
Motivation: Feature Explanations

Shapley-based Interaction Indices

Contribution

Approximation Algorithm: SVARM-IQ

Novel approximation algorithm for all Shapley-based Interactions:

▪ Powerful combination of stratified representation + update mechanism

▪ Applicable to all orders (pairs, triples, etc.) and indices (SII, STI, etc.) simultaneously

▪ Novel theoretical guarantees & state-of-the-art empirical performance

Interactions enrich Shapley-based feature explanations:

Shapley Feature Attribution

Additively decomposes prediction f(x) on a 

data point among the features

Cooperative game:

→ Features, datapoints, neurons, base learners etc. 

→ Predicted value, generalization performance

▪ Unique solution to fulfill desirable axioms: Symmetry, Additivity, Null-Property, Efficiency

▪ Computational effort scales exponentially with n : 2𝑛 coalitions in total 

Double Stratification of 𝑰𝑲 into 𝑰𝑲,ℓ and 𝑰𝑲,ℓ𝑾    for fixed k

Sampling Coalitions and Udapting all Estimates

▪ Calculate all border strata exactly with coalitions of size 0,… , 𝑏, 𝑛 − 𝑏,… , 𝑛
 

▪ Perform warmup on inner strata 𝑏 + 1,… 𝑛 − 𝑏 − 1 to initialize all estimates

▪ Repeat with remaining budget ෨𝐵:

• Draw coalition size 𝑠 ∈ 𝑏 + 1,… , 𝑛 − 𝑏 − 1 ~ ෨𝑃 𝑠  
  

• Draw coalition 𝐴 of size 𝑠 uniformly at random and evaluate 𝜈(𝐴)
• For all 𝐾:  Update  ෠𝑰𝑲,ℓ𝑾 with 𝑊 = 𝐴 ∩ 𝐾 and ℓ = 𝐴 − |𝑊|

✓ Model-agnostic / domain-independent

→ Applicable to any model and data, and even outside of explainability and ML

✓ No hyperpameters                              → No fine-tuning

✓ Estimates available at any time        → Budget can be cut and extended arbitrarily

Fixed-budget approximation problem:

▪ Given cooperative game 𝑁, 𝜈 with unknown Interaction scores 𝐼𝐾 for all 𝐾 ⊆ 𝑁 of order 𝑘
▪ Budget 𝐵 : Allowed number of evaluations of 𝜈 (bottleneck due to model access)

      Model evaluations (inference, retraining) pose bottleneck on runtime rather than arithmetic operations

▪ Minimize mean squared error (MSE) averaged over all estimates መ𝐼𝐾  :

▪ Partition powerset into

 2𝑘 𝑛𝑘 (𝑛 − 𝑘 + 1) strata

▪ Coalitions are grouped by size ℓ + |𝑊| 
and intersection 𝑊 = 𝐴 ∩ 𝐾 

▪ Strata are more homogeneous                                       

than base population

▪ Enables enhanced update mechanism

▪ Maintain estimates መ𝐼𝐾,ℓ𝑊

Pairwise Feature Interaction

Quantifies the synergy effect on f(x) 

of two features being present

The weights 𝜆𝑘,|𝑆| define the specific Interaction Index:

▪ Shapley Interaction Index (SII):

▪ Shapley-Taylor Interaction Index (STI):

And many more:

▪ Faithful-Shapley Interaction Index 

(FSI)

▪ Banzhaf Interaction Index (BII)

Example for 𝐾 = {𝑖, 𝑗}

Ground Truth

Comparison of Approximated Interaction Scores

SVARM-IQ Permutation Sampling

(Tsai et al.2023)

▪ Players: 16 grid patches of an ImageNet picture

▪ Value function: Predicted class probability of a Vision Transformer for class predicted with full image

▪ Approximators are run with a budget of 5000 samples (7.6% of 65,536 required model evaluations for exact calculation)

Approximation Quality Depending on Budget (for Language Model)

Approximation Quality Depending on Budget (for Vision Transformer)

▪ Pretrained sentiment analysis

model DistilBert

▪ Sentences of 14 words length

▪ Features (words) are removed                                           

on token level

▪ Value function: Model’s 
sentiment rating in [-1,1]

Setup for local explanations:

▪ Vision transformer model

operating on image patches

▪ ImageNet pictures sliced

into 4x4 grid of 16 patches

▪ Features (patches) are removed                                     

by turning them off

▪ Value function: Predicted class 

probability for class predicted                        

with full image

Setup for local explanations:
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