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A EXPERIMENTAL DETAILS

A.1 MEMORIZATION EXPERIMENTS

A.1.1 SETTING

To produce the results of Section 4.1, we trained simple multi-layer perceptron models with 9 hidden
layers of width 2048. Each layer involves a batch normalization layer and uses the parameterized
activation parameters (one of ReLU or sigmoid) throughout the network. To train the network, we
employed SGD as optimizer with a learning rate of 0.1 that is multiplied by 0.1 each 40 epochs.
We further employed a Nesterov momentum of 0.9. In total, we trained for 200 epochs, which was
sufficient to observe the neural collapse phenomenon. We ensure that the parameterization works
reasonably well for all losses for a fair and realistic comparison. We further use a weight decay
regularization of 0.001. The batch size is set to 512 for all experiments. Each assessed parameter
combination has been executed 5 times to gain statistically meaningful results.

The penultimate layer feature dimension was set to the number of classes N . On top of the encoding
network architecture, a linear softmax classifier is attached. The entire model is optimized for four
different losses: Conventional cross-entropy with degenerate target distributions, label smoothing
with a default smoothing parameter of α = 0.1, label relaxation with an imprecisiation degree of
α = 0.1 and mean squared error.
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Figure 4: Exemplary penultimate layer activations (post training) of the clean and corrupted training data in the
2D feature space. Green 1 represent test instances of clean label 1 data, blue 2 represent clean test instances of
label 2 data, red 1 represent instances of training samples that were originally labeled as 1 but were changed to
label 2, red 2 represent instances of training samples that were originally labeled as 2 but were changed to label
1. (a) Collapse to a sub-optimal configuration, where one of the class centroids is at the origin. (b) The class
centroids are along the axes, corresponding to the optimal NC configuration of Definition 3.1.

In the idealized experimental environment, we considered the datasets MNIST and CIFAR-10 as
show cases. To reduce the problem complexity for the theoretical analysis, we subsampled the first
N classes of each dataset, all other instances were excluded. The binary case N = 2 allows for a
convenient analysis of the learned feature representations of the penultimate layer with M = N = 2.
In case of N = 2, cross-entropy and its derived losses did not always attain the optimal NC
configuration through SGD, namely did not always align the class centroids along the axes. In some
cases, the learned representation collapsed to one class centroid in the origin and the other one on a
diagonal line in the positive quadrant in the 2D feature space. Figure 4 shows this case in (a) and a
case the corresponds to the optimal NC configuration in (b). We filtered out the former examples, as
these only infrequently occur in the M = 2 case.

A.1.2 CONVENTIONAL LABEL NOISE: FURTHER RESULTS

In the first label noise setting, we considered conventional label corruption, which is described in the
paper. Beyond the results shown in the main part, we provide further evidence of our findings here.
To this end, we repeated the experiment with different numbers of classes, namely N ∈ {3, 5, 10}.
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Figures 5, 6 and 7 show the results. Albeit not perfect, a similar dependence can be observed for
multi-class settings.
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Figure 5: Feature collapse of the test instances in terms of
√

NC test
1 per memorization and the resulting test

accuracies (averaged over ten seeds) for N = 3.
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Figure 6: Feature collapse of the test instances in terms of
√

NC test
1 per memorization and the resulting test

accuracies (averaged over ten seeds) for N = 5.

Additionally, we show results for M > N to illustrate that the correspondence also holds for higher
dimensions. Figure 8 shows the resulting dilation per memorization for N ∈ {5, 10} on MNIST and
CIFAR-10.

A.1.3 LATENT NOISE CLASSES: FURTHER RESULTS

While we considered “conventional” label noise in the first experiment, we extend our analysis to a
different form of label noise: For each original class, we split an instance fraction η ∈ [0.025, 0.2] of
each class apart and introduce new latent (noise) classes. Thus, the learner has again to separate these
instance from their original class as it is pretended to face different classes. We consider the same
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Figure 7: Feature collapse of the test instances in terms of
√

NC test
1 per memorization and the resulting test

accuracies (averaged over ten seeds) for N = 10.
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Figure 8: Feature collapse of the test instances in terms of
√

NC test
1 per memorization for higher feature

dimensions M (averaged over five seeds) for N ∈ {5, 10}.
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Figure 9: Dilation and test accuracy per memorization for label noise in form of latent noise classes, where we
considered N = 2 original classes. The results are averaged over 5 random seeds.

basic architectural framework, but with four classes instead of two. To preserve compatibility to the
previous experiments, we keep d = N = 2. We repeated each run with 5 different random seeds.

For this different type of label noise, the results shown in Figure 9 match the observations made
before. Although the correspondence is not as clear as in the standard noise model, CE and LS are
close to sharing the same curve for both datasets. Similarly, one can see a linear trend in the test
collapse per memorization, which is now defined between the instances of the latent class to the test
centroid of the original class. Also, we see similar trends regarding the generalization performance.

A.2 LARGE-SCALE EXPERIMENTS

A.2.1 SETTING

Beyond the experiments in the previous section, we analyzed the neural collapse properties when
training commonly used architectures, such as ResNet He et al. (2016) and VGG Simonyan &
Zisserman (2015) models. To this end, we trained the variants ResNet18 and VGG13 on the four
benchmarks MNIST, FashionMNIST, CIFAR-10 and SVHN. Here, we consider conventional label
noise degrees η ∈ {0, 0.1, 0.2, 0.3}. To ensure a fair comparison, we optimized hyperparameters,
such as the learning rate schedule and the smoothing and relaxation parameters α for LS and LR, in a
Bayesian optimization using Hyperband Li et al. (2020). We tuned these parameters based on a 20%
separated validation split in the no-noise case η = 0, and applied the best parameters in the noise
settings with η > 0.

Just as in the previous experiments, we used SGD as optimizer with Nesterov momentum of 0.9,
trained for 200 epochs with a batch size of 512. However, as opposed to the setting before, we
performed a Bayesian hyperparameter optimization employing a Hyperband scheduler Li et al. (2020)
on a separated 20 % validation split. To this end, we used the skopt1 implementation and optimized
for 30 iterations. Table 1 shows the considered hyperparameter space. The final model used within
the evaluation was eventually trained on the complete training set (i.e., including the validation set).

1https://scikit-optimize.github.io/, BSD license
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Parameter Space

Initial learning rate [1e−5, 0.5]
Learning rate multiplier {0.01, 0.1, 0.5}
Smoothing parameter α (LS) [0.01, 0.25]
Relaxation parameter α (LR) [0.01, 0.25]

Table 1: Search space considered within the hyperparameter optimization in the large-scale experiments.

MNIST FashionMNIST CIFAR-10 SVHN
η Loss ResNet18 VGG13 ResNet18 VGG13 ResNet18 VGG13 ResNet18 VGG13

0.0 CE 99.58 ± 0.05 99.22 ± 0.18 92.64 ± 0.20 91.87 ± 0.10 78.46 ± 0.44 80.40 ± 1.15 93.44 ± 0.05 94.55 ± 0.10
LS 99.56 ± 0.01 99.34 ± 0.08 92.36 ± 0.13 91.94 ± 0.56 78.85 ± 0.29 81.33 ± 0.38 93.55 ± 0.21 92.50 ± 0.50

0.1 CE 98.32 ± 0.11 97.01 ± 0.28 89.35 ± 1.65 89.81 ± 0.30 70.86 ± 1.54 76.12 ± 1.58 88.89 ± 0.79 90.51 ± 0.24
LS 98.51 ± 0.14 98.16 ± 0.03 89.62 ± 0.53 90.41 ± 0.52 71.82 ± 1.24 76.13 ± 1.74 89.68 ± 0.40 90.60 ± 0.40

0.2 CE 96.34 ± 0.20 92.72 ± 1.21 85.20 ± 2.67 85.39 ± 0.37 61.39 ± 1.30 70.09 ± 0.46 83.40 ± 2.19 86.03 ± 0.03
LS 96.48 ± 0.13 95.00 ± 0.04 86.27 ± 1.24 87.54 ± 0.68 63.69 ± 3.06 70.97 ± 1.58 85.40 ± 0.49 86.81 ± 0.70

0.3 CE 91.82 ± 0.22 87.87 ± 0.64 79.91 ± 3.26 80.01 ± 0.65 52.52 ± 0.05 63.22 ± 1.26 77.10 ± 1.55 59.71 ± 28.37
LS 92.05 ± 0.31 88.07 ± 0.42 81.18 ± 2.41 82.59 ± 1.25 55.31 ± 2.09 63.63 ± 2.88 79.62 ± 0.44 80.71 ± 1.56

Table 2: Generalization performances and their standard deviations in terms of test accuracies for different label
noise degrees η (average over 3 seeds).

We repeated each run 3 times with different seeds and report the averaged results including their
standard deviations.

A.2.2 RESULTS

Table 2 shows the resulting generalization performances as an average over 3 seeds. As can be
seen, label smoothing consistently improves over cross-entropy, confirming both the empirical and
theoretical observations as presented before. These results suggests that label smoothing is particularly
appealing in case of label noise.

A.3 TECHNICAL INFRASTRUCTURE

To realize the experiments, we proceeded from the official code base of Zhu et al. (2021)2 and
augmented it by further baselines, models and our evaluation metrics. This implementation lever-
ages PyTorch3 as deep learning framework and obtains data and models from torchvision4.
To execute the runs, we used Nvidia GPU accelerators (1080/2080 Ti, Titan RTX) in a modern
cluster environment. Our code is publicly available at https://github.com/julilien/
MemorizationDilation.

B THEORETICAL SUPPORTS FOR THEOREM 3.2

In this appendix we introduce the theoretical supports for our theorem on the layer-peeled model, i.e.
Theorem 3.2. Before going to the proof, we will shortly discuss in Subsection B.1 about how this
finding differs from several related ones while still entailing the NC properties NC1-NC3. Then we
will introduce some auxiliary results that are helpful for the proof in Subsections B.2 and B.3, and
the proof itself in Subsection B.4.

Note that the concurrent work Zhou et al. (2022b) studies a very similar problem as (Pα), where the
loss function Lα is replaced by a more general one that satisfies the so-called contrastive property.
This covers both CE and LS loss, and hence the proof in this work is quite similar to ours. The main
difference between the two models is namely the positivity constraint on the features, which leads to
the main technical difference in the proof.

2https://github.com/tding1/Neural-Collapse
3https://pytorch.org/, BSD license
4https://pytorch.org/vision/, BSD license
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Shortly speaking, the ultimate goal in the proof in Zhou et al. (2022b) (or several works of the same
type, e.g. Zhu et al. (2021)) and ours is to show that the loss is lower bounded by some constant, and
equality occurs only if the NC configuration is satisfied. However, if the minimization problem is
unconstrained, one just needs to consider critical points, which might have a nice form. Although
this is a clever trick, it cannot (at least not directly) be applied to the constrained problem, because
the first-order optimality condition does not give as much information as in the unconstrained case
(since it does not involve a simple equality form).

To overcome this, we will find a lower bound of the loss function in terms of ∥W ∥ and ∥H∥, instead
of the variables W and H themselves. This is possible in some certain region of the set of all feasible
values of W and H (case (c) in Step 2 in our proof), while for other regions, we will show that either
the minimizer does not belong to the region, or when it does, it must be also at NC configuration.
Finally, the lower bound in terms of ∥W ∥ and ∥H∥ is easier to deal with than the original one in
terms of W and H . In fact, we will see that despite the positivity of ∥W ∥ and ∥H∥, one could
consider the mentioned lower bound as a function of two variables that can take any value in R.

B.1 DISCUSSION ABOUT THE RESULT

The configurations defined in Definition 3.1 above differ from the ones specified in other works, e.g.
Fang et al. (2021); Zhu et al. (2021); Zhou et al. (2022b) and describe more precisely the empirically
observed NC phenomena. Indeed, it has been shown in those papers that the minimizers of (Pα)
without positivity constraint on the features must satisfy the following conditions

(i′) The feature representations h(k)
n within every class n ∈ [N ] are equal for all k ∈ [K], and

thus equal to their class mean hn := 1
K

∑K
k=1 h

(k)
n .

(ii′) The class means {hn}Nn=1 have equal norms and form an N -simplex equiangular tight frame
(ETF) up to some rescaling.

(iii′) The weight matrix W satisfies wn = Chn for some constant C > 0.

Although the configuration defined by (i’)-(iii’) is different from the one defined in Def. 3.1, both
entail the limit of the NC1-NC3 properties. Indeed, it is straightforward to observe the relation
between NC1 and (i) or (i’). Moreover, the limit of NC2 is directly implied from (ii’), namely because
the global mean h = 1

N

∑N
n=1 hn must lie at the origin, i.e. h = 0, while

∥hm∥ = ∥hn∥ and
〈

hm

∥hm∥
,

hn

∥hn∥

〉
= − 1

N − 1
for any m ̸= n

hold as simple properties of a simplex ETF. The limit of NC3 follows also directly from the duality
condition (iii’) and the above observation that h = 0. On the other hand, it is not as straightforward,
but also not difficult to see the connection between the conditions (ii) and (iii) in Def. 3.1. Indeed,
from (ii) it follows

∥hm − h∥2 = ∥hm∥2 − 2 ⟨hm,h⟩+ ∥h∥2

= ∥hm∥2 − 2

N
∥hm∥2 + 1

N
∥hm∥2

=
N − 1

N
∥hm∥2 ,

which combining with ∥hm∥ = ∥hn∥ gives ∥hm − h∥ = ∥hn − h∥ for any m ̸= n. Also,

⟨hm − h,hn − h⟩ = −⟨h,hn⟩ − ⟨h,hm⟩+ ∥h∥2

=
−2

N
∥hn∥2 +

1

N
∥hn∥2

=
−1

N
∥hn∥2 ,

which combining with the above finding shows〈
hm − h

∥hn − h∥2
,

hm − h

∥hn − h∥2

〉
= − 1

N − 1
.

18



Published as a conference paper at ICLR 2023

Finally, the duality condition (iii) in Def. 3.1 involves the projection Ph⊥hn, which is the same
as hn − h. To see this, observe that hn − (hn − h) = h ⊥ h⊥ and ⟨hn − h,h⟩ = 1

N ∥hn∥ −
1

N2

∑N
i=1 ∥hi∥2 = 0.

Hence, the condition (iii) simply means that wn is proportional to hn − h, which corresponds with
the limit of the property NC3.

The main difference between our definition of NC configuration (i.e. Def. 3.1) and the one described
by the conditions (i’)-(iii’) above is that we require the centralized class means {hn − h}Nn=1 to
form a simplex ETF, not the class means {hn}Nn=1 themselves. Similarly, the duality in our definition
involves the weights wn and the centralized class means hn − h, and not directly the class means
or class features. Concerning the class means {hn}Nn=1, we require them in (ii) to be an equinorm
orthogonal system, which differs from a simplex ETF. In practice, if ReLU operation is applied, the
features must be positive and hence the class means cannot form or approximate a simplex ETF,
which must center at the origin.

In this sense, the NC configuration defined in Def. 3.1 can be seen as capturing more closely the
NC phenomena in practice. Meanwhile, the usual configuration (i’)-(iii’) is obtained by a translation
by the global mean h from our NC configuration. This translation may drop several interesting
properties of the configuration, for example the property that the class means hn are orthogonal and
therefore (as they are positive) have separate supports (i.e. the indices of the nonzero entries in hm

and hn do not overlap).

Notably, our NC configuration defined in Definition 3.1 and the orthogonal frame configuration in
Theorem 3.1 in Tirer & Bruna (2022) appear to be similar, but have certain differences. Despite
having an equivalent description for H , our work considers positive features, which requires the
feature vectors of different classes to have separate supports, i.e. their entries are supported on
disjoint dimensions. Moreover, the weights wn in our approach, as stated in (iii) in Def. 3.1, are not
proportional to the class means hn but to the centralized ones hn−h, and hence form a simplex ETF
and not an equinorm orthogonal system. Moreover, even in the presence of bias terms, the resulting
configuration in our paper remains unchanged, which is different to Theorem 3.2 in Tirer & Bruna
(2022). Note that all these differences come from the fact that we consider the CE or LS loss, while
the authors of Tirer & Bruna (2022) study the MSE loss.
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B.2 REFORMULATION OF THE LS EMPIRICAL RISK

Given a smoothing parameter α ∈ [0, 1), we will write the LS empirical risk introduced in Section 3
in more details,

Lα(W ,H) =
1

NK

K∑
k=1

N∑
n=1

ℓα

(
W ,h(k)

n ,y(α)
n

)
=

1

NK

K∑
k=1

N∑
n=1

[
(1− N − 1

N
α) log

( N∑
i=1

e⟨wi−wn,h
(k)
n ⟩
)

+

N∑
m=1
m̸=n

α

N
log
( N∑

i=1

e⟨wi−wm,h(k)
n ⟩
)]

=
1

NK

K∑
k=1

N∑
n=1

[
(1− N − 1

N
α) log

( N∑
i=1

e⟨wi−wn,h
(k)
n ⟩
)

+

N∑
m=1
m̸=n

α

N
log
(
e⟨wn−wm,h(k)

n ⟩
N∑
i=1

e⟨wi−wn,h
(k)
n ⟩
)]

=
1

NK

K∑
k=1

N∑
n=1

[
(1− N − 1

N
α) log

( N∑
i=1

e⟨wi−wn,h
(k)
n ⟩
)

+

N∑
m=1
m̸=n

α

N
log
( N∑

i=1

e⟨wi−wn,h
(k)
n ⟩
)
+

N∑
m=1
m̸=n

α

N

〈
wn −wm,h(k)

n

〉]

Hence,

Lα(W ,H) =
1

NK

K∑
k=1

N∑
n=1

[
(1− N − 1

N
α) log

( N∑
i=1

e⟨wi−wn,h
(k)
n ⟩
)

+
N − 1

N
α log

( N∑
i=1

e⟨wi−wn,h
(k)
n ⟩
)
+

N∑
m=1
m ̸=n

α

N

〈
wn −wm,h(k)

n

〉]

=
1

NK

K∑
k=1

N∑
n=1

[
log
( N∑

i=1

e⟨wi−wn,h
(k)
n ⟩
)
+

N∑
m=1
m ̸=n

α

N

〈
wn −wm,h(k)

n

〉]

=
1

NK

K∑
k=1

N∑
n=1

[
log
(
1 +

N∑
m=1
m ̸=n

e⟨wm−wn,h
(k)
n ⟩
)
−

N∑
m=1
m ̸=n

α

N

〈
wm −wn,h

(k)
n

〉]
.

Shortly speaking, this differs from the conventional CE loss just by an additional bilinear term
α
N

1
NK

∑K
k=1

∑N
n=1

∑
m ̸=n

〈
wm −wn,h

(k)
n

〉
.

B.3 TECHNICAL LEMMATA

Lemma B.1. We define

P (W ,H) :=
1

KN(N − 1)

K∑
k=1

N∑
n=1

N∑
m=1
m ̸=n

〈
wm −wn,h

(k)
n

〉
.

Then under the condition H ≥ 0 it holds

P (W ,H) ≥ − 1√
KN(N − 1)

∥W ∥ ∥H∥ . (7)
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The inequality (7) becomes an equality if and only if the following conditions hold simultaneously
N∑

n=1

wn = 0 (8)

〈
h(k)
n ,h(k)

m

〉
= 0 for all m,n ∈ [N ], k ∈ [K],m ̸= n, (9)∥∥∥h(k)
n

∥∥∥ is independent of n, k, (10)

wm −wn = c′(h(k)
m − h(k)

n ) for some c′ > 0 not depending on m,n, k. (11)

Proof. Using the Cauchy-Schwarz inequality we get

P (W,H) :=
1

KN(N − 1)

K∑
k=1

N∑
n=1

N∑
m=1
m̸=n

〈
wm −wn,h

(k)
n

〉

=
1

KN(N − 1)

K∑
k=1

N∑
n=1

N∑
m=n+1

〈
wm −wn,h

(k)
n − h(k)

m

〉

≥ − 1

KN(N − 1)

K∑
k=1

√√√√( N∑
n=1

N∑
m=n+1

∥wn −wm∥2
)( N∑

n=1

N∑
m=n+1

∥∥∥h(k)
n − h

(k)
m

∥∥∥2 )

= − 1

KN(N − 1)

√√√√ N∑
n=1

N∑
m=n+1

∥wn −wm∥2

︸ ︷︷ ︸
=:P1

K∑
k=1

√√√√ N∑
n=1

N∑
m=n+1

∥∥∥h(k)
n − h

(k)
m

∥∥∥2︸ ︷︷ ︸
=:P2

.

Further application of Cauchy-Schwarz inequality yields

P1 =

√√√√∑
n

N∑
m=n+1

∥wn −wm∥2

=

√√√√N

N∑
n=1

∥wn∥2 −

∥∥∥∥∥
N∑

n=1

wn

∥∥∥∥∥
2

≤
√
N ∥W ∥

and

P2 =

K∑
k=1

√√√√( N∑
n=1

N∑
m=n+1

∥∥∥h(k)
n − h

(k)
m

∥∥∥2 )

=

K∑
k=1

√√√√(N − 1)

N∑
n=1

∥∥∥h(k)
n

∥∥∥2 − N∑
n=1

N∑
m=n+1

〈
h
(k)
n ,h

(k)
m

〉

≤
√
N − 1

K∑
k=1

N∑
n=1

∥∥∥h(k)
n

∥∥∥
≤
√
KN(N − 1)

√√√√ K∑
k=1

N∑
n=1

∥∥∥h(k)
n

∥∥∥2 =
√
KN(N − 1) ∥H∥

Therefore

P (W ,H) ≥ − 1

KN(N − 1)
P1P2 ≥ − 1√

K(N − 1)
∥W ∥ ∥H∥ .

This becomes an equality if and only if
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• The upper bound on P1 becomes equality, i.e.
N∑

n=1

wn = 0

• The upper bound on P2 becomes equality, i.e.〈
h(k)
n ,h(k)

m

〉
= 0 for all m,n ∈ [N ], k ∈ [K],m ̸= n,

∥∥∥h(k)
n

∥∥∥ is independent of n, k.

• The estimate P ≥ − 1
KN(N−1)P1P2 becomes an equality, i.e.

wm −wn = c(h(k)
m − h(k)

n ) for some c′ > 0 not depending on m,n, k

Lemma B.2. Assume that the inequality (7) shown in Lemma B.1 equalizes. Furthermore assume
that there exist constants cn,k ∈ R (depending on n ∈ [N ] and k ∈ [K]) and c ∈ R such that〈

wm,h(k)
n

〉
= cn,k for every m ∈ [N ] \ {n} , (12)

N∑
m=1
m̸=n

〈
wm −wn,h

(k)
n

〉
= c (not depending on n, k), (13)

for all n ∈ [N ] and k ∈ [K]. Then, the pair (W ,H) must form a neural collapse configuration.
Conversely, if (W ,H) is a neural collapse configuration, then (7) becomes an equality and the
conditions (12, 13) both hold true.

Proof. The converse implication is straightforward. We prove here the forward implication. By (8,13)
we have for any n ∈ [N ] and k ∈ [K] that

0 =

N∑
m=1

〈
wm,h(k)

n

〉
=

N∑
m=1

〈
wm −wn,h

(k)
n

〉
︸ ︷︷ ︸

=c

+N
〈
wn,h

(k)
n

〉
,

so 〈
wn,h

(k)
n

〉
=

−c

N
. (14)

Combining this with (13,12) gives

c =

N∑
m=1
m ̸=n

〈
wm −wn,h

(k)
n

〉
= (N − 1)cn,k − (N − 1)

−c

N
,

and hence 〈
wm,h(k)

n

〉
= cn,k =

c

N(N − 1)
. (15)

Combining (14,15) with (9,11) gives

−2c

N − 1
=
〈
wn −wm,h(k)

n − h(k)
m

〉
= c′

∥∥∥h(k)
n − h(k)

m

∥∥∥2 = c′
(∥∥∥h(k)

n

∥∥∥2 + ∥∥∥h(k)
n

∥∥∥2 ), (16)

Combining (16) with (10) shows that for every n ∈ [N ] and k ∈ [K], it holds∥∥∥h(k)
n

∥∥∥2 =
−c

c′(N − 1)
. (17)
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On the other hand, it follows also from (14,15) that

∥wn∥2 − ∥wm∥2 = ⟨wn −wm,wn +wm⟩ = c′
〈
h(k)
n − h(k)

m ,wn +wm

〉
= 0, (18)

and hence the vectors wn, n ∈ [N ] have the same length, which can be computed via

N2 ∥wi∥2 = N

N∑
n=1

∥wn∥2 =
∑
n>m

∥wn −wm∥2

= c′
∑
n>m

〈
wn −wm,h(k)

n − h(k)
m

〉
= c′ · N(N − 1)

2
· −2c

N − 1

= −cc′N.

Hence, for each n ∈ [N ], it holds

∥wn∥2 =
−cc′

N
. (19)

Now let h(k) := 1
N

∑N
m=1 h

(k)
m for each k ∈ [K]. Observe that it holds〈

wn,h
(k)
n − h(k)

〉
=

N − 1

N

〈
wn,h

(k)
n

〉
− 1

N

N∑
m=1
m ̸=n

〈
wn,h

(k)
m

〉

= − (N − 1)c

N2
− c

N2

=
c

N
.

(20)

On the other hand, from (17) we have for each n ∈ [N ] and k ∈ [K] that∥∥∥h(k)
n − h(k)

∥∥∥2 =
∥∥∥h(k)

n

∥∥∥2 − 2

〈
h(k)
n ,

1

N

∑
m

h(k)
m

〉
+

1

N2

∥∥∥∥∥∑
m

hm

∥∥∥∥∥
2

=
N − 1

N

∥∥∥h(k)
n

∥∥∥2
=

N − 1

N

−c

c′(N − 1)

=
−c

Nc′
.

(21)

From (19-21) it follows that〈
wn,h

(k)
n − h(k)

〉
= ∥wn∥

∥∥∥h(k)
n − h(k)

∥∥∥ ,
which implies that wn is parallel to h

(k)
n − h(k) for every n ∈ [N ] and k ∈ [K]. More precisely, by

combining this finding with the above calculation of ∥wn∥ and
∥∥∥h(k)

n − h(k)
∥∥∥ in (19, 21) we obtain

wn = c′
(
h(k)
n − h(k)

)
. (22)

Finally it is left to show that h(k)
n = h

(ℓ)
n for any k, ℓ ∈ [K]. For this observe that h(k)

n − h(k) =

h
(ℓ)
n − h(ℓ) = wn implies∥∥∥h(k)

n

∥∥∥2 =
∥∥∥h(ℓ)

n + h(k) − h(ℓ)
∥∥∥2

=
∥∥∥h(ℓ)

n

∥∥∥2 + 2
〈
h(k) − h(ℓ),h(k)

n

〉
+
∥∥∥h(k) − h(ℓ)

∥∥∥2 ,
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and thus

2
〈
h(k) − h(ℓ),h(k)

n

〉
+
∥∥∥h(k) − h(ℓ)

∥∥∥2 = 0.

Similarly

2
〈
h(ℓ) − h(k),h(ℓ)

n

〉
+
∥∥∥h(k) − h(ℓ)

∥∥∥2 = 0.

Combining the two equalities and taking the sum over n we obtain∥∥∥h(k) − h(ℓ)
∥∥∥2 = 0,

which means that h(k) = h(ℓ) and therefore h
(k)
n = h

(ℓ)
n .

B.4 PROOF OF THEOREM 3.2

Proof.

Step 1. First we introduce a lower bound on the (unregularized) loss. Using Jensen’s inequality for
the convex function t 7→ et we obtain that for each n ∈ [N ] and k ∈ [K] it holds

N∑
m=1
m̸=n

e⟨wm−wn,h
(k)
n ⟩ ≥ (N − 1)e

1
N−1

∑N
m=1
m ̸=n

⟨wm−wn,h
(k)
n ⟩

,

with equality if and only if ⟨wm,hn⟩ = cn for every m ̸= n, independently of m, for some
constant cn. Inserting this into the formulation of Lα in Section B.2 we get

Lα(W ,H) ≥ 1

NK

N∑
n=1

K∑
k=1

[
log
(
1 + (N − 1)e

1
N−1

∑N
m=1
m̸=n

⟨wm−wn,h
(k)
n ⟩)

−
N∑

m=1
m ̸=n

α

N

〈
wm −wn,h

(k)
n

〉]
.

Observe that the function t 7→ log
(
1+(N −1)e

t
N−1

)
is also convex, hence applying again

Jensen’s inequality we can lower bound the right-hand side in the estimate above, and obtain

Lα(W,H) ≥ log

(
1 + (N − 1)e

1
KN(N−1)

∑K
k=1

∑N
n=1

∑N
m=1
m̸=n

⟨wm−wn,h
(k)
n ⟩)

− 1

NK

K∑
k=1

N∑
n=1

N∑
m=1
m ̸=n

α

N

〈
wm −wn,h

(k)
n

〉
.

(23)

Equality in (23) occurs if and only if the conditions (12, 13) (see Lemma B.2) hold simulta-
neously.

Step 2. Recall that with the notation P = P (W ,H) from Lemma B.1, the inequality (23) becomes

Lα(W ,H) ≥ log
(
1 + (N − 1)eP

)
− βP + λW ∥W ∥2 + λH

K
∥H∥2 =: L̃(W ,H),

(24)

with β := N−1
N α > 0. Consider the function g : R → R,

g(t) := log
(
1 + (N − 1)et

)
− βt.
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Since g is convex (as it differs from a convex function only by an additional linear function),
it has a unique minimum specified as the root 1

t0 := log
( 1

N − 1
· β

1− β

)
< 0

of the derivative

g′(t) =
(N − 1)et

1 + (N − 1)et
− β.

We now aim to find a constant lower bound on the right-hand side L̃(W ,H) of (24). We
consider the following three cases, corresponding to three different regions of the feasible
set of (W ,H):

(a) Case t0 > P (W ,H): We will show that the minimizers of Lα cannot be in this region.
Toward a contradiction, assume that there is a minimizer (W0,H0) s.t. P (W0,H0) <
t0. We construct (W1,H1) to be a NC configuration (according to Definition 3.1)
satisfying ∥W0∥ = ∥W1∥ and ∥H0∥ = ∥H1∥. Then we have

P (W1,H1) = − 1√
K(N − 1)

∥W1∥ ∥H1∥

= − 1√
K(N − 1)

∥W0∥ ∥H0∥

≤ P (W0,H0)

< t0 < 0.

By rescaling W1,H1 (with a constant smaller than 1) we obtain a pair (W ,H) with
P (W ,H) = t0 and ∥W ∥ < ∥W0∥, ∥H∥ < ∥H0∥. Thus it holds

Lα(W0,H0) ≥ log
(
1 + (N − 1)eP (W0,H0)

)
− βP (W0,H0)

+ λW ∥W0∥2 + λH ∥H0∥2

> log
(
1 + (N − 1)et0

)
− βt0 + λW ∥W ∥2 + λH

K
∥H∥2

= Lα(W ,H),

which means that (W0,H0) cannot be a minimizer of Lα. Note that the last equality
holds because the inequality (23) equalizes when (W ,H) is a NC configuration (see
Lemma B.2).

(b) Case P (W ,H) ≥ t0 ≥ − 1√
K(N−1)

∥W ∥ ∥H∥: We will show that at the minimizers

in this region, P must be t0. Assume that (W0,H0) is a minimizer of L̃ in this region
with P (W0,H0) ̸= t0. Then we consider all pairs (W ,H) with ∥W ∥ ≤ ∥W0∥
and ∥H∥ ≤ ∥H0∥. By continuity we have that P (W ,H) can take all values in the
interval [

− 1√
K(N − 1)

∥W0∥ ∥H0∥ ,
1√

K(N − 1)
∥W0∥ ∥H0∥

]
,

which also includes t0. It follows that L̃(W ,H) < L̃(W0,H0), so (W0,H0) cannot
be a minimizer of L̃, meaning that a minimizer (W ,H) of L̃ must satisfy P (W ,H) =

t0. The minimization of L̃ then reduces to

min
W,H

λW ∥W∥2 + λH ∥H∥2 s.t. − 1√
K(N − 1)

∥W∥ ∥H∥ = t0.

1Note that here the root t0 exists as long as β > 0, for β = 0 we may, for convenience, define t0 := −∞
(this will correspond to Case (c) below).
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Observe that

λW ∥W ∥2 + λH

K
∥H∥2 ≥ 2

√
λWλH

K
∥W ∥ ∥H∥

≥ −2t0
√
(N − 1)λWλH .

Therefore we have L̃(W,H) ≥ g(t0)− 2t0
√
(N − 1)λWλH and this equalizes if and

only if the following conditions hold:
• P (W ,H) = t0
• λW ∥W ∥2 = λH ∥H∥2 and ∥W ∥ ∥H∥ = −

√
K(N − 1)t0.

(c) Case P (W ,H) ≥ − 1√
K(N−1)

∥W ∥ ∥H∥ ≥ t0:

In this region, it holds g
(
P (W ,H)

)
≥ g
(
− 1√

K(N−1)
∥W ∥ ∥H∥

)
, so

L̃(W ,H) ≥ f(∥W ∥ , ∥H∥),
with f : R2 → R,

f(w, h) := log
(
1 + (N − 1)e−Cwh

)
+ βCwh+ λWw2 +

λH

K
h2

where we set C := 1√
K(N−1)

to shorten notation. Observe that even though w and h,

as representatives for ∥W ∥ and ∥H∥ respectively, must be positive, we can consider
them as real number (without positivity). This can be explained as follows. On the one
hand, we are interested in the global minimum of f , at which w and h should have the
same sign. On the other hand, since f(w, h) = f(−w,−h), if (w, h) is a minimum
point then certainly (−w,−h) is a minimum point of f .
This observation allows us to set the derivatives of f to be 0 at the minimum, i.e.

0 = ∇wf(w, h) = − (N − 1)e−Cwh

1 + (N − 1)e−Cwh
Cb+ 2βCh+ 2λWw,

0 = ∇hf(w, h) = − (N − 1)e−Cwh

1 + (N − 1)e−Cwh
Ca+ 2βCw + 2

λH

K
h.

Multiplying the first equality with w and the second with h, we obtain in particular that

λWw2 = λH

K h2, and hence h =
√

KλW

λH
w. Inserting this into the first inequality while

denoting C ′ := C
√

KλW

λH
yields

− (N − 1)e−C′a2

1 + (N − 1)e−C′w2 C
′w + 2βC ′w + 2λWw = 0.

Excluding the trivial solution (w, h) = (0, 0), so that we can multiply both sides with
1/w, we get

w2 =
1

C

√
λH

KλW
log

(
(N − 1)

1− β − 2
√
(N − 1)λWλH

β + 2
√
(N − 1)λWλH

)
(25)

and

h2 =
1

C

√
KλW

λH
log

(
(N − 1)

1− β − 2
√

(N − 1)λWλH

β + 2
√

(N − 1)λWλH

)
(26)

Finally, it is easy to check that

−Cwh = log
( 1

N − 1

β + 2
√

(N − 1)λWλH

1− β − 2
√
(N − 1)λWλH

)
> log

( 1

N − 1
· β

1− β

)
= t0,

i.e. the solution found above belongs indeed to the current region of the feasible
set. In summary, we have shown in this case that L̃(W ,H) ≥ f(w0, h0) with
(w0, h0) specified as in (25, 26), and this becomes equality if and only if P (W ,H) =
− 1√

K(N−1)
∥W ∥ ∥H∥ and ∥W ∥ = w0, ∥H∥ = h0.
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Step 3. We now come back to the actual loss Lα. In both cases (b) and (c) discussed above, we have
shown that Lα(W ,H) ≥ L̃(W ,H) ≥ const and this can equalize when the conditions in
Lemma B.2 are satisfied. We deduce that Lα achieves its minimum at either case (b) or (c),
while both lead to a NC configuration by Lemma B.2.

C THEORETICAL SUPPORTS FOR THEOREM 4.3

In this appendix we prove our theoretical result on the MD model, namely Theorem 4.3.

C.1 PREPARATION FOR THE PROOF

The problem from Definition 4.1 is

min
U≥0,r≥0

Rλ,η,α(U , r) := Fλ,α(W ,H, r) + ηGλ,α(W ,U , r)

under the constraints

η ∥h1 − u2∥ ≤ CMDr

∥h1 − h2∥
,

η ∥h2 − u1∥ ≤ CMDr

∥h1 − h2∥
.

Observe that Fλ,α does not depend on U . Hence, for each r ≥ 0 we can first solve the problem

min
U≥0

Gλ,α(W ,U , r)

under the same constraints to obtain the optimal configuration of U = U(r), and then solve

min
r≥0

Rλ,η,α

(
U(r), r

)
.

The problem of optimizing Gλ,α(W ,U , r) over U can be separated into two subproblems over u1

and u2, which are independent and symmetric. We hence consider only the problem over u1, namely

min
u1∈RM

+

log
(
1 + e⟨w2−w1,u1⟩

)
− α

2
⟨w2 −w1,u1⟩+ λ ∥u1∥2

s.t. η ∥h2 − u1∥ ≤ CMDr

∥h1 − h2∥
.

(Pu1 )

Remark 1. Without its constraint, the minimization of Gλ,α(W ,U , r) over U becomes a reduction
of the problem

min
W ,H

ℓα(W ,h1, y
(α)
1 ) + ℓα(W ,h2, y

(α)
2 ) + λW ∥W ∥2 + λH ∥H∥2

where W is restricted to be in the optimal NC configuration (see Definition 3.1). Hence the problem
(Pu1

) without its constraint has the minimizer at u1 = h1. Furthermore the problem (Pu1
) itself

also has its minimizer at h1 if h1 is feasible under the side constraint. Namely, when

η ∥h2 − h1∥ ≤ CMDr

∥h1 − h2∥
,

or equivalently when

r ≥ η ∥h1 − h2∥2

CMD
=: rmax.

Thus we only need to study the problem (Pu1 ) in case r < rmax.
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The rest of the proof can be summarized as follows: First, in Subsection C.2 we show that the solution
u1(r) to (Pu1

) must be on a small subset of the feasible set (see Lemma C.1 and C.2), which allows
us to prove the (almost) linear dependence of u1(r)−u1(rmax) on the distance rmax− r (see Lemma
C.3). Next, we study the behavior of r 7→ Gλ,α

(
W ,U(r), r

)
locally around rmax and the behavior

of r 7→ Fλ,α(W ,H, r) around 0. This lets us show that the decay of the former function near rmax

dominates the increasing of the latter one, and hence the optimal dilation r∗ must be close to rmax.
The details of this argument are introduced in Subsection C.5. Finally in Subsection C.6 we apply
this to each value α ∈ {0, α0} and get the desired statement of Theorem 4.3.

C.2 ESTIMATING THE SOLUTION OF (Pu1
)

For convenience, in this section we introduce several notations. Let

S := span {w2 −w1,h1} = span {h2 − h1,h1} = span {h2,h1}

be the two-dimensional subspace spanned by w2 −w1 and h1. Furthermore, let B be the ball of
radius CMDr

η∥h1−h2∥ around h2. Let C = ∂B ∩ S be the circle that is the intersection of the ball B and
the subspace S. We will show that the minimizer of (Pu1

) must lie on the circle C. Note that the
feasiblity of a vector x ∈ RM for the problem (Pu1

) can be expressed as x ∈ RM
+ ∩ B.

Lemma C.1. Let r < rmax, then the minimizer of (Pu1
) lies on the circle C, i.e. it lies on the

subspace S and the inequality constraint in (Pu1
) must equalize at the minimizer.

w2 −w1

u∗
1

u∗∗
1

h2

h1

Figure 10: Illustration for Lemma C.1 and C.2. The feasible set of (Pu1 ) is the intersection of the positive
quadrant and the disc with boundary given by the red circle C. We consider the case C has an intersection u∗

1

with the segment (0,h1) and u∗∗
1 with the segment (h1,h2). The minimizer of (Pu1 ) must lie on the red arc

between u∗
1 and u∗∗

1 .

Proof.

1. Let x ∈ RM
+ ∩ B be a feasible solution. According to RM = S ⊕ S⊥ we can decompose x

into

x = xS + x− xS ,

where xS is the orthogonal projection of x on the subspace S and x− xS is orthogonal to
S . We will show that xS is a better candidate for (Pu1

) than x, which means that xS is also
feasible and leads to smaller objective value. The second point is straightforward, because
one can observe that

⟨x,w2 − w1⟩ = ⟨xS , w2 − w1⟩ ,

and

∥x∥2 = ∥xS∥2 + ∥x− xS∥2 ≥ ∥xS∥2 .

Thus it is left to show the feasibility of xS . For this, observe that h1 and h2 form an
(entrywise) nonnegative orthogonal basis of S (remark: not necessarily an orthonormal
basis, because h1 and h2 are not necessarily normalized). Thus xS can be written as

xS = a1h1 + a2h2
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in which the coefficients a1, a2 ∈ R satisfy

ai =

〈
xS ,

hi

∥hi∥2

〉
=

〈
x,

hi

∥hi∥2

〉
≥ 0,

where the last inequality holds because both vectors x and hi are nonnegative.

Finally we need to show that xS ∈ B. For this consider again the decomposition

x = xS + x− xS = a1h1 + a2h2 + (x− xS).

We obtain

∥h2 − x∥2 = ∥a1h1 + (a2 − 1)h2 + x− xS∥2

= a21 ∥h1∥2 + (a2 − 1)2 ∥h2∥2 + ∥x− xS∥2

≥ a21 ∥h1∥2 + (a2 − 1)2 ∥h2∥2

= ∥a1h1 + (a2 − 1)h2∥2

= ∥h2 − xS∥2 ,
and hence the claim xS ∈ B follows from the feasibility of x.

2. Now we reduce to the subspace S. Since h1/ ∥h1∥ and h2/ ∥h1∥ form a nonnegative or-
thonormal basis for this subspace, it is equivalent to consider the space R2 of the coefficients.
Note that the positivity of a vector x ∈ S ⊆ RM is also equivalent to the positivity of its
coefficients in R2. Thus for convenience we may assume without loss of generality that h1

and h2 are orthogonal vectors in R2, more precisely h1 lies on the x-axis and h2 lies on the
y-axis as in Figure 10.

We denote by F ⊂ R2
+ the set of all points in S that is feasible to (Pu1

), i.e. inside the ball
B around h2. Note that on the two-dimensional subspace S the ball B reduces to a disc,
whose boundary is the circle C as defined above. We will show that the solution to (Pu1

)
must lie on the boundary of F (w.r.t. the topology in S ∼= R2), i.e either on the axes (due to
positivity constraints) or on the circle C.

Indeed, let u1 be an arbitrary feasible point in the interior of F , we prove that u1 is not
the minimum of the problem (Pu1

). Since u1 is an interior point, there exists a disc B′

around u1 which lies completely inside F . Let A be the intersection of the disc B′ and the
circle of radius ∥u1∥ around the origin. Observe that moving u1 along the arc A keeps its
norm unchanged, but can both increase and decrease the value of ⟨w2 −w1,u1⟩. Hence
the objective in (Pu1

) cannot reach its minimum at u1, unless ⟨w2 −w1,u1⟩ is equal to
the minimizer t0 of the function

t 7→ log(1 + et)− α

2
t.

However, in case ⟨w2 −w1,u1⟩ = t0, the point u1 lies on a line that is orthogonal to
w2 −w1, and one can choose another point u′

1 on the intersection of this line and the disc
B′ such that ∥u′

1∥ < ∥u1∥. In particular, u′
1 is a better feasible candidate in comparison to

u1.

3. We have shown above that the interior point u1 cannot be the solution of (Pu1 ). Excluding
all interior points, we now consider the boundary set ∂F , which consists of points on the
circle C that lie in the positive quadrant (denoted by ∂F1), points on the x-axis between 0
and the intersection point u∗

1 of C with the x-axis (denoted by ∂F2), as well as points on the
y-axis between 0 and the intersection point of C with the y-axis (denoted by ∂F3). Note
that the circle C may have no intersection with the x-axis, in that case we simply consider
∂F2 as the empty set.

We will show that the solution must be a point on ∂F1, in which we find the possible optimal
positions of u1 on each of the other boundary subsets, i.e. ∂F2 and ∂F3.

(a) On ∂F3: Observe that moving a point u1 along ∂F3 in the direction toward the
origin will decrease both the scalar product ⟨w2 −w1,u1⟩ > 0 (as the angle is kept
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unchanged while the length of u1 is decreased) and the regularization term ∥u1∥2.
Since the function t 7→ log(1+et)− α

2 t is monotonically increasing on [0,∞), moving
u1 in this direction decreases the objective in (Pu1

). Therefore, the best candidate on
∂F3 is the lowest possible point on ∂F3, i.e. 0 in case C has intersection point with the
x-axis, or is the lower intersection point of C with the y-axis otherwise.

(b) On ∂F2 (in case it is not empty): Here, the objective becomes f(∥u1∥) where the
function f is defined by

f(t) = log(1 + ec1t)− α

2
c1t+ λt2,

with c1 := ⟨w2−w1,h1⟩
∥h1∥ . Observe that f is convex (this can be seen by directly

computing the 2nd derivative of f ) and achieves its minimum at t = ∥h1∥ (because
h1 is the minimum of (Pu1 ) without the side constraint, see Remark 1). Hence on the
interval [0, ∥h1∥] it is monotonically decreasing. It follows that u∗

1 is the best candidate
on ∂F2.

In summary we have shown that the optimal position of u1 must be on ∂F1, ∂F2 or ∂F3.
On the other hand, all candidates on ∂F3 are worse than a point in ∂F2 and all candidates
on ∂F2 are worse than a point in ∂F1 (in case ∂F2 = ∅ we have that all candidates on
∂F3 are worse than a point in ∂F1). Therefore the minimizer must be a point on ∂F1, in
particular on the circle C.

Having said that the optimal position of u1 with respect to (Pu1 ) must be on the circle C, we are now
interested in the case where r is close to rmax, in which the circle C has intersection with the segment
(0,h1) (see Figure 10). In this case we can even restrict the possible optimal positions to a smaller
subset of the circle.
Lemma C.2. Suppose that rmax ≥ r ≥ rmax/

√
2, so that the circle C has intersection u∗

1 with the
line segment (0,h1) and intersection u∗∗

1 with the line segment (h2,h1). Then, the minimizer of
(Pu1

) lies on the arc between u∗
1 and u∗∗

1 .

Proof. First we rewrite the objective of (Pu1
) as

f
(
⟨w2 −w1,u1⟩

)
+ λ ∥u1∥2 .

where f : R → R is the function defined by

f(t) = log
(
1 + et

)
− α

2
t.

Next, we parameterize the circle C by the polar coordinate. Let R := CMDr
η∥h1−h2∥ and θ be the angle

between (h2,u1) and (h2,h1). Then, since w2 −w1 is proportional to h2 − h1 we have

⟨w2 −w1,u1⟩ = ⟨w2 −w1,h2⟩+ ⟨w2 −w1,u1 − h2⟩
= ⟨w2 −w1,h2⟩ −R ∥w2 −w1∥ cos θ.

Note that u1 can be on both sides of the line (h2,h1), but for the calculation of ⟨w2 −w1,u1⟩ it is
not necessary to distinguish between these two cases. In general, when θ increases, cos θ decreases
(we can exclude the case θ > π/2 because in this case ⟨w2 −w1,u1⟩ becomes positive and the
norm of u1 is also large, so the objective becomes large and u1 cannot be the minimizer), and thus
⟨w2 −w1,u1⟩ increases.

Now we claim that the optimal position of u1 must be on the arc between u∗
1 and its reflection u′

1
about the line (h1,h2). To show this we consider a point u1 that lies on the other part of the circle C.
By the above observation on the monotonicity of ⟨w2 −w1,u1⟩ with respect to θ we see that

⟨w2 −w1,u1⟩ > ⟨w2 −w1,u
′
1⟩

= ⟨w2 −w1,u
∗
1⟩

≥ ⟨w2 −w1,h1⟩ .
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Recall from the proof of Theorem 3.2 that ⟨w2 −w1,h1⟩ is not smaller than the minimizer t0 of f ,
and due to convexity f is monotone increasing on [t0,∞). Therefore we obtain

f
(
⟨w2 −w1,u1⟩

)
> f

(
⟨w2 −w1,u

′
1⟩
)

On the other hand, by the law of cosines applied to the triangle (0,h2,u1) we obtain

∥u1∥2 = ∥h2∥2 +R2 − 2R ∥h2∥ cos
(π
4
+ θ
)
,

which is increasing in θ (again we exclude the case θ > π/2 as discussed above). This shows that
∥u1∥ > ∥u′

1∥. Combining the above two inequalities we see that u′
1 is a better candidate than u1.

Finally, the desired statement follows from the observation that we can exclude all points on the arc
between u∗∗

1 and u′
1, because each point on this arc can be reflected about the line (h1,h2) to a point

with the same value of ⟨w2 −w1,u1⟩, but with smaller norm and this gives a better value of the
objective.

Note that similar to the optimal position of U , the points u∗
1, u∗∗

1 from Lemma C.2 also depend
on r. Hence to be clear, we may write u1 = u1(r), u∗

1 = u∗
1(r) and u∗∗

1 = u∗∗
1 (r) for r ∈

[rmax/
√
2, rmax]. Observe that

u1(rmax) = u∗
1(rmax) = u∗∗

1 (rmax) = h1.

The following lemma shows that for r close to rmax, the distance between u1(r) and h1 behaves
almost linearly with respect to the distance between r and rmax.

Lemma C.3. Let u1(r) be the minimizer of (Pu1
) with input r ∈ [rmax/

√
2, rmax]. Then, there

exists constants c, C > 0 (depending on ∥h1∥ = ∥h2∥ and CMD, but not on other parameters such
as r, η, etc) such that

∥u1(r)− h1∥ ∈
(
c
rmax − r

η
, C

rmax − r

η

)
.

Proof. From Lemma C.2 we know that u1(r) lies on the arc between u∗
1(r) and u∗∗

1 (r), hence its
distance to h1 is lower bounded by the distance from u∗∗

1 (r) to h1 and is upper bounded by the
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distance from u∗
1(r) to h1. Hence we have

∥u1(r)− h1∥ ≤ ∥u∗
1(r)− u∗

1(rmax)∥
= ∥u∗

1(rmax)∥ − ∥u∗
1(r)∥

=

√
∥h2 − u∗

1(rmax)∥2 − ∥h2∥2 −
√
∥h2 − u∗

1(r)∥
2 − ∥h2∥2

=

√
C2

MDr2max

η2 ∥h1 − h2∥2
− ∥h2∥2 −

√
C2

MDr2

η2 ∥h1 − h2∥2
− ∥h2∥2

=

C2
MD(r2max−r2)

η2∥h1−h2∥2√
C2

MDr2max

η2∥h1−h2∥2 − ∥h2∥2 +
√

C2
MDr2

η2∥h1−h2∥2 − ∥h2∥2

=
CMD(rmax − r)

η ∥h1 − h2∥
·

CMD(rmax+r)

η∥h1−h2∥2√
C2

MDr2max

η2∥h1−h2∥2 − ∥h2∥2 +
√

C2
MDr2

η2∥h1−h2∥2 − ∥h2∥2

≤ CMD(rmax − r)

η ∥h1 − h2∥
·

2CMDrmax

η∥h1−h2∥√
C2

MDr2max

η2∥h1−h2∥2 − ∥h2∥2

=
CMD(rmax − r)

η ∥h1 − h2∥
·

2CMDrmax

η∥h1−h2∥√
C2

MDr2max

η2∥h1−h2∥2 − 1
2 ∥h1 − h2∥2

=
CMD(rmax − r)

η ∥h1 − h2∥
·

2CMDrmax

η∥h1−h2∥√
C2

MDr2max

η2∥h1−h2∥2 − 1
2

C2
MDr2max

η2∥h1−h2∥2

=
2
√
2CMD

∥h1 − h2∥
· rmax − r

η
.

On the other hand it also holds

∥u1(r)− h1∥ ≥ ∥u∗∗
1 (r)− h1∥

= ∥h2 − u∗∗
1 (rmax)∥ − ∥h2 − u∗∗

1 (r)∥

=
CMDrmax

η ∥h1 − h2∥
− CMDr

η ∥h1 − h2∥

=
CMD

∥h1 − h2∥
· rmax − r

η
.

Combining the above estimates yields the desired statement.

C.3 THE BEHAVIOR OF Gλ,α NEAR rmax

We study the behavior of Gλ,α(W ,U , r) as a function of r, where W is fixed as in Assumption 4.2,
U = U(r) is the optimal position discussed in Subsection C.2 and r lies near rmax.

Lemma C.4. Let u1(r) be the minimizer of (Pu1
) with input r ∈ [rmax/

√
2, rmax]. Then for any r

such that rmax−r
η < 1, it holds

Gλ,α

(
W ,U(r), r

)
−Gλ,α

(
W ,U(rmax), rmax

)
≥ C1

(
r − rmax

η

)2

for some constant C1 > 0.

Proof. Due to symmetry, we only need to consider the half of Gλ,α that involves u1, i.e. the function
g : RM → R,

g(u1) = log
(
1 + e⟨w2−w1,u1⟩

)
− α

2
⟨w2 −w1,u1⟩+ λ ∥u1∥2 . (27)
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We approximate g(u1(r)) using the second-order Taylor approximation around h1 = u1(rmax),

g(u1) = g(h1) + ⟨∇u1
g(h1),u1 − h1⟩+

1

2
⟨Hu1

g(h1)(u1 − h1),u1 − h1⟩+O(∥u1 − h1∥3),
(28)

where the derivatives of g (at h1) are given by

∇u1
g(h1) =

e⟨w2−w1,h1⟩

1 + e⟨w2−w1,h1⟩
(w2 −w1)−

α

2
(w2 −w1) + 2λh1,

Hu1g(h1) =
e⟨w2−w1,h1⟩

(1 + e⟨w2−w1,h1⟩)2
(w2 −w1)(w2 −w1)

⊤ + 2λI.

Since u1 = h1 is the minimum of g(u1) under the constraint u1 ≥ 0 and u1(r) is always feasible
for any r, the linear term in (28) is non-negative, i.e.

⟨∇u1g(h1),u1 − h1⟩ ≥ 0.

Next, we consider the second-order term in (28). We have

⟨Hu1
g(h1)(u1 − h1),u1 − h1⟩ >

e⟨w2−w1,h1⟩

(1 + e⟨w2−w1,h1⟩)2
⟨w2 −w1,u1 − h1⟩2

≥ e⟨w2−w1,h1⟩

2(1 + e⟨w2−w1,h1⟩)2
∥w2 −w1∥2 ∥u1 − h1∥2 ,

where the last inequality holds because the angle between w2 −w1 and u1 − h1 lies between 0 and
π/4, which follows directly from Lemma C.2.

Inserting the above observations back into the Taylor expansion (28) and applying Lemma C.3, we
obtain

g(u1(r))− g(h1) >

(
e⟨w2−w1,h1⟩

2(1 + e⟨w2−w1,h1⟩)2
∥w2 −w1∥2 + 2λ

)
∥u1(r)− h1∥2

≥ C1

(
r − rmax

η

)2

where the constant C1 is given by

C1 =
( e⟨w2−w1,h1⟩

2(1 + e⟨w2−w1,h1⟩)2
∥w2 −w1∥2 + 2λ

)
c2

with c from Lemma C.3, i.e.

C1 =
( e⟨w2−w1,h1⟩

2(1 + e⟨w2−w1,h1⟩)2
∥w2 −w1∥2 + 2λ

) C2
MD

∥h1 − h2∥2
.

C.4 THE BEHAVIOR OF Fλ,α

In this subsection we study the behavior of the function Fλ,α under the assumptions in Assumption
4.2.

Lemma C.5. For r < 1, the function r 7→ Fλ,α(W ,H, r) satisfies

Fλ,α(W ,H, r)− Fλ,α(W ,H, 0) ≤ C2r
2

for some constant C2 > 0.
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Proof. By symmetry we only need to consider the half of Fλ,α that involves h1, and to simplify
notations we denote this by F̃ = F̃ (r) with

F̃ (r) =

∫ (
ℓα

(
W ,h1 + v,y

(α)
1

)
+ λ ∥h1 + v∥2

)
dµ1

r(v)

=

∫ (
log
(
1 + e⟨w2−w1,h1+v⟩

)
− α

2
⟨w2 −w1,h1 + v⟩+ λ ∥h1 + v∥2

)
dµ1

r(v)

=

∫ (
log
(
1 + e⟨w2−w1,h1+v⟩

)
+ λ ∥v∥2

)
dµ1

r(v)−
α

2
⟨w2 −w1,h1⟩+ λ ∥h1∥2 ,

where the last equality comes from the second statement in Assumption 4.2. We denote the integrand
in the above formulation by f̃ ,

f̃(v) = log
(
1 + e⟨w2−w1,h1+v⟩

)
+ λ ∥v∥2 ,

Now we approximate f̃ using its second-order Taylor expansion, which yields a rest of order O(∥v∥3).
From the second statement in Assumption 4.2, ∥v∥ is upper bounded by Ar and hence the rest of the
Taylor approximation is of order O(r3). Hence we obtain

f̃(v) = f̃(0) +
〈
∇f̃(0),v

〉
+

1

2

〈
Hf̃(0)v,v

〉
+O(r3)

= f̃(0) +
e⟨w2−w1,h1⟩

1 + e⟨w2−w1,h1⟩
⟨w2 −w1,v⟩

+
e⟨w2−w1,h1⟩

2
(
1 + e⟨w2−w1,h1⟩

)2 ⟨w2 −w1,v⟩2 + λ ∥v∥2 +O(r3).

Taking the integral
∫
dµr

1(v) we see that again due to the second statement in Assumption 4.2, the
first order term in the Taylor expansion of f̃ vanishes. Therefore we obtain

F̃ (r)− F̃ (0) =

∫
f̃(v)dµr

1(v)

=

∫ (
e⟨w2−w1,h1⟩

2
(
1 + e⟨w2−w1,h1⟩

)2 ⟨w2 −w1, v⟩2 + λ ∥v∥2
)
dµr

1(v) +O(r3)

≤

(
e⟨w2−w1,h1⟩ ∥w2 −w1∥2

2
(
1 + e⟨w2−w1,h1⟩

)2 + λ

)∫
∥v∥2 dµr

1(v) +O(r3)

≤ A2

(
e⟨w2−w1,h1⟩ ∥w2 −w1∥2

2
(
1 + e⟨w2−w1,h1⟩

)2 + λ

)
r2 +O(r3),

where A is the constant for which ∥v∥ ≤ Ar holds (see Assumption 4.2). Thus the desired statement
follows with

C2 = A2

(
e⟨w2−w1,h1⟩ ∥w2 −w1∥2

2
(
1 + e⟨w2−w1,h1⟩

)2 + λ

)
.

C.5 ESTIMATION OF THE OPTIMAL DILATION r∗

In this subsection we come back to the MD problem, i.e. the minimization of the MD risk

min
U,r

Fλ,α(W ,H, r) + ηGλ,α(W ,U , r) s.t (4), (5).
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As discussed in Subsection C.1 we can simplify this problem by inserting into U the solution U(r) to
the problem

min
U

Gλ,α(W ,U , r) s.t. (4), (5).

Then the MD problem is reduced to the minimization over the dilation r, namely

min
r

Fλ,α(W ,H, r) + ηGλ,α

(
W ,U(r), r

)
. (29)

Lemma C.6. The solution r∗ to the problem (29) satisfies rmax ≥ r∗ ≥ rmax(1− C ′η1/2), where
C ′ is a constant given by

C ′ :=
A
√
2 ∥h1 − h2∥
CMD

.

Proof. To shorten notations, we define

f(r) := Fλ,α(W ,H, r) and g(r) := Gλ,α

(
W ,U(r), r

)
.

Then the problem (29) can be rewritten as

min
r

f(r) + ηg(r). (30)

First we observe that r∗ ≤ rmax because for any r > rmax we have that f(r) > f(rmax) while
g(r) = g(rmax) (see Remark 1). Thus we only need to show the lower bound on r∗.

Let ϵ ∈
(
0, CMD

∥h1−h2∥2

)
, we will show that the solution to the reduced MD problem (30) cannot be r

for any r < (1− ϵ)rmax, provided that ϵ is sufficiently large (this condition will be later specified
more precisely). To see this we will show that for any such r it holds

f(r) + ηg(r) > f(rmax) + ηg(rmax). (31)

By Lemma C.5 we have that

f(rmax)− f(r) ≤ f(rmax)− f(0) ≤ C2r
2
max.

On the other hand, from Lemma C.4 it follows that

g(r)− g(rmax) ≥ g
(
(1− ϵ)rmax

)
− g(rmax) ≥ C1

ϵ2r2max

η2

holds for some constant c2 > 0.

Combining the above observations we see that (31) will hold if

C1
ϵ2r2max

η
≥ C2r

2
max,

which holds provided that

ϵ ≥ C ′η1/2

with

C ′ =
A
√
2 ∥h1 − h2∥
CMD

.

Since any candidate outside the interval
[
rmax(1− C ′η1/2), rmax

]
is worse than rmax, we conclude

that r∗ must be in this interval.
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C.6 FINALIZING THE PROOF

In previous subsections we have approximately estimated the optimal dilation r∗ of the MD problem
in general, i.e. the LS parameter α can take any value in {0, α0}. Now we distinguish between the
two values of α by adding the superscripts LS (corresponding to α = α0) and CE (corresponding to
α = 0), and we will finalize the proof of Theorem 4.3 by showing

rCE
∗∥∥hCE

1 − hCE
2

∥∥ >
rLS
∗∥∥hLS

1 − hLS
2

∥∥ . (32)

By Assumption 4.2 we have
∥∥hCE

1 − hCE
2

∥∥ = γ
∥∥hLS

1 − hLS
2

∥∥, hence

rCE
max∥∥hCE

1 − hCE
2

∥∥ =
η
∥∥hCE

1 − hCE
2

∥∥
CMD

= γ
η
∥∥hLS

1 − hLS
2

∥∥
CMD

= γ
rLS
max∥∥hLS

1 − hLS
2

∥∥ .
Combining this and Lemma C.6 we obtain

rCE
∗∥∥hCE

1 − hCE
2

∥∥ >

(
1− C ′η1/2

)
rCE
max∥∥hCE

1 − hCE
2

∥∥
= γ

(
1− C ′η1/2

) rLS
max∥∥hLS

1 − hLS
2

∥∥
≥ γ

(
1− C ′η1/2

) rLS
∗∥∥hLS

1 − hLS
2

∥∥ .
Hence (32) holds provided that γ

(
1 − C ′η1/2

)
≥ 1, which follows from the third statement in

Assumption 4.2.
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