-
terventional approach breaks these dependencies. Also, in the setting without
dependencies, both methods do not differ substantially as the observational ap-
proximation techniques reduces to approximating the interventional distribution.

B.1 Marginal (Interventional) Feature Removal with Reservoir
Sampling

As described in Section 3.2, we apply geometric reservoir sampling to approxi-
mate a current estimate of the marginal feature distribution. The procedure in
Algorithm 2 describes how new observations are stored in the reservoir. Sam-
pling from the constructed reservoir is trivially defined by uniformly drawing a
stored data point.

Algorithm 2 Updating the incremental geometric reservoir storage as described
in [22]

Require: stream
{
xD
t

}∞
t=1

feature indices D ← {1, 2, . . . , d}
1: Initialize reservoir R← ∅ and number of seen samples with n
2: for all xt ∈ stream do
3: n← n+ 1
4: if |R| ≤ n then
5: R← R ∪ xt

6: else
7: xdel ← SampleUniformly(R) {sample observation to remove from reservoir}

8: R← (R \ {xdel}) ∪ {xt} {replace xdel with xt}
9: end if
10: end for
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B.2 Conditional (Observational) Feature Removal with Incremental
Decision Trees

As described in Section 3.2, we propose to train efficient, incremental decision
tree models to more closely approximate the conditional data distribution. The
procedure to train these incremental decision trees is given in Algorithm 3.

Algorithm 3 Updating the incremental trees storage mechanism for efficient
conditional feature removal
Require: stream

{
xD
t

}∞
t=1

feature indices D ← {1, 2, . . . , d}
1: Initialize the tree hi

0, its leafs Li
0 ← ∅, the data reservoirs Ri

0 ← ∅, and a leaf-
reservoir mapping M i(.) for all i ∈ D

2: for all xt ∈ stream do
3: for all i ∈ D do
4: yi

t ← xi
t

5: xr ← x
D\{i}
t {take rest of x as input features}

6: hi
t ← learn one

(
hi
t−1, x

r, yi
t

)
{makes one incremental learning step with the

remaining features as input}
7: Li

t ← get leafs
(
hi
t

)
{traverses the tree and collects all leaf nodes}

8: Ri
t ← Ri

t−1∪ initialize
(
M i

(
Li

t \ Li
t−1

))
{initialize new reservoirs at new leaf

nodes}
9: Ri

t ← Ri
t \M i(Li

t−1 \ Li
t) {delete outdated reservoirs}

10: lit ← predict leaf
(
hi
t, x

D\i
)
{get the leaf node associated with a prediction

given the remaining features}
11: rit−1 ←M i(lit) {get the reservoir associated with the leaf node}
12: rit ← rit−1 ∪ xt {update the reservoir with current sample}
13: end for
14: end for
15: return all trees hi

t and reservoirs Ri
t for i ∈ D
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Algorithm 4 Leaf Traversal Procedure

1: procedure Traverse(node: n, sample: x, features present: S):
2: Initialize sampling ratios W ← ∅
3: if n is split node then
4: if n splits on a feature present in S then
5: c← GetNextChild (x) {make the split according to x}
6: n← Traverse (c, x)
7: return n
8: end if
9: C ← GetChildren (n) {get all children of n}
10: for all nodes c ∈ C do
11: W ←W ∪GetWeight (c) {get weight of child in terms of how many samples

have visited}
12: end for
13: c← SampleWithWeight (C,W ) {convert weights into probabilites and sample

a child node accordingly}
14: n← Traverse (c, x)
15: return n
16: end if
17: return n {node n is a leaf node}

Fig. 6. Observational (red) and interventional (blue) feature removal strategies; The
features follow the distributions X1 ∼ N (0, 1), X2 ∼ N (0, 1), Xage ∼ unif([20, 80]),
Xsalary ∼ unif([20k, 150k]), and Xcommission = 1(Xsalary ≤ 75k) · Q with Q ∼
unif([10k, 75k]).
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C The Batch SAGE Algorithm

Algorithm 5 contains the original sampling-based SAGE algorithm by Covert et
al. [14]. The algorithm’s notation is adjusted to fit into this paper’s mathemati-
cal notation. Fig. 7 illustrates the pitfall of naively applying SAGE (as defined
in Algorithm 5) in an incremental setting. The resulting importance values are
incorrect because SAGE attributes equal weight onto each individual approxi-
mation step (in Lines 2 and 13 of Algorithm 5). Hence, older estimates that are
no longer in-line with the real importance scores of a ever-changing model are
given the same weight as more recent estimates.

Algorithm 5 Sampling-based approximation for SAGE values [14]

Require: data {xi, yi}Ni=1, model f , loss function l, outer samples n, inner samples m

1: Initialize ϕ̂1 ← 0, ϕ̂2 ← 0, . . . , ϕ̂d ← 0
2: y∅ ← 1

N

∑N
i=1 f(xi) {Marginal Prediction}

3: for all (xi, yi) ∈ data do
4: Sample π, a permutation of D
5: S ← ∅
6: lossPrev← ℓ(y∅, yi)
7: for j = 1 to d do
8: S ← S ∪ {π[j]}
9: y ← 0
10: for k = 1 to m do
11: Sample x

(S̄)
k ∼ Q(x,S) {In practice: P(X(S̄))}

12: y ← y + f(x
(S)
i , x

(S̄)
k )

13: end for
14: ȳ ← y

m

15: loss← l(ȳ, yi)
16: ∆← lossPrev− loss
17: ϕ̂π[j] ← ϕπ[j] +∆
18: lossPrev← loss
19: end for
20: end for
21: return ϕ1

n
, ϕ2

n
, . . . , ϕd

n
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Fig. 7. Static SAGE in Dynamic Learning Environment: The original SAGE (dash-
dotted) is calculated in a dynamic, incremental learning scenario. Classical SAGE yields
false importance scores when it is applied for a changing model, as it gives each im-
portance score equal weight. iSAGE (solid) with α = 0.001, and m = 5 is provided as
a reference.
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D Experiments

This section contains additional information about the conducted experiments.

D.1 Data Set and Stream Descriptions

adult Binary classification dataset that classifies 48842 individuals based on
14 features into yearly salaries above and below 50k. There are six numerical
features and eight nominal features. adult is a publicly available dataset [35].

bank Binary classification dataset that classifies 45211 marketing phone calls
based on 17 features to decide whether they decided to subscribe a term deposit.
There are seven numerical features and ten nominal features. bank is a publicly
available dataset [42].

california Regression dataset containing 20640 samples of 8 numerical features
with 1990 census information from the US state of California. The dataset is
publicly available at https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_

housing.html

bike Regression dataset contains the hourly and daily count of rental bikes with
information on weather. There are five numerical features and seven nominal
features. bike is a publicly available dataset [18].

agrawal Synthetic data stream generator to create binary classification problems
to decide whether an individual will be granted a loan based on nine features, six
numerical and three nominal. There are ten different decision functions available.
agrawal is a publicly available dataset [3].

stagger The stagger concepts makes a simple toy classification data stream.
The synthetic data stream generator consists of three independent categorical
features that describe the shape, size, and color of an artificial object. Different
classification functions can be derived from these sharp distinctions. stagger is
a publicly available dataset [48].

elec2 Binary classification dataset that classifies, if the electricity price will go
up or down. The data was collected for 45312 time stamps from the Australian
New South Wales Electricity Market and is based on eight features, six numerical
and two nominal. The data stream contains a well-documented concept drift
in its vicprice feature in that the feature has no values apart from zero in all
observations up to ≈ 20 000 samples. After that the vicprice feature starts having
values different from zero. elec2 is a publicly available dataset [26].

L-Town Water Sensor Data L-Town is a popular variant of a virtual water dis-
tribution system, which is well-studied in the context of leakage detection algo-
rithms [55]. Therein, sensor information can be simulated in different scenarios.
We simulate pressure sensor readings over time and artificially introduce a sen-
sor fault which needs to be detected. The simulation tool is publicly available
[34].

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
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D.2 Summary of the Incremental Explanation Procedure

Algorithm 6 illustrates the simplified explanation procedure. For each data point
in a data stream, the incremental model first predicts the current’s data point
target label yt from xt. This label is used for prequential evaluation of the model’s
performance and to calculate the model’s loss at time t. Then, the model is ex-
plained with this data point to update the the current iSAGE estimate ϕ̂t. After
the explanation is updated the learning procedure is triggered for an incremental
learning step.

Algorithm 6 Incremental explanation procedure

Require: stream {xt, yt}∞t=1, model f(.), loss function L(.)
1: for all (xt, yt) ∈ stream do
2: ŷt ← ft(xt)
3: ϕ̂t ← explain one(xt, yt)
4: ft+1 ← learn one(L(ŷt, yt))
5: end for
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D.3 Further Experimental Results

This subsection contains further results and details of the experiments conducted
in Section 4. First, we present additional results for the stationary data setting.
Second, we show examples of each synthetic GT scenario and provide further
experimental results of different SW-SAGE window lengths and computational
costs. Third, we show additional examples of iSAGE in real incremental learn-
ing scenarios from different data streams. Lastly, we provide the classification
function to be learned omitted in Section 4.3.

Approximation Quality in Static Batch Learning Scenarios Fig. 8 con-
tains SAGE values computed in a stationary data setting as described in 4.4.
It shows the SAGE values for batch SAGE and iSAGE with α = 0.001 and
α = 0.0005 for four datasets over mutliple runs. For the bank dataset, a Light-
GBM model was trained with max iterations set to 70, a learning rate of 0.2
and a tree depth of 15. The LightGBM was explained in 20 independent runs.
For the california dataset, an ARF regressor was trained in an incremental man-
ner with n models set to 3 and explained in 20 independent runs. For the adult
dataset, an batch random forest classifier was trained with n models set to 15
and explained in 10 independent runs. The bike dataset, a HAT regressor was
trained in an incremental manner and then explained in 20 independent runs.

Approximation Quality of Synthetic ground-truth Data Streams In
Fig. 9 we present an exemplary data stream for each of the three scenarios of
the synthetic GT experiments conducted in Section 4.1. Fig. 9 shows how iS-
AGE and SW-SAGE approximate the pre-computed GT SAGE values for the
pre-trained models. The runs in Fig. 9 also show how SW-SAGE has a higher
approximation error in times of change, whereas iSAGE gradually and smoothly
switches between the concepts.
For each scenario and iteration run, we pre-train incremental models, pre-compute
the SAGE values in a batch mode, randomly shuffle the models in a synthetic
data stream. For each run, we pre-train six individual ARF classifiers (an en-
semble with 3 HATs) on data generators based on the first six agrawal concepts
[3]. We train each ARF for 20 000 samples. After the pre-training, we compute
the GT SAGE values according to Covert et al. [14]’s original SAGE definition.
Therein, we apply feature-removal according to the marginal feature distribu-
tion with m = 10. Then, we create an artificial GT data stream by randomly
switching between the different agrawal data generators yielding different data
stream distributions. In each scenario, the probability of switching between the
different pre-trained models is varied. For the setting with high-, middle, and
low-frequency of changes, we set the probability of switching at each time (sam-
ple point) to pswitch = 0.0005, pswitch = 0.0002, and pswitch = 0.0001 respectively.
On average, these probabilities result in a model change after 2 000, 5 000, and
10 000 samples for the high-, middle, and low-frequency scenarios.
In each scenario, we explain the underlying models with four different iSAGE
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Fig. 8. SAGE values in stationary data setting calculated with batch SAGE and iSAGE
for the bank (1st row), california (2nd row), adult (3rd row), and bike (4th row) data
sets.
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Table 2. Approximation quality of iSAGE and SW-SAGE on synthetic GT data
streams for 20 iterations (incc denotes iSAGE and SWc SW-SAGE with c denoting
the factor of additional computational cost compared to iSAGE). (std. in brackets)

scenario low middle high

size (w) 100 500 1 000 2 000 100 500 1 000 2 000 100 500 1 000 2 000

MAE

inc1
.372
(.085)

.197
(.052)

.164
(.041)

.153
(.040)

.459
(.155)

.254
(.080)

.225
(.077)

.226
(.074)

.454
(.126)

.284
(.075)

.275
(.067)

.305
(.072)

SW20
.384
(.092)

.227
(.057)

.219
(.060)

.261
(.085)

.492
(.172)

.335
(.111)

.361
(.121)

.480
(.175)

.505
(.139)

.452
(.130)

.575
(.176)

.811
(.249)

SW10
.384
(.092)

.228
(.057)

.220
(.061)

.263
(.084)

.492
(.172)

.336
(.111)

.365
(.124)

.487
(.180)

.506
(.139)

.456
(.131)

.580
(.176)

.820
(.254)

SW5
.384
(.092)

.230
(.058)

.221
(.061)

.264
(.081)

.494
(.173)

.338
(.112)

.371
(.130)

.494
(.184)

.508
(.140)

.462
(.132)

.592
(.184)

.839
(.257)

SW2
.385
(.093)

.233
(.061)

.235
(.066)

.285
(.092)

.494
(.171)

.349
(.113)

.389
(.133)

.534
(.208)

.512
(.142)

.482
(.137)

.615
(.190)

.879
(.274)

SW1
.386
(.092)

.244
(.064)

.246
(.070)

.306
(.098)

.495
(.171)

.364
(.121)

.426
(.160)

.566
(.216)

.519
(.143)

.506
(.148)

.670
(.214)

.921
(.345)

MSE

inc1
.057
(.042)

.015
(.012)

.013
(.009)

.015
(.011)

.103
(.105)

.027
(.023)

.027
(.026)

.034
(.034)

.094
(.066)

.034
(.021)

.038
(.022)

.051
(.027)

SW20
.066
(.050)

.049
(.043)

.078
(.081)

.139
(.150)

.139
(.140)

.191
(.271)

.320
(.487)

.582
(.971)

.151
(.104)

.248
(.198)

.420
(.360)

.690
(.607)

SW10
.065
(.050)

.049
(.044)

.080
(.086)

.137
(.148)

.139
(.139)

.189
(.266)

.325
(.501)

.596
(.035)

.152
(.105)

.250
(.198)

.422
(.360)

.690
(.612)

SW5
.066
(.050)

.051
(.047)

.078
(.085)

.125
(.125)

.141
(.142)

.192
(.273)

.337
(.566)

.600
(.062)

.155
(.107)

.253
(.199)

.429
(.373)

.703
(.628)

SW2
.065
(.047)

.051
(.048)

.088
(.106)

.137
(.145)

.137
(.133)

.176
(.226)

.326
(.466)

.652
(.249)

.156
(.104)

.259
(.211)

.432
(.399)

.713
(.644)

SW1
.066
(.048)

.061
(.067)

.080
(.079)

.160
(.215)

.136
(.125)

.183
(.200)

.399
(.792)

.529
(.883)

.162
(.107)

.283
(.262)

.462
(.413)

.757
(.891)

and SW variants. The SW span w1 = 100, w2 = 500, w3 = 1000, and w4 = 2000
samples, and are computed with a stride (frequency) of wi/20 samples. We cou-
ple iSAGE’s α parameter with the window sizes αi = 2/(wi + 1) [44]. For both
the SW-SAGE and iSAGE we set m = 1, the loss function to cross-entropy and
apply the interventional feature removal approach.

Explaining Incremental Models Next to the experiments in Section 4.1,
we compare iSAGE with related FI methods; namely, incremental permutation
feature importance (iPFI) [22] and mean decrease in impurity (MDI) [24]. MDI,
as a model-specific method, is only applicable on incremental decision trees.
Hence, in Fig. 11, we compute the three methods for a HAT on the elec2 [26]
real world data stream as an example. All methods correctly identify the two
most important features.
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Online Sensor Fault Detection We conduct an experiment of online anomaly
detection from sensor data. Therein, we simulate a data stream of sensor readings
using the L-Town virtual water distribution network [55] with an open-source
software [34] following Hinder et al. [29]. We create a data stream containing 29
pressure sensor readings (features). Two sensor fault are randomly introduced
(one at t = 2160 and one at t = 6840). Fig. 13 shows the dataset of sensor read-
ings. To illustrate how iSAGE can be used to explain any black-box model fitted
on a data stream, we opted to fit an undercomplete autoencoder on the stream
and explain its reconstruction error. The autoencoder is trained with the river
and deep-river 6 open source framework for training NN models incrementally.
The autoencoder consists of 4 layers. The encoder reduces the dimensionalty
from the feature size to a hidden size of 10 and then to a latent dimension of
3. The decoder reverses this by expanding the latent dimension of 3 to a second
hidden size of 10 and then back to the feature dimension. The input of the au-
toencoder is scaled with a standard scaler. The model is trained with a batch
size of one (one model update with each new observation) with a relatively high
learning rate of γ = 0.05. We explain this autoencoder with the intverventional
iSAGE approach (α = 0.001 and m = 10).

Interventional and Observational iSAGE Fig. 14 shows how the iSAGE
values differ when we apply the observational feature removal mechanism com-
pared to the interventional strategy. We conduct this experiment on an agrawal
data stream with known feature dependencies and on the real-world data stream
elec2. The classification function to be learned on the agrawal stream is defined
as

class 1: ((Xage < 40) ∧ (50 000 ≤ Xsalary ≤ 100 000)) ∨
((40 ≤ Xage < 60) ∧ (75 000 ≤ Xsalary ≤ 125 000)) ∨
((Xage ≥ 60) ∧ (25 000 ≤ Xsalary ≤ 75 000)).

6 https://github.com/online-ml/deep-river

https://github.com/online-ml/deep-river
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Fig. 9. Three exemplary synthetic GT streams with iSAGE (solid), SW-SAGE (dot-
ted), and the GT (dashed) for a low frequency (top), middle frequency (middle), and
a high frequency (bottom) scenario. Presented are coupled iSAGE and SW-SAGE ex-
planations with alpha ≈ 0.001, and w = 2000 and m = 4, respectively.
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Fig. 10. Detail view of a synthetic GT data stream. The models switch after 17 335
samples (different GT values). Before the switch, iSAGE and SW-SAGE approximate
the GT well. Yet, after the switch, SW-SAGE recovers more slowly with a high ap-
proximation error.

Fig. 11. iSAGE, iPFI, and MDI for an HAT on elec2
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Fig. 12. Two example cases of iSAGE explaining an ARF on an agrawal gradual con-
cept drift stream (top) and a HAT on a stagger gardual concept drift stream (bottom)
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Fig. 13. Sensor readings of the simulated online sensor network.
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Fig. 14. Comparison of iSAGE with conditional (dotted) and marginal (solid) for an
agrawal stream with known feature dependencies (left) and elec2 (right).
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