Approximating the Shapley Value without Marginal Contributions
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Feature explanations quantify each feature’s contribution to a numerical effect:

We propose a novel approximation algorithm for the Shapley value with:

= New combination of stratified representation + update mechanism

= Novel strong theoretical guarantees

= State-of-the-art empirical performance
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Local: Feature Attribution Global: Feature Importance

Quantifies contribution to the model’s
generalization performance.

Quantifies contribution to the prediction
value of a specified data point.

= Desirable properties:

v" Model-agnostic / domain-independent
- Applicable for data valuation, neuron importance, etc. and even outside of ML

v" No hyperpameters
v' Estimates available at any time

v" Uncertainty-aware

-> No fine-tuning
-> Budget can be cut and extended arbitrarily

-> Allows construction of confidence intervals

Shapley Value

Approximation Algorithm

B Player set N ={1,...,n} -> Features, datapoints, neurons, base learners etc.

B Value function v:PN)—R
with v(0) =0

-> Predicted value, generalization performance

Definition: Shapley Value (Shapley, 1953)

N

sy Ms] =

b= Y ﬁ-@(s (i) — v(S)]

Marginal contribution A;(S): Increase in collective benefit when / joins S.

= Unique solution to fulfill desirable axioms: Efficiency, Symmetry, Additivity, Null-Property

= Computational effort scales exponentially with n : 2™ coalitions in total

Stratified Representation

Fixed-budget approximation problem:

= Given cooperative game (N, v) with unknown Shapley values ¢4, ..., ¢,

= Budget T : Allowed number of evaluations of v (bottleneck due to model access)
Model evaluations (inference, retraining) pose bottleneck on runtime rather than arithmetic operations

= Minimize mean squared error (MSE) averaged over all players for estimates (]31, e an :
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= Partitions the marbles
into n many strata

= Strata are grouped by size

= More homogeneous
than base population

= Enables enhanced
update mechanism

= Maintain estimates ¢/, , P,
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Approximation by sampling marginal contributions:
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=  Weights form a well-defined probability distribution:

scangy 7S]
-> The Shapley value is the expected marginal contribution: ¢i = E[Ai(S)]
= QObtain $i by sampling marginal contributions according to weights
=  One separate approximation problem for each player

Problem: Notion of marginal contributions is inefficient!

One update of ¢; with A;(S) = v(S U {i}) — v(S) costs 2 budget tokens S C N\ {i}

Stratified Shapley Value Approximation without Requesting Marginals (Stratified SVARM)

= (Calculate all strata exactly with coalitions of size 0,1, ..., n — 1,n
=  Perform warmup to initialize all estimates: W € O(nlogn)

= Repeat with remainingbudget T =T — W

« Draw coalitionsize s € {2, ...,n — 2} ~ P(s)

* Draw coalition of size s uniformly at random and evaluate v(4)

* Update ¢/, ;foralli€e A + Update ¢;foralli ¢ A ACN~P

Theorem 6. & Corollary 2. Variance and MSE

The variance and MSE of any estimate qAb,- returned by
Stratified SVARM is bounded by

. : 2 : _2
with stratum variances U?,Le = V[v(AU{i})] and Oy = V(r(A)]
for AC N\ {i} with |A| = £ drawn uv.a.r.

Theorem 5. Unbiasedness

The estimate ¢; of any i € N returned by Stratified SVARM
is unbiased, i.e., E [qﬁ,} =¢;VieN.

Theorem 7. PAC bound
For any estimate QBf returned by Stratified SVARM and € > 0 holds
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Empirical Evaluation

Wine global feature imp01tance n =13, 100 repetitions
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Global explanation task on real-world data: Divide prediction accuracy among features
= Players: 13 tabular features used for classifying origin of wine by random forest
=  Feature removal: Retrain model on training data with only present coalitions
=  Value function: Classification accuracy of random forest measured on test data
ImageNet: n = 14, 100 repetitions NLP sentiment analysis: n = 14, 100 repetitions
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Local explanation tasks on real-world data: Divide predicted class probability among features
» Players: 14 semantic tiles (ImageNet), 14 tokenized words (NLP sentiment analysis)
= Pretrained model h predicts probability distribution over class labels
= Feature removal: Impute value by mean (numeric feature) or mode (categorical feature)
* Predicted class probability of label ¢ using feature subset S : hg(c)
» Predicted class label with full feature set: c*
= Value function: v(S) = hg(c*) — hy(c")
Airport game: n = 100, 100 repetitions
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Synthetic airport game: Divide runway maintenance costs among airplanes
= Players: 100 airplanes of different size = |nfeasible naive exact calculation
= Each airplane has its own size ¢; = Structure elicits closed-form polynomial solution
= Size of biggest airplane determines costs (but unknown to approximation algorithm)
= Value function: v(S) = masx c; = High degree of non-additivity
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