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Setting

Supervised classification with

instance space X and label space Y .

Training data

D = {(xi , yi)}Ni=1 ∈ (X × Y)N.

Hypothesis space

H = {h : X → P(Y)}.
Given an instance x , we denote h(x) = θ.

Types of Uncertainty [1]

Aleatoric Uncertainty

Refers to the variability of the outcome due

to the inherent randomness of the data and

is therefore irreducible.

Epistemic Uncertainty

Refers to uncertainty caused by a lack of

knowledge (epistemic state of the learner)

and is reducible by adding information.

Uncertainty Representation

A credal set C is a (closed and convex) set

of probability distributions on Y .

TU(C ) = AU(C ) + EU(C ).

Various decompositions exist, i.a. based on

GH(C ) ..=
∑
A⊆Y

mQ(A) log(|A|)

gen. Hartley [2] and Shannon entropy S .

S∗(C )︸ ︷︷ ︸
TU

=
(
S∗(C )− GH(C )

)︸ ︷︷ ︸
AU

+GH(C )︸ ︷︷ ︸
EU

,

S∗(C )︸ ︷︷ ︸
TU

= S∗(C )︸ ︷︷ ︸
AU

+
(
S∗(C )− S∗(C )

)︸ ︷︷ ︸
EU

,

where

S∗(C ) ..= max
θ∈C

S(θ) , S∗(C ) ..= min
θ∈C

S(θ).

A credal approach

Learning Credal Predictors

Relative likelihood given training data D

LH(h) :=
L(h)

L(ĥ)
,

where L(h) =
∏N

i=1 p(yi | h, x) and ĥ the

(empirical) maximum likelihood predictor.

Given x ∈ X and Q ⊆ H (plausible

hypotheses, i.e. ensemble members):

Cα := {h(x) ∈ Q | LH(h) ≥ α} ,

with α ∈ [0, 1].

Uncertainty Quantification

Epistemic uncertainty

EU(C ) := max
θ,θ′∈C

Dℓ(θ,θ
′) ,

with the ℓ-divergence

Dℓ(θ,θ
′) := EY∼θ {ℓ(θ′,Y )− ℓ(θ,Y )} ,

the excess loss of predicting θ′, while the

ground truth is θ.

Aleatoric uncertainty

AU(C ) := min
θ∈C

Hℓ(θ) ,

AU(C ) := max
θ∈C

Hℓ(θ) ,

with Hℓ the ℓ-entropy of θ given by

Hℓ(θ) := EY∼θ ℓ(θ,Y ) ,

the irreducible loss of ground truth θ.

Here, ℓ can be any loss. We consider

(strictly) proper scoring rules [3].

Loss Aleatoric (upper\lower) Epistemic

log sup
θ∈C

\ inf
θ∈C

S(θ) max
θ,θ′∈C

DKL(θ
′ ||θ)

Brier sup
θ∈C

\ inf
θ∈C

1−
∑K

k=1 θ
2
k max

θ,θ′∈C

∑K
k=1(θk − θ′k)

2

spherical sup
θ∈C

\ inf
θ∈C

1− ||θ||2 max
θ,θ′∈C

||θ′||2 −
∑K

k=1 θkθ
′
k/||θ′||2

zero-one sup
θ∈C

\ inf
θ∈C

1−max θk max
θ,θ′∈C

max θ′k − θ′k=argmax θk

Different losses account for different

uncertainties [4].

Left: decision uncertainty. Right: no

decision uncertainty.

Results

Accuracy-Rejection Curves

Ensemble of 5 pre-trained ResNets

fine-tuned on Food101. Upper aleatoric

uncertainty is used as rejection criterion.
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Out-of-Distribution Detection

Ensemble of 5 LeNets for FMNIST and 5

ResNets for Food101. OoD using epistemic

uncertainty.

iD OoD log Brier spherical zero-one Hartley entropy

FMNIST
MNIST 0.871±0.017 0.812±0.019 0.818±0.019 0.742±0.015 0.815±0.019 0.826±0.019

KMNIST 0.973±0.002 0.94±0.004 0.946±0.003 0.863±0.006 0.944±0.004 0.942±0.003

Food101
SVHN 0.700±0.04 0.572±0.027 0.588±0.038 0.669±0.007 0.479±0.023 0.681±0.07

CIFAR-100 0.805±0.015 0.66±0.016 0.681±0.016 0.697±0.008 0.576±0.022 0.775±0.021

Active Learning

Ensemble of 10 small MLPs. Initial training

pool is 50 instances. Every round 50 new

instances are acquired based on their

epistemic uncertainty.
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Future Work

• Can we offer guarantees on the credal

set [5]?

• How does relaxing the convexity

assumption affect the theoretical and

empirical results?

[1] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods”.

In: Machine Learning 110.3 (2021).
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