

Quantifying Aleatoric and Epistemic Uncertainty A Credal Approach

Paul Hofman, Yusuf Sale, and Eyke Hüllermeier

LMU Munich, MCML

Setting

Supervised classification with instance space \mathcal{X} and label space \mathcal{Y} . Training data $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N \in (\mathcal{X} \times \mathcal{Y})^N.$

Hypothesis space

 $\mathcal{H} = \{h : \mathcal{X} \to \mathbb{P}(\mathcal{Y})\}.$

Given an instance x, we denote $h(x) = \theta$.

Types of Uncertainty [1]

A credal approach

Learning Credal Predictors

Relative likelihood given training data ${\cal D}$

$$\mathcal{L}_{\mathcal{H}}(h) \coloneqq rac{L(h)}{L(\hat{h})} ,$$

where $L(h) = \prod_{i=1}^{N} p(y_i | h, x)$ and \hat{h} the (empirical) maximum likelihood predictor.

Given $x \in \mathcal{X}$ and $Q \subseteq \mathcal{H}$ (plausible hypotheses, i.e. ensemble members):

 $C_{\alpha} \coloneqq \{h(\mathbf{x}) \in Q \mid \mathcal{L}_{\mathcal{H}}(h) \geq \alpha\},\$

with $\alpha \in [0, 1]$.

Uncertainty Quantification Epistemic uncertainty

Results

Accuracy-Rejection Curves

Ensemble of 5 pre-trained ResNets fine-tuned on Food101. Upper aleatoric uncertainty is used as rejection criterion.

Munich Center for Machine Learning

Aleatoric Uncertainty

Refers to the variability of the outcome due to the inherent randomness of the data and is therefore irreducible.

Epistemic Uncertainty

Refers to uncertainty caused by a lack of knowledge (epistemic state of the learner) and is reducible by adding information.

Uncertainty Representation

A credal set C is a (closed and convex) set of probability distributions on \mathcal{Y} .

 $\mathsf{TU}(C) = \mathsf{AU}(C) + \mathsf{EU}(C).$

Various decompositions exist, i.a. based on $GH(C) := \sum_{A \subseteq \mathcal{Y}} m_Q(A) \log(|A|)$

$$\mathsf{EU}(C) := \max_{\boldsymbol{\theta}, \boldsymbol{\theta}' \in C} D_{\ell}(\boldsymbol{\theta}, \boldsymbol{\theta}'),$$

with the ℓ -divergence

$$D_{\ell}(\boldsymbol{ heta}, \boldsymbol{ heta}') := \mathbb{E}_{Y \sim \boldsymbol{ heta}} \left\{ \ell(\boldsymbol{ heta}', Y) - \ell(\boldsymbol{ heta}, Y)
ight\} \,,$$

the excess loss of predicting θ' , while the ground truth is θ .

Aleatoric uncertainty

$$\underline{\mathrm{AU}}(C) := \min_{oldsymbol{ heta}\in C} H_\ell(oldsymbol{ heta}) \,, \ \overline{\mathrm{AU}}(C) := \max_{oldsymbol{ heta}\in C} H_\ell(oldsymbol{ heta}) \,,$$

with H_{ℓ} the ℓ -entropy of θ given by

 $H_{\ell}(\boldsymbol{\theta}) := \mathbb{E}_{Y \sim \boldsymbol{\theta}} \, \ell(\boldsymbol{\theta}, Y) \,,$

the irreducible loss of ground truth θ .

Here, ℓ can be any loss. We consider (strictly) proper scoring rules [3].

Loss	Aleatoric (upper\lower)	Epistemic		
log	$\sup_{\boldsymbol{\theta}\in\mathcal{C}}\inf_{\boldsymbol{\theta}\in\mathcal{C}}S(\boldsymbol{\theta})$	$\max_{\boldsymbol{\theta}, \boldsymbol{\theta}' \in \boldsymbol{C}} \ D_{KL}(\boldsymbol{\theta}' \boldsymbol{\theta})$		
Brier	$\sup_{\theta \in C} \inf_{\theta \in C} 1 - \sum_{k=1}^{K} \theta_k^2$	$\max_{\boldsymbol{\theta}, \boldsymbol{\theta}' \in \mathcal{C}} \sum_{k=1}^{\mathcal{K}} (\theta_k - \theta_k')^2$		
spherical	$\sup_{oldsymbol{ heta}\in C} \inf_{oldsymbol{ heta}\in C} 1 - oldsymbol{ heta} _2$	$\max_{\boldsymbol{\theta}, \boldsymbol{\theta}' \in C} \boldsymbol{\theta}' _2 - \sum_{k=1}^{K} \theta_k \theta_k' / \boldsymbol{\theta}' _2$		
zero-one	$\sup_{\theta \in C} \inf_{\theta \in C} 1 - \max_{k \in C} \theta_k$	$\max_{\boldsymbol{\theta}, \boldsymbol{\theta}' \in \mathcal{C}} \max \theta_k' - \theta_{k=\operatorname{argmax} \theta_k}'$		

Out-of-Distribution Detection

Ensemble of 5 LeNets for FMNIST and 5 ResNets for Food101. OoD using epistemic uncertainty.

iD	OoD	log	Brier	spherical	zero-one	Hartley	entropy
	MNIST	$\boldsymbol{0.871}{\scriptstyle \pm 0.017}$	$0.812{\scriptstyle\pm0.019}$	$0.818{\scriptstyle \pm 0.019}$	$0.742{\scriptstyle \pm 0.015}$	$0.815{\scriptstyle \pm 0.019}$	$0.826{\scriptstyle\pm0.019}$
	KMNIST	$\textbf{0.973}{\scriptstyle \pm 0.002}$	$0.94{\scriptstyle \pm 0.004}$	$0.946{\scriptstyle\pm0.003}$	$0.863{\scriptstyle \pm 0.006}$	$0.944{\scriptstyle\pm0.004}$	$0.942{\scriptstyle\pm0.003}$
Eagd101	SVHN	0.700 ±0.04	$0.572{\scriptstyle\pm0.027}$	$0.588{\scriptstyle\pm0.038}$	0.669±0.007	$0.479{\scriptstyle\pm0.023}$	0.681±0.07
FOODIUI	CIFAR-100	$\textbf{0.805}{\scriptstyle \pm 0.015}$	$0.66{\scriptstyle \pm 0.016}$	$0.681{\scriptstyle \pm 0.016}$	$0.697{\scriptstyle\pm0.008}$	$0.576{\scriptstyle \pm 0.022}$	$0.775{\scriptstyle\pm0.021}$

Active Learning

Ensemble of 10 small MLPs. Initial training pool is 50 instances. Every round 50 new instances are acquired based on their epistemic uncertainty.

gen. Hartley [2] and Shannon entropy S.

where

 $S^*(C) \coloneqq \max_{oldsymbol{ heta}\in C} S(oldsymbol{ heta})\,, \quad S_*(C) \coloneqq \min_{oldsymbol{ heta}\in C} S(oldsymbol{ heta}).$

Different losses account for different

Left: decision uncertainty. Right: no

uncertainties [4].

decision uncertainty.

200 400 600 800 1000 Train Instances

Future Work

- Can we offer guarantees on the credal set [5]?
- How does relaxing the convexity assumption affect the theoretical and empirical results?
- [1] Eyke Hüllermeier and Willem Waegeman. "Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods". In: Machine Learning 110.3 (2021).
- [2] Joaquín Abellán, George J. Klir, and Serafín Moral. "Disaggregated total uncertainty measure for credal sets". In: International Journal of General Systems 35.1 (2006).
- [3] Tilmann Gneiting and Adrian Raftery. "Strictly Proper Scoring Rules, Prediction, and Estimation". In: *Journal of the American Statistical Association* 102.477 (2005).
- [4] Paul Hofman, Yusuf Sale, and Eyke Hüllermeier. "Quantifying Aleatoric and Epistemic Uncertainty with Proper Scoring Rules". In: CoRR (2024).
- [5] Alireza Javanmardi, David Stutz, and Eyke Hüllermeier. "Conformalized Credal Set Predictors". In: CoRR (2024).

