Is the Volume of a Credal Set a Good Measure for Epistemic Uncertainty?
(Supplementary Material)

Yusuf Sale'-? Michele Caprio® Eyke Hiillermeier'-*

'nstitute of Informatics, University of Munich (LMU), Germany
2PRECISE Center, Department of Computer and Information Science, University of Pennsylvania, USA
*Munich Center for Machine Learning, Germany

A PROOFS

Proof of Proposition[I} Let P,Q C A(Y,o())) be credal sets, and assume || = 2. Then we have the following.

* Vol(P) > 0 and Vol(P) < Vol(A2~1!) = /2. Hence Vol(-) satisfies Al.

* The volume being a continuous functional is a well-known fact that comes from the continuity of the Lebesgue measure,
so Vol(-) satisfies A2.

* QCP = WVol(Q) < VoI(P). This comes from the fundamental property of the Lebesgue measure, so Vol(-)
satisfies A3.

« Consider a sequence (P,,) of credal sets on (), o())) such that lim,, ,oo[P,(A4) — P, (A)] = 0, for all A € o()).
Then, this means that there exists N € N such that for all n > IV, the geometric representation of P, is a subset of the
geometric representation of P, 1. In addition, the limiting element of (P,,) is a (multi)set P* whose elements are all
equal to P*, so its geometric representation is a point and its volume is 0. Hence, probability consistency is implied by
continuity A3, so Vol(-) satisfies A4’.

 The volume is invariant to rotation and translation. This is a well-known fact that comes from the fundamental property
of the Lebesgue measure, so Vol(-) satisfies A7.

Let us now show that the volume operator satisfies sub-additivity A5. Let ) = ); X ). In addition, suppose we are in
the general case in which |Y| = |J1| = |V2| = 2. In particular, let Y = {(y1,¥2), (y3,y4)}, so that Y1 = {y1,ys} and
Yo = {y2,y4}- Suppose also y1 # ys3 and yo # y4. Now, pick any probability measure P on ). In general, we would have
that its marginal margy, (P) = P" on Y is such that P'(y;) = >, P((y:,y;)). Similarly for marginal margy, (P) = P"
on Y. In our case, though, the computation is easier. To see this, fix y;. Then, we should sum over j the probability of
(y1,9;5), y; € Vo. But the only pair (y1,y;) is (y1,¥2). A similar argument holds if we fix y3, or any of the elements of ).
Hence, we have that

P'(y1) = P((y1,92)) = P"(y2) and P'(y3) = P((y3,y4)) = P"(ya)-

Let P’ and P” denote the marginal convex sets of probability distributions on Yy and )», respectively, and let P denote the
convex set of joint probability distributions on ) = )1 x Y5 [[Couso et al.,[1999]. Then, given our argument above, we have
that Vol(P) < Vol(P’) + Vol(P") = 2Vol(P). So in the general |V| = | V1| = |Va| = 2 case where y; # y3 and y2 # ya,
the volume is subadditive. O

Proof of Proposition[2] Immediate from the assumption on the instance of SL O

Proof of Theorem[l} Pick any compact set P C M (€2, F) and any set Q satisfying (a)-(c). Let B2 c R denote a generic
ball in R? of radius r > 0. Notice that N*¥(Q') = N*¥(P) — NP**(Q) > 0 because P > Q. Then, the proof goes as
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where (I) comes from equation (@), (2) comes from the fact that 7 — e <r = c(r —¢,d, Q') > ¢(r,d,P) by @), @)
comes from P, being the union of pairwise disjoint balls of radius r, @) comes from properties of the volume of a ball of
radius 7 in R%, and () comes from property (c) of Q. O

B HIGH-DIMENSIONAL PROBABILITY

Since Theoremﬂ]in Section @]is intimately related with Carl-Pajor’s Theorem [Ball and Pajor, |1990]], we state (a version)
of the theorem here.

Theorem 1 (Carl-Pajor). Let B q denote the d-dimensional unit euclidean ball, and let P C By q be a polytope with
m € N vertices. Then, we have

d
Vol(P) logm
Vol(Bi 4) = (4 d ) ' ©

For further results connecting high-dimensional probability and data science, see |Vershynin| [2018]].
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