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A PROOF OF THEOREM 1

We first prove an intermediate result.

Proposition 1. For any class space Y and valid hierarchy
T we have that:
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Proof. Let i,j with R(;) =+ Rgﬁ) and assume that R(;) N
R%]—) £(.ForY € ’R(f-) N Rg]-), we know that:
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and, hence, is only possible when ¢ = j, which contradicts
with the beginning of this proof. O

In order to prove Theorem 1, we need to show that the
following conditions are met:
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The first condition is met due to Proposition [I] To show
that the second condition is met, we need to prove that

Y € Uieie—yy Rg? — Y ePQ)AY € P(Y) =

Y € UiE[K_l] Rgl-). We start by proving the first part,
which follows trivially from the definition of a represen-
tation complexity class, as each set that belongs to a given
representation complexity class must be element of P(}).
To prove the second part, it suffices to show that VY €
P(Y) : S7(Y) # 0, or in other words, for each element ¥
in P(Y) there exists at least one V C V7 such that:
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Note that each element Y € P()) can be represented by
either a node in the hierarchy, the union of sets of leaf nodes
in the hierarchy 7

Y= J{ad,
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or by a union of internal and/or leaf nodes. From this, it
follows that S-(Y) # @ and Ry (V) = ming gy V| =
1, where ¢ is lower bounded by one and upper bounded
by \Y| Therefore, given the above, it follows that VY €
P(V),Jie[K-1]:Y ¢ R%Z-) which proves the second
and last part of this proof.

B EXPERIMENTAL SETUP

We use a MobileNetV2 convolutional neural network [San{
dler et al.,2018], pretrained on ImageNet [Deng et al.,[2009],
to obtain hidden representations for all image datasets. For
the bacteria dataset, tf-idf representations are obtained by
means of extracting 3-, 4- and 5-grams from the 16S rRNA
sequences that were provided in the dataset [Fiannaca et al.,
2018|). For the proteins dataset, tf-idf representations are ob-
tained by considering 3-grams only. Furthermore, to comply
with literature, the tf-idf representations are concatenated
with functional domain encodings, which contain distinct
functional and evolutional information about the protein
sequence [Li et al.| 2018]]. Next, the obtained feature repre-
sentations for the biological datasets are then passed through
a single-layer neural net with 1000 output neurons and a
ReLU activation function. We use the categorical cross-
entropy loss by means of stochastic gradient descent with
momentum, where the learning rate and momentum are set
to le — 5 and 0.99, respectively. For the models without
hierarchical factorization, we set the number of epochs to
2 and 20, for the Caltech and other datasets, respectively.
For the models with hierarchical factorization, we use 4
and 30, respectively. We train all models end-to-end on a
GPU, by using the PyTorch library [Paszke et al., 2017]] and
infrastructure with the following specifications:
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¢ CPU: i7-6800K 3.4 GHz (3.8 GHz Turbo Boost) — 6
cores / 12 threads,

e GPU: 2x Nvidia GTX 1080 Ti 11GB + 1x Nvidia Tesla
K40c 11GB,

* RAM: 64GB DDR4-2666.

Finally, we implemented the RTS and TOP-k algorithms in
C++ by using the PyTorch C++ API [Paszke et al., 2017].
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