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Abstract

In their seminal 1990 paper, Wasserman and

Kadane establish an upper bound for the Bayes’

posterior probability of a measurable set A, when

the prior lies in a class of probability measures P
and the likelihood is precise. They also give a suffi-

cient condition for such upper bound to hold with

equality. In this paper, we introduce a generaliza-

tion of their result by additionally addressing un-

certainty related to the likelihood. We give an up-

per bound for the posterior probability when both

the prior and the likelihood belong to a set of prob-

abilities. Furthermore, we give a sufficient condi-

tion for this upper bound to become an equality.

This result is interesting on its own, and has the

potential of being applied to various fields of en-

gineering (e.g. model predictive control), machine

learning, and artificial intelligence.

1 INTRODUCTION

Bayes’ rule (BR) is arguably the best-known mechanism to

update subjective beliefs. It prescribes the agent to elicit a

prior distribution that encapsulates their initial opinion, and

to come up with a likelihood that describes the data gener-

ating process. Combining prior and likelihood via BR pro-

duces the posterior distribution, which captures the agent’s

revised opinion in light of the collected data.

But what happens if the agent is not able to specify a single

prior distribution? This may occur if they face ambiguity

[Ellsberg, 1961, Gilboa and Marinacci, 2013]. In [Walley,

1991, Section 1.1.4] and Caprio and Gong [2023], the au-

thors point out that missing information and bounded ratio-

nality may prevent the agent from assessing probabilities

precisely in practice, even if doing so is possible in prin-

ciple. This may be due to the lack of information on how

likely events of interest are, lack of computational time or

ability, or because it is extremely difficult to analyze a com-

plex body of evidence. Similarly, the agent may face diffi-

culties in gauging the data generating process, so specify-

ing a single likelihood may become a challenging task.

The notion of ambiguity is strictly related with that of

epistemic uncertainty in machine learning (ML) and artifi-

cial intelligence (AI). Let us illustrate this clearly by bor-

rowing concepts from [Caprio et al., 2023, Section 3.2].

Epistemic uncertainty (EU) corresponds to reducible un-

certainty caused by a lack of knowledge about the best

model. Notice how, in the precise case – that is, when

the agent specifies a single distribution – EU is absent.

In many applications, a single probability measure is only

able to capture the idea of irreducible uncertainty, since

it represents a case in which the agent knows exactly the

true data generating process, and the prior probability that

perfectly encapsulates their initial beliefs. This is a well-

studied property of sets of probabilities [Hüllermeier and

Waegeman, 2021, Page 458]. Due to the increasing rele-

vance of reliable and trustworthy ML and AI applications,

effective uncertainty representation and quantification have

become vital research areas [Kendall and Gal, 2017, Smith

and Gal, 2018, Depeweg et al., 2018, Kapoor et al., 2022,

Sale et al., 2023, Wimmer et al., 2023]. Thus, theoretic

underpinnings of imprecise probability theories emerge as

a valuable methodology for improving the representation

and quantification of uncertainties. Adopting concepts like

(convex) sets of probabilities and upper and lower probabil-

ities foster a more sophisticated and fine-tuned articulation

of uncertainty.

We remark that EU should not be confused with the con-

cept of epistemic probability [de Finetti, 1974, 1975, Wal-

ley, 1991]. In the subjective probability literature, epis-

temic probability can be captured by a single distribution.

Its best definition can be found in [Walley, 1991, Sections

1.3.2 and 2.11.2]. There, the author specifies how epistemic

probabilities model logical or psychological degrees of par-

tial belief of the agent. We remark, though, how de Finetti

and Walley work with finitely additive probabilities, while
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in this paper we use countably additive probabilities.

The field of imprecise probabilities [Augustin, Thomas

and Coolen, Frank P.A. and De Cooman, Gert and Trof-

faes, Matthias C.M., 2014, Walley, 1991], and in partic-

ular the classic paper by Wasserman and Kadane [1990],

and successive works like Cozman [2000], Epstein and

Wang [1994], Giacomini and Kitagawa [2021], Klibanoff

and Hanany [2007], study the problem of an agent updat-

ing their beliefs using BR in the presence of ambiguity. Our

paper belongs to this body of work. Our main result, Theo-

rem 1, generalizes the theorem in [Wasserman and Kadane,

1990, Section 2] to the case where the agent faces ambi-

guity on both what prior and what likelihood to choose to

model the phenomenon of interest. We find the upper poste-

rior, that is, the “upper bound” to the set of posteriors, using

only the upper prior and the upper likelihood. Thanks to

the conjugacy property of upper probabilities, introduced

in the next section, we derive the lower posterior, that is

the “lower bound” to the set of posteriors. We also give a

necessary condition for the bound to hold with equality. In

addition, we hint at possible applications, in particular in

the field of model predictive control, a method of process

control that is used to control a process while satisfying a

set of constraints Rakovi and Levine [2018].

The paper is divided as follows. Section 2.1 introduces the

concepts that are needed to understand our result. In Sec-

tion 2.2 we present the main theorem, and conclude our

work Section 3. We prove our results in Section 4.

2 BAYES’ THEOREM FOR UPPER

PROBABILITIES

2.1 PRELIMINARIES

In this section, we introduce the background notions from

the IP literature [Augustin, Thomas and Coolen, Frank P.A.

and De Cooman, Gert and Troffaes, Matthias C.M., 2014,

Troffaes and de Cooman, 2014, Walley, 1991] that are

needed to understand our main results.

Call ∆(Ω,F) the space of (countably additive) probabil-

ity measures on a generic measurable space (Ω,F). Pick a

generic set P ⊂ ∆(Ω,F). We denote by P the upper prob-

ability associated with P , that is, P (A) = supP∈P P (A),
for all A ∈ F . Its conjugate is called lower probability,

P (A) = 1 − P (Ac) = infP∈P P (A), for all A ∈ F . Be-

cause of the conjugacy property, in the remainder of this

document we focus on upper probabilities only.

We say that upper probabilityP is concave or 2-alternating

if P (A∪B) ≤ P (A)+P (B)−P (A∩B), for all A,B ∈ F .

Upper probability P is compatible [Gong and Meng, 2021]

with the set

core(P ) := {P ∈ ∆(Ω,F) : P (A) ≤ P (A), ∀A ∈ F}

= {P ∈ ∆(Ω,F) : P (A) ≥ P (A) ≥ P (A),

∀A ∈ F} (1)

where (1) is a characterization [Cerreia-Vioglio et al., 2015,

Page 3389]. The core is the set of all (countably additive)

probability measures on Ω that are set-wise dominated by

P . It is convex: it is immediate to see that if P and Q are

dominated by P , then γP and (1 − γ)Q are dominated by

γP and (1 − γ)P , respectively, for all γ ∈ [0, 1]. In turn,

γP + (1− γ)Q is dominated by P , thus giving the desired

convex property. In addition, throughout the present work,

we assume that core(P ) is nonempty and weak⋆-closed.1

Then, as a result of [Walley, 1991, Section 3.6.1], it is also

weak⋆-compact.

Remark 1. In [Walley, 1991, Section 3.6.1], the author

shows that the finitely additive core is weak⋆-compact. The

latter is defined as the set of all finitely additive probabili-

ties that are set-wise dominated by P . It is a superset of the

countably additive core in (1). To see this, notice that, in

general, there might well be a probability measure that is

set-wise dominated by P , but that is merely finitely additive.

In fact, there might even be no countably additive probabil-

ities that are set-wise dominated by P . For this reason, we

have to assume that the countably additive core in (1) is

nonempty. If we further require that the countably additive

core in (1) is weak⋆-closed, then, this implies that it is a

weak⋆-closed subset of a weak⋆-compact space. By [Rudin,

1976, Theorem 2.35], closed subsets of compact sets are

compact. In turn, we have that if the countably additive

core is weak⋆-closed, it is also weak⋆-compact.

We now present a class of probabilities that (i) is well-

studied and used in robust statistics Huber and Ronchetti

[2009], and (ii) is the core of a concave upper probabil-

ity. Other classes with similar properties are presented in

[Wasserman and Kadane, 1990, Examples 3-7].

Example 1 (ε-contaminated class). Consider the space

∆(Ω,F) of probability measures on a generic measur-

able space (Ω,F), and assume Ω is compact. Pick any

P ∈ ∆(Ω,F) and any ε ∈ [0, 1]. Define

Qco := {Q ∈ ∆(Ω,F) : Q(A) = (1 − ε)P (A) + εR(A),

∀A ∈ F , R ∈ ∆(Ω,F)}.
(2)

Superscript “co” stands for convex and core. Qco is the

ε-contaminated class induced by P ; it was studied in

[Wasserman and Kadane, 1990, Example 3] and references

1Recall that in the weak⋆ topology, a net (Pα)α∈I converges

to P if and only if Pα(A) → P (A), for all A ∈ F . See also

results presented in [Walley, 1991, Appendix D3]



therein. We have that Q(A) = (1 − ε)P (A) + ε, for all

A ∈ F\{∅} andQ(A) = (1−ε)P (A), for all A ∈ F\{Ω}.

In addition, Qco = core(Q), and Q is concave.

The ε-contaminated class is also instrumental for a future

application of Theorem 1 to model predictive control. We

will discuss this at length at the end of section 2.2. There,

we also explain why it is important to account for the am-

biguity in the likelihood model in real-world safety-critical

scenarios.

2.2 A NOVEL BAYES’ THEOREM FOR UPPER

PROBABILITIES

Let (Θ,F) be the measurable parameter space of interest

and ∆(Θ,F) the space of (countably additive) probabil-

ity measures on (Θ,F). Let Y be the set of all bounded,

non-negative, F -measurable functionals on Θ. Call D the

sample space endowed with sigma-algebra A. That is, for

any random variable Y of interest and all θ ∈ Θ, Y (θ) =
y ∈ D . Let the agent elicit a set of probabilities Lθ :=
{Pθ ∈ ∆(D ,A) : θ ∈ Θ} on D , parameterized by θ ∈ Θ.

This captures the ambiguity faced by the agent in determin-

ing the true data generating process [Ellsberg, 1961, Gilboa

and Marinacci, 2013]. We write Pθ ≡ P (· | θ) for nota-

tional convenience. Assume that each Pθ ∈ Lθ has density

L(θ) = p(y | θ) with respect to some sigma-finite domi-

nating measure ν on (D ,A); this represents the likelihood

function for θ having observed data y ∈ D .

Assumption 1. Every density L corresponding to an el-

ement Pθ of Lθ belongs to Y; that is, every density is

bounded and non-negative.

Assumption 1 is needed mainly for mathematical purposes;

as we shall see later in this section, it can be relaxed. Let

the agent specify a set P of probabilities on (Θ,F). It repre-

sents their (incomplete) prior knowledge on the elements of

F ; its elements may be informed by the collected data, thus

giving the analysis an (imprecise) empirical Bayes flavor

[Casella, 1985]. Then, compute P (A) = supP∈P P (A),
for all A ∈ F , and consider Pco := core(P ), assumed

nonempty and weak⋆-closed. It represents the agent’s ini-

tial beliefs. We assume that every P ∈ Pco has density

p with respect to some sigma-finite dominating measure

µ on (Θ,F), that is, p = dP/dµ. We require the agent’s

beliefs to be represented by the core for two main rea-

sons. The first, mathematical, one is to ensure that the

upper probability is compatible with the belief set. The

second, philosophical, one is the following. In Bayesian

statistics, the agent selects a specific prior to encapsulate

their initial beliefs. Berger [1984] points out how such

choice is oftentimes arbitrary, and posits the dogma of ideal

precision (DIP). It states that in any problem there is an

ideal probability model PT which is precise, but which

may not be precisely known. To overcome this shortcom-

ing, the agent should specify a finite collection {Ps}s∈S

of “plausible” prior distributions, and compute the poste-

rior for each Ps. Notice how this corresponds to selecting

a finite number of elements from the core of PS , where

PS(A) = sups∈S Ps(A), for all A ∈ F . A criticism to

the DIP was brought forward by Walley. In [Walley, 1991,

Section 2.10.4.(c)], he claims how given an upper probabil-

ity P , there is no cogent reason for which the agent should

choose a specific PT that is dominated by P , or – for that

matter – a collection {Ps}s∈S of “plausible” probabilities.

Because the core considers all (countably additive) proba-

bility measures that are dominated by P , it is the perfect

instrument to address Walley’s criticism [Caprio and Gong,

2023].

Let the agent compute P θ, the upper probability associ-

ated with Lθ , and consider Lco
θ := core(P θ), assumed

nonempty and weak⋆-closed. It represents the set of plausi-

ble likelihoods. As Grünwald and van Ommen [2017] point

out, accounting for ambiguity around the true data gener-

ating process is crucial, as Bayesian inference may suffer

from inconsistency issues if carried out using a misspeci-

fied likelihood.

Let

L :=

{

L =
dPθ

dν
, Pθ ∈ Lco

θ

}

⊂ Y (3)

be the set of pdf/pmf associated with the elements of Lco
θ .

Let also L(θ) := supL∈L L(θ) and L(θ) := infL∈L L(θ),
for all θ ∈ Θ. Call

Pco
y :=

{

Py ∈ ∆(Θ,F) :

dPy

dµ
= p(θ | y) =

L(θ)p(θ)
∫

Θ
L(θ)p(θ)dθ

,

p =
dP

dµ
, P ∈ Pco, L =

dPθ

dν
, Pθ ∈ Lco

θ

}

the class of posterior probabilities when the prior is in

Pco and the likelihood is in Lco
θ , and let P y(A) =

supPy∈Pco
y
Py(A), for all A ∈ F . Then, the following

is a generalization of Bayes’ theorem in [Wasserman and

Kadane, 1990, Section 2], and is an extension of [Caprio

et al., 2023, Theorem 7]. We prove it in Section 4.

Theorem 1 (Bayes’ theorem for upper probabilities). Sup-

pose Pco,Lco
θ are nonempty and weak⋆-closed. Then for all

A ∈ F ,

P y(A) ≤
supP∈Pco

∫

Θ
L(θ)1A(θ)P (dθ)

c
(4)

≤

∫∞

0 P
({

θ ∈ Θ : L(θ)1A(θ) > t
})

dt

c′
, (5)

provided that the ratios are well defined.

Here 1A denotes the indicator function for



A ∈ F , c := supP∈Pco

∫

Θ
L(θ)1A(θ)P (dθ) +

infP∈Pco

∫

Θ L(θ)1Ac(θ)P (dθ), and

c
′ :=

∫ ∞

0

P
({

θ ∈ Θ : L(θ)1A(θ) > t
})

dt

︸ ︷︷ ︸

upper Choquet integral of L1A

+

∫ ∞

0

P ({θ ∈ Θ : L(θ)1Ac(θ) > t}) dt

︸ ︷︷ ︸

lower Choquet integral of L1Ac

.

In addition, if P is concave, then the inequalities in (4) and

(5) are equalities, for all A ∈ F .

This result is particularly appealing. Under Assumption 1,

if the prior upper probability (PUP) is concave and the

prior and likelihood sets Pco,Lco
θ are nonempty and weak⋆-

closed, then the agent can perform a (generalized) Bayesian

update of the PUP by carrying out only one operation. This

is the case even when the agent faces ambiguity around the

true data generating process so that a set of likelihoods is

needed. The posterior lower probability is obtained imme-

diately via the conjugacy property P y(A) = 1− P y(A
c).

Corollary 1.1. Retain the assumptions in Theorem 1. If Lco
θ

is a singleton, we retrieve Bayes’ theorem in [Wasserman

and Kadane, 1990, Section 2].

Corollary 1.1 tell us that when there is no ambiguity

around the likelihood, Theorem 1 recovers Wasserman and

Kadane’s classical Bayes’ theorem. Given the straightfor-

ward nature of the proof, we omit it here. We also have the

following lemma, that is proved in Section 4.

Lemma 2 (Preserved concavity). Suppose Pco,Lco
θ are

nonempty and weak⋆-closed. Then, if P is concave, we

have that P y is concave as well.

This lemma is important because it tells us that the gener-

alized Bayesian update of Theorem 1 preserves concavity,

and so it can be applied to successive iterations. If at time

t the PUP is concave, then the PUP at time t + 1 – that is,

the posterior upper probability at time t – will be concave

too. Necessary and sufficient conditions for a generic up-

per probability to be concave are given in [Marinacci and

Montrucchio, 2004, Section 5].

In the future, we plan to forego Assumption 1 and use the

techniques developed in Troffaes and de Cooman [2014]

to generalize our results to the case in which the elements

of L are unbounded and not necessarily non-negative. We

also intend to extend our results to the case in which the ele-

ments of Y are Rd-valued, for some d ∈ N. We suspect this

is a less demanding endeavor since we do not use specific

properties of R in our proofs.

As mentioned earlier, a natural application of our results

is model predictive control (MPC). MPC is a method that

is used to control a process while satisfying a set of con-

straints [Rakovi and Levine, 2018]. Typically, when the pro-

cess is stable (or at least stable for the past k time steps, for

some k ≥ 0) and if the scholar decides to take the Bayesian

approach, they proceed as follows. They specify a Normal

likelihood (the distribution of the control inputs) centered

at the objective function of the process, and a Normal prior

on the parameter of such function. In this framework, if am-

biguity enters the picture, then our results become relevant.

The importance of addressing prior ambiguity was dis-

cussed at length in section 2.2. The reasons why accounting

for likelihood ambiguity is important are as follows. First,

as pointed out earlier, we may run into inconsistency issues

if we perform Bayesian analysis using a misspecified like-

lihood [Grünwald and van Ommen, 2017]. Second, a (pre-

cise) Normal likelihood is a good choice only if stability

of the process is ensured. MPC procedures are used in the

process industries in chemical plants, oil refineries, power

system balancing models, and power electronics. These are

all safety-critical applications where accounting for possi-

ble sudden unexpected instabilities is of paramount impor-

tance.

The scholar may specify a class of ǫ-contaminated trun-

cated Normal priors and a class of η-contaminated trun-

cated Normal likelihoods, and use Theorem 1 to compute

the upper posterior. Notice that the Normals need to be trun-

cated in light of Assumption 1. This requirement is not too

stringent, and – as pointed out earlier in this section – our

future work will allow us do without it.

3 CONCLUSION

In this paper, we present a new Bayes’ theorem for up-

per probabilities that extends the one in [Wasserman and

Kadane, 1990, Section 2], and [Caprio et al., 2023, The-

orem 7]. In the future, we plan to generalize Theorem 1

by letting go of Assumption 1, and to apply it to an MPC

problem and to other fields of engineering, and ML and AI.

For example, we intend to use it to overcome the computa-

tional bottleneck of step 2 of the algorithm that computes

the posterior set in an imprecise Bayesian neural network

procedure [Caprio et al., 2023]. There, an element-wise ap-

plication of Bayes’ rule for all the extreme elements of the

prior and likelihood sets is performed. As we can see, this

is a combinatorial task that can potentially be greatly sim-

plified in light of Theorem 1, conveying a computationally

cheaper algorithm.

4 PROOFS

Proof of Theorem 1. Assume that Pco,Lco
θ are nonempty

and weak⋆-closed. Pick any A ∈ F . Recall that we can



rewrite the usual Bayes’ updating rule as

Py(A) =

∫

Θ L(θ)1A(θ)P (dθ)
∫

Θ
L(θ)1A(θ)P (dθ) +

∫

Θ
L(θ)1Ac(θ)P (dθ)

=
1

1 +
∫
Θ
L(θ)1Ac(θ)P (dθ)∫

Θ
L(θ)1A(θ)P (dθ)

,

which is maximized when
∫

Θ
L(θ)1Ac(θ)P (dθ)

∫

Θ
L(θ)1A(θ)P (dθ)

is minimized. But
∫

Θ
L(θ)1Ac(θ)P (dθ)

∫

Θ L(θ)1A(θ)P (dθ)
≥

infP∈Pco

∫

Θ
L(θ)1Ac(θ)P (dθ)

supP∈Pco

∫

Θ
L(θ)1A(θ)P (dθ)

,

which proves the inequality in (4). The inequality in (5) is

true because

inf
P∈Pco

∫

Θ

L(θ)1Ac(θ)P (dθ)

≥

∫ ∞

0

P ({θ ∈ Θ : L(θ)1Ac(θ) > t}) dt

and

sup
P∈Pco

∫

Θ

L(θ)1A(θ)P (dθ)

≤

∫ ∞

0

P
({

θ ∈ Θ : L(θ)1A(θ) > t
})

dt.

Assume now that P is concave. By [Wasserman and

Kadane, 1990, Lemma 1], we have that there exists P̌ ∈
Pco such that

sup
P∈Pco

∫

Θ

L(θ)1A(θ)P (dθ) =

∫

Θ

L(θ)1A(θ)P̌ (dθ), (6)

for all L ∈ L . In addition, by [Wasserman and Kadane,

1990, Lemma 4], we have that for all Y ∈ Y and all ǫ > 0,

there exists a non-negative, upper semi-continuous function

h ≤ Y such that
[

sup
P∈Pco

∫

Θ

Y (θ)P (dθ)

]

− ǫ < sup
P∈Pco

∫

Θ

h(θ)P (dθ)

≤ sup
P∈Pco

∫

Θ

Y (θ)P (dθ).

(7)

Let now Y = L1A. Notice that since Lco
θ is weak⋆-compact

(as a result of [Walley, 1991, Section 3.6.1]), by (3) so is L .

This implies that L,L ∈ L , since a compact set always

contains its boundary, so L,L ∈ Y as well, and in turn

L1Ac , L1A ∈ Y . Fix then any L ∈ L and put h = L1A.

It is immediate to see that h is non-negative and upper semi-

continuous. Then, by (7), we have that for all ǫ > 0
[

sup
P∈Pco

∫

Θ

L(θ)1A(θ)P (dθ)

]

− ǫ <

sup
P∈Pco

∫

Θ

L(θ)1A(θ)P (dθ) ≤ sup
P∈Pco

∫

Θ

L(θ)1A(θ)P (dθ).

(8)

Combining (6) and(8), we obtain

[

sup
P∈Pco

∫

Θ

L(θ)1A(θ)P (dθ)

]

− ǫ

<

∫

Θ

L(θ)1A(θ)P̌ (dθ) ≤ sup
P∈Pco

∫

Θ

L(θ)1A(θ)P (dθ),

(9)

for all L ∈ L .

Pick now any ǫ > 0 and put

k := sup
P∈Pco

∫

Θ

L(θ)1A(θ)P (dθ)

+ inf
P∈Pco

∫

Θ

L(θ)1Ac(θ)P (dθ) > 0.

Choose any L ∈ L and δ ∈ (0, ǫk). By (9) we have that

[

sup
P∈Pco

∫

Θ

L(θ)1A(θ)P (dθ)

]

− δ <

∫

Θ

L(θ)1A(θ)P̌ (dθ)

(10)

and that
[

inf
P∈Pco

∫

Θ

L(θ)1Ac(θ)P (dθ)

]

+δ >

∫

Θ

L(θ)1Ac(θ)P̌ (dθ).

(11)

The inequality in (10) comes from the fact that the first in-

equality in (9) holds for all ǫ > 0, and – given how k is

defined – we have that δ > 0. The inequality in (11) is ob-

tained by re-deriving (6), (7), (8), and (9) for the infimum

of set Pco rather than the supremum. In that case, we sim-

ply substitute sup with inf , L with L, 1A with 1Ac , “−ǫ”
with “+ǫ”, and we reverse the inequalities.

Recall that c := supP∈Pco

∫

Θ L(θ)1A(θ)P (dθ) +
infP∈Pco

∫

Θ
L(θ)1Ac(θ)P (dθ), and define

d :=

∫

Θ

L(θ)1A(θ)P̌ (dθ) +

∫

Θ

L(θ)1Ac(θ)P̌ (dθ).

Then we have,

P̌y(A) =

∫

Θ
L(θ)1A(θ)P̌ (dθ)

d

≥

[
supP∈Pco

∫

Θ L(θ)1A(θ)P (dθ)
]
− δ

c+ δ − δ

=
supP∈Pco

∫

Θ
L(θ)1A(θ)P (dθ)

c
−

δ

k

>
supP∈Pco

∫

Θ L(θ)1A(θ)P (dθ)

c
− ǫ.

Since this holds for all ǫ > 0, we have that

sup
Py∈Pco

y

Py(A) =
supP∈Pco

∫

Θ L(θ)1A(θ)P (dθ)

c
,

concluding the proof of inequality (4) being an equality

when P is concave. Inequality (5) being an equality when



P is concave comes immediately from [Wasserman and

Kadane, 1990, Lemma 4], and the fact that L1A, L1Ac ∈
Y , as pointed out above.

Proof of Lemma 2. In their works Walley [1981], Wasser-

man and Kadane [1990], the authors show that con-

cave upper probabilities are closed with respect to

the generalized Bayes’ rule. In particular, this means

that, if we let b := supP∈Pco

∫

Θ L(θ)1A(θ)P (dθ) +

infP∈Pco

∫

Θ
L(θ)1Ac(θ)P (dθ), for any fixed A ∈ F , if P

is concave, then for all L ∈ L

P y(A) =
supP∈Pco

∫

Θ L(θ)1A(θ)P (dθ)

b
(12)

is concave. But since Lco
θ is weak⋆-compact (as a conse-

quence of [Walley, 1991, Section 3.6.1]), by (3) so is L .

This implies that L,L ∈ L , since a compact set always

contains its boundary. Call then L′ = L1A + L1Ac . It

is immediate to see that L′ ∈ L . Then, by (12) we have

that if we call b
′ := supP∈Pco

∫

Θ L′(θ)1A(θ)P (dθ) +
infP∈Pco

∫

Θ
L′(θ)1Ac (θ)P (dθ), it follows that

P y(A) =
supP∈Pco

∫

Θ L′(θ)1A(θ)P (dθ)

b′

=
supP∈Pco

∫

Θ
L(θ)1A(θ)P (dθ)

c

is concave, concluding the proof.
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