
Pu
blication

D
O

I

Learning Context-Dependent Choice Functions
Preprint, compiled October 22, 2021

Karlson Pfannschmidt ID 1∗, Pritha Gupta ID 1†, Björn Haddenhorst ID 1‡, and Eyke Hüllermeier ID 2§

1Paderborn University, Warburger Straße 100, Paderborn, Germany
2LMU Munich, Akademiestr. 7, Munich, Germany

Abstract

Choice functions accept a set of alternatives as input and produce a preferred subset of these al-
ternatives as output. We study the problem of learning such functions under conditions of context-
dependence of preferences, which means that the preference in favor of a certain choice alternative
may depend on what other options are also available. In spite of its practical relevance, this kind
of context-dependence has received little attention in preference learning so far. We propose a
suitable model based on context-dependent (latent) utility functions, thereby reducing the problem
to the task of learning such utility functions. Practically, this comes with a number of challenges.
For example, the set of alternatives provided as input to a choice function can be of any size, and
the output of the function should not depend on the order in which the alternatives are presented.
To meet these requirements, we propose two general approaches based on two representations of
context-dependent utility functions, as well as instantiations in the form of appropriate end-to-end
trainable neural network architectures. Moreover, to demonstrate the performance of both networks,
we present extensive empirical evaluations on both synthetic and real-world datasets.

Keywords preference learning · choice functions · context-dependence · neural networks

1 Introduction

The notion of preference plays a central role in various scientific disciplines, such as economics, psychology, and
more recently also computer science and artificial intelligence [19]. In these fields, mathematical formalisms have
been developed for modelling and reasoning about preferences, and for analyzing data that originates from observed or
revealed preferences. In this regard, choice observations are of specific interest, in which a subset of “good” alternatives
is selected from a set of available candidates. In particular, starting with the seminal work by Arrow [6], choice functions
have been analyzed as a key concept of a formal theory of choice and preference. The study of pairwise preferences
even goes back to work by Fechner [36], who considered the varying perception of different stimuli.

In machine learning, preferences are at the core of preference learning, which has received increasing attention in
recent years [40]. Roughly speaking, the goal in preference learning is to learn (predictive) preference models from
preference data. Somewhat surprisingly, and in spite of a close connection between ranking and choice, the problem of
learning subset choice functions has received very little attention so far, with only a few notable exceptions [10, 109].
In this paper, we therefore address the problem of learning choice functions, which express preferences in terms of
subsets (or equivalently, bipartitions) of Q. From a machine learning point of view, the problem of learning choice
functions comes with a number of challenges. For example, while algorithms for supervised learning normally assume
inputs in the form of feature vectors of fixed length, the inputs in our setting are neither vectors nor of fixed size.
Instead, a choice function is supposed to accept inputs in the form of sets Q of any size, and to return a subset (choice)
of the elements as output. In case a set Q is represented by an ordered list of its elements, a choice function thus has to
be invariant with respect to permutations of its input.

Not less interestingly, and in fact the key motivation of this paper, choice functions could be context-dependent, in the
sense that the preference in favor of an alternative may depend on what other options are available. Context-dependence
of this kind has been observed, for example, in marketing studies [26, 13], and has been investigated systematically

∗kiudee@mail.upb.de
†prithag@mail.upb.de
‡bjoernha@mail.upb.de
§eyke@ifi.lmu.de

ar
X

iv
:1

90
1.

10
86

0v
4

 [
cs

.L
G

]
 2

0
O

ct
 2

02
1

https://doi.org/10.1016/j.ijar.2021.10.002
https://orcid.org/0000-0001-9407-7903
https://orcid.org/0000-0002-7277-4633
https://orcid.org/0000-0002-4023-6646
https://orcid.org/0000-0002-9944-4108

Learning Context-Dependent Choice Functions 2

ality

Pr
ic
e

B
A

C

(a) Compromise

ality

Pr
ic
e

B

A

C

(b) Attraction

ality

Pr
ic
e B

A

C

(c) Similarity

Figure 1: Context effects identified in the literature [94].

in fields like economics and psychology. More specifically, three major context effects have been identified in the
literature, the compromise effect [103], the attraction effect [52], and the similarity effect [113]:

• The compromise effect states that the relative utility of an object increases by adding an extreme option
that makes it a compromise in the set of alternatives [94]. For instance, consider the set of objects {A, B} in
Figure 1a. The ordering of these objects depends on how much the consumer is weighing the quality of the
product in relation to its price. If price is the main constraint, then the preference order will be A � B. But as
soon as another extreme option C becomes available, object B may be considered more favorable, because it
represents a compromise between the three alternatives. Thus, the preference relation between A and B might
get inverted and turned into B � A.

• Figure 1b illustrates the attraction effect. Here, if we add another object C to the set of objects {A, B}, where
C is slightly dominated by B, the relative utility share for object B increases with respect to A. The major
psychological reason is that consumers have a strong preference for dominating products [52]. Thus, the
preference relation between A and B may again be influenced.

• The similarity or substitution effect is another phenomenon, according to which the presence of similar objects
tends to reduce the overall probability of an object to be chosen, as it will divide the loyalty of potential
consumers [52]. In Figure 1c, B and C are two similar objects. Consumers who prefer high quality will be
divided amongst the two objects, resulting in a decrease of the relative utility share of object B. Again, this
may lead to turning a preference B � A into A � B, at least on an aggregate (population) level, if preferences
are defined on the basis of choice probabilities.

Context-dependence as explained above has received only limited consideration in the machine learning literature until
recently [22, 85, 10, 101, 95, 15, 63].

Additionally, the context effects discussed so far focus on effects that have been observed for humans, but ignore that
the space of (subset) choice functions and thus the number of possible applications is much larger. Many algorithmic
problems can be framed as a choice problem, e. g., in the Knapsack problem one is tasked in choosing a set of maximal
utility while obeying capacity constraints. Computing the medoid of a set of points (i. e., the point with minimal distance
to each other point) is a singleton choice problem. It is clear that these problems cannot be solved by considering each
choice alternative individually, but the complete choice context needs to be incorporated. In practice, there are many
abstract choice problems similar to these, e. g., portfolio selection [72], algorithm selection [91, 14] and team selection
[119] just to name a few. All these problems have in common, that the context-dependence naturally arises because the
output depends jointly on all objects in the set and not because a decision maker behaves rationally or irrationally.

Motivated by its practical relevance, we formalize the problem of learning context-dependent choice functions. To this
end, we provide a formal definition of such functions and propose a data-generating process consisting of two stages:
First, choice alternatives are scored in terms of latent utility degrees, and then, a choice set is determined on the basis
of these scores (Section 3). Based on this model, we propose two representations of the latent (context-dependent)
utility, called First Evaluate Then Aggregate (FETA) and First Aggregate Then Evaluate (FATE), which have appealing
properties from a learning point of view (Section 4), as well as realizations of these models in terms of neural network
architectures (Section 5). Thanks to these architectures, called FETA-Net and FATE-Net [85], we are able to learn
subset choices on sets of objects in an end-to-end trainable manner. To demonstrate the performance of both networks,
we present extensive empirical evaluations on both synthetic and real-world choice datasets (Section 6). Additional
information and supplementary material is provided in an appendix, to which we will refer occasionally.

Learning Context-Dependent Choice Functions 3

2 Related Literature

The problem of how to model preferences in general has been extensively studied from different viewpoints in the past.
From an axiomatic/normative perspective, one posits which properties have to hold for preferences to be considered
“rational,” and studies consequences of these properties. Luce’s choice axiom was introduced in 1959 by Luce and
requires that the preference between two items does not depend on the presence or absence of any other choice
alternative, a property commonly referred to as independence of irrelevant alternatives (IIA). The set of objects from
which a particular preference is observed is also called the context [77, 20, 94], and thus preferences obeying IIA are
also called context-independent [60]. In the same year, Debreu [27, pp. 56f] proved the ordinal representation theorem,
which shows that preferences can be represented by a continuous utility function, if certain conditions including
transitivity are assumed to hold. A related line of research was concerned with the concept of revealed preferences, for
which most axioms can be reduced to some notion of transitivity [98, 50, 100].

On the other side of the spectrum, observational studies in economics and psychology were more concerned with how
humans actually behave, and studied how the observed behavior deviates from IIA [114, 113, 51, 52, 103, 82, 104, 102,
115, 30, 83, 99]. It consistently was observed that choice behavior depended on the specific collection of alternatives
available, the context of the choice. Rooderkerk, Van Heerde, and Bijmolt [94] and Rieskamp, Busemeyer, and Mellers
[92] provide an extensive overview of the different context effects which were identified over the years and which
we already showcased in the introduction. This motivated researchers to come up with methods able to model these
violations. Classical random utility models (RUMs), like the multinomial logit (MNL) model, are not able to take these
effects into account. Therefore, extensions of RUMs were proposed, which are able to capture the compromise and
attraction effect [115, 61, 80], the similarity effect [113, 56] or all of the above [94]. One important line of research
focuses on the assumption that the decision maker chooses based on multiple utility functions (so called “multiple
selfs”, or “multi-self” for short), which are suitably aggregated. This setting has been studied in economics [73, 55,
61, 39, 71, 45] and psychology [113, 102, 115]. Continuing this line of research, Ambrus and Rozen [5] show that
by utilizing a collection of context-independent utility functions, combined with a suitable aggregation, one is able to
model arbitrary choice functions. That is, choice behavior across multiple sets can be modelled even though it might
violate context-independence.

While traditional research on preferences, as discussed above, is mostly of a normative, prescriptive or descriptive
nature, the advent of machine learning triggered a shift towards “predictive” models. Rosenfeld, Oshiba, and Singer
[95] build on ideas of the multi-self literature and propose to learn set-dependent weights and embeddings, which are
then linearly combined to arrive at an aggregated score for each object. Benson, Kumar, and Tomkins [10] consider the
problem of learning preferences in the form of subsets of objects. To this end, they extend the classical multinomial
logit model to account for violations of context-independence. Higher-order interactions between objects are added
specifically for those subsets that cause a violation. The set of objects for which choices or choice sets are observed is
assumed to be fixed. Therefore, the approach cannot be used for arbitrary task sets, where it can happen that an object
is only observed once. Our approach to decompose a context-dependent utility function into an aggregation across
smaller sub-contexts has been a recent, promising direction in studying choices [85, 101], and will be the focus of this
paper.

Decomposition approaches have also been employed in the related field of “learning to rank”. Ai et al. [2] employ a
context-independent model to pre-sort the objects, while a recurrent neural network is used in a subsequent step to fine-
tune the ranking. The FATE approach, introduced in the context of choice by Pfannschmidt, Gupta, and Hüllermeier
[85], obviates the need to pre-sort the objects, by directly embedding each object to produce a representation for each
set of objects (aggregation), which is then used as the context to produce the final ranking (evaluation). The authors
also introduce an algorithm where this order is swapped, called FETA, in which each object is scored in the context
of another object first, and only then the scores are aggregated to produce a final ranking. Ai et al. [3] later consider a
similar decomposition, where higher order interactions are approximated by employing sampling.

3 A ProbabilisticModel of Choice

We start by establishing the necessary notation (refer to Appendix A for an overview). Throughout this paper, JAK is
defined to be 1 if A is a true statement, and 0 otherwise. We will denote by X ⊂ Rd a set of reference objects serving
as choice alternatives, which, for simplicity, we assume to be finite (albeit of arbitrary size), if not explicitly stated
otherwise. An object or item x ∈ X is represented by a vector of features x = (x1, . . . , xd) ∈ X. A non-empty subset Q
of 2X \ {∅} is called a choice task space if ∅ < Q , ∅ and any Q ∈ Q is called a choice task. A choice for Q ∈ Q is a
non-empty subset of Q and the set C B

⋃
Q∈Q 2Q \ {∅} of choices for any Q ∈ Q is called the choice space.

Learning Context-Dependent Choice Functions 4

choice set C

latent utilities

choice task Q

objects �

xi xkxj xl

ui ukuj ul

xj xl

Stage 1

Stage 2

Figure 2: Overview of the data-generating process: First, a task Q is produced (with probability p(Q)) by sampling
from X. The objects in Q are assigned latent utility degrees, and the choice set is finally constructed on the basis of
these scores.

We say that a function c : Q −→ C is a (subset) choice function (for Q) if c(Q) ⊆ Q is fulfilled for any Q ∈ Q, and in
case |c(Q)| = 1 holds for any Q ∈ Q, c is called a singleton choice function (for Q). A typical example for a real-world
singleton choice function is when a user enters a query in a search engine and receives a list of results (Q) of which
they pick one and click on. Subset choice functions usually occur, when a diverse set of objects is sought, e. g., a search
engine decides on a set of the most relevant, but diverse, results to display to the user.

As common in machine learning, the input-output dependency of interest, in our case between tasks and choices, is
not assumed to be deterministic. Instead, we assume a probabilistic dependence, which is captured by a (conditional)
probability distribution p(· | Q) on the non-empty subsets of Q for every Q ∈ Q. Here, p(C | Q) is interpreted as the
probability to observe the choice C given the task Q. For the sake of convenience, we suppose w.l.o.g. p(· | Q) to be
extended to C via p(C | Q) B 0 for any C ∈ C \ 2Q. Moreover, we write for short p(x | Q) for p({x} | Q). In case
p(Q) is the latent probability that Q ∈ Q is given as task, the whole data-generating process is modelled by the joint
distribution

p(Q,C) B p(Q) · p(C | Q) (1)

on Q × C.

We call the choice probabilities context-independent if

p(C | Q)
p(C′ | Q)

=
p(C | Q′)
p(C′ | Q′)

is fulfilled for every Q,Q′ ∈ Q and any C,C′ ∈ C with C,C′ ⊆ Q ∩ Q′. Conversely, we say that a system of choice
distributions is context-dependent, if this equality is violated on at least one pair of Q,Q′ ∈ Q. This definition extends
in a straight-forward and consistent way the notion of independence of irrelevant alternatives (IIA) introduced by
Arrow [6], which was originally only defined for the case of singleton choice, in which C consists of elements of size
one only. We choose to use the more general term of context-(in)dependence, for the simple reason that the notion
of “irrelevant” alternatives is rather tailored to the analysis of human choices but less meaningful in our more general
setting of arbitrary choice functions.

As an example, consider the knapsack problem, where the goal is to select a set of objects which maximize a certain
utility, while obeying capacity constraints. It is clear that the decision on which object to include in the choice set needs
to incorporate the complete choice task context, and that one is not able to ascertain the relative choice probability
of two alternatives while ignoring all others. As already explained in the introduction, context-independence is often
violated in practice. This motivates the development of context-dependent learning methods.

Utility-Based Choices We propose to model choices as the result of a two-stage process (cf. Figure 2 for an
overview), grounding them on the notion of utility: In the first stage, each object in a given task Q ∈ Q is assigned a
real-valued utility score. Then in the second stage, choices are generated based on these scores.

Utility theory has a long history in economics [120, 25, 73]. Originally introduced as a way to measure the satisfaction
achieved by a certain alternative [11], it is nowadays common in decision theory to consider utility more as an abstract
value that ought to be maximized by any rational decision maker [120, 96]. This is formalized by means of a generalized

Learning Context-Dependent Choice Functions 5

utility function (for Q)
U : {(x,Q) : x ∈ Q ∈ Q} −→ R, (x,Q) 7→ U(x,Q), (2)

which allows for modelling the utility of an object as a function of both, properties of the object itself as well as
properties of other choice alternatives in Q, which constitute the context in which x is considered: U(x,Q) expresses a
degree of utility of x in the context Q, i. e., given the availability of other choice alternatives x′ ∈ Q \ {x}. The score
U(x,Q) is supposed to capture an abstract notion of utility, which in turn reflects the propensity of x to be chosen in
any task Q.

We call a utility function context-independent in case U(x,Q) = U(x,Q′) holds for any Q,Q′ ∈ Q with x ∈ Q ∩ Q′
and context-dependent otherwise. Via abbreviating U(x) B U(x,Q) for some arbitrary Q ∈ Q with x ∈ Q, any
context-independent utility function may be thought of as a function U : X −→ R.

Moving on to the second stage, based on a utility function U, one may define in a deterministic manner for Q ∈ Q the
corresponding singleton choice as

Csingleton(U,Q) B arg max
x∈Q

U(x,Q) (3)

and for t ∈ R the subset choice (with threshold t) as

Ct
subset(U,Q) B {x ∈ Q : U(x,Q) ≥ t}. (4)

Clearly, Csingleton(U, ·) and Ct
subset(U, ·) are in fact choice functions and in case x 7→ U(x,Q) is injective (i. e., there are

no ties), for any Q ∈ Q, the former one is a singleton choice function. There is an interesting connection to social
choice theory, where a social choice rule is employed to select an outcome out of a set of possible outcomes in order to
maximize some notion of utility for a population of individuals with possibly varying utility functions. The injectivity
of such a social choice rule is called resoluteness and it is an important property considered in social choice theory,
where it also plays a role in several impossibility results [59, 81]. The singleton choice is a special case of the more
general top-k choice, where the goal is to select the k best objects. It differs from subset choice in so far that the size of
the choice sets is always fixed, whereas in subset choice it can vary. The top-k choice setting has strong connections to
the ranking setting, which we will discuss below.

Further note that using thresholding to convert a set of scores into a partition is a standard approach in multi-label
classification [64] and multi-criteria sorting [4].

In the probabilistic setting, the utility function U may serve to model probabilistic choices p(· | Q), Q ∈ Q, on C by
using the utility scores as the corresponding parameters of the distributions. Certainly, there are various ways in which
this idea could be realized:

Singleton choice In the case of singleton choice, a natural assumption is the multinomial logit (MNL) model, in which
for any Q ∈ Q and x ∈ Q,

pMNL(x | Q) B
exp (U(x,Q))∑

x′∈Q exp(U(x′,Q))
. (5)

and p(C | Q) = 0 for any C ∈ 2Q of size ≥ 2 [12, 46, 24, 70, 108]. Note here that these choice probabilities
are context-independent, if U is context-independent. An important special case is the Bradley-Terry-Luce
model [16], which only considers pairwise comparisons (i. e., |Q| = 2 for all Q ∈ Q).

Subset choice For the choice of arbitrary subsets (not limited to singleton sets), a simple model is obtained by treating
the inclusion or exclusion of each object x in a task Q as independent given the utilities. This results in the
distributions p(· | Q) given by

p(C | Q) B γ(U,Q)
∏
x∈Q

exp(Jx ∈ CKU(x,Q))
1 + exp(U(x,Q))

(6)

for any non-empty C ∈ 2Q and Q ∈ Q, where γ(U,Q) is a constant such that
∑

C∈2Q\{∅} p(C | Q) = 1 holds. If
U is context-independent, the quantity

p(C | Q)
p(C′ | Q)

=
∏
x∈Q

exp(Jx ∈ CKU(x))
exp(Jx ∈ C′KU(x))

=
∏

x∈C∪C′

exp(Jx ∈ CKU(x))
exp(Jx ∈ C′KU(x))

does not depend on Q, and thus the choice probabilities p(C | Q) are context-independent as well.

Choices based on rankings Yet another type of model is obtained by assuming that, based on the latent utilities
U(x,Q), x ∈ Q, a ranking π on Q is sampled first and then turned into a choice set via a (possibly probabilistic)

Learning Context-Dependent Choice Functions 6

procedure g : π 7→ g(π) ∈ 2Q afterwards. The probability p(C | Q) is then simply the probability that this
procedure results in the output C, i. e.,

p(C | Q) B
∑

π
p(π) p(g(π) = C) , (7)

where the sum is taken over all possible rankings π over Q. An approach of that kind might be appealing,
because probability distributions on rankings have been studied quite thoroughly in the literature. Important
families of ranking distributions include distance-based ranking models [37], of which the Mallows model
[69] is a popular instance, and multistage ranking models [38], most prominently represented by the Plackett-
Luce distribution [86]. An important special case for g is top-k choice, where the first k objects are chosen
deterministically (i. e., g(π) = {π−1(1), . . . , π−1(k)} ⊆ Q holds with probability 1 for any ranking π : Q −→ N).
This can be generalized, for example, by assuming that the size k is not fixed but random. An even more
general model has recently been proposed by Fahandar, Hüllermeier, and Couso [34], where choices are not
necessarily restricted to top-k sets.

In this paper, we are mainly interested in tackling the problem of learning context-dependent choice functions from
training data. The performance of a particular hypothesis, i. e., a choice function c : Q −→ C, is measured by an
appropriate loss function (see Section 4). In Section 6.2 we go into more detail on how to derive suitable loss functions
from (5) and (6). After having introduced suitable models for utility-based choices, we now turn to the problem of
representing context-dependent choice functions.

4 Learning Context-Dependent Choice Functions

Our main interest in this paper is to tackle choice from a machine learning perspective. More specifically, we seek to
induce a predictive choice function c : Q −→ C from training dataD = {(Qi,Ci)}Ni=1 ⊂ Q × C in the form of exemplary
tasks Qi together with observed choices Ci ∈ 2Qi . The performance of such a function is measured in terms of its
expected loss (risk)

R(c) B
∫
Q×C

L(C, c(Q)) dp(Q,C) ,

where L : C × C −→ R is a loss function (cf. Section 6.2 for an overview of the loss functions we consider), and p
the probability measure associated with the distribution (1), i. e., the underlying data-generating process modelling the
probability of observing tasks Q together with choices C. The Bayes predictor c∗ assigns each task Q the respective
loss minimizer

c∗ : Q 7→ arg min
Ĉ∈C

∫
C

L(C, Ĉ) dp(C | Q) .

Since p(Q,C) is usually unknown, one therefore opts to minimize the empirical risk

Remp(c) B
1
N

N∑
i=1

L(Ci, c(Qi)) (8)

on the given dataD instead.

Assuming the data to be generated according to one of (3)–(7) (known to the learner) and by means of an (unknown)
latent utility function (2), this loss minimization problem essentially comes down to learning the generalized utility
function (2). This function, while allowing one to model context-dependence, causes several practical problems, mainly
because its second argument, Q, is a set of variable size.

Many machine learning models such as neural networks or support vector machines require data to be given in the
form of a feature vector x ∈ Rm. Hence, in order to apply such a model for learning a utility function U : {(x,Q) : x ∈
Q ∈ Q} −→ R, we have to fix an injective feature transformation Ψ : Q −→ Rm.

We choose to represent Q = {y1, . . . , yk} ∈ Q ⊂ Rd by the vector (y1, . . . , yk) ∈ Rkd. Of course, this does only define a
valid transformation Ψ in case |Q| is the same for each Q ∈ Q. Assuming this to be the case, we may consider a utility
function U : {(x,Q) : x ∈ Q ∈ Q} −→ R as a function R(k+1)d −→ R. Noticing that Q = {xσ(i) : i ∈ [k]} holds for any
bijection σ : [k] −→ [k], this function should necessarily be permutation-invariant or symmetric in the sense that

U(x, (x1, . . . , xk)) = U(x, (xσ(1), . . . , xσ(k))) (9)

for each permutation σ on [k] [106].

The utility choice models proposed below will enforce this property and are also capable of dealing with tasks of
different sizes. More specifically, we present two general decompositions, which are able to approximate a generalized

Learning Context-Dependent Choice Functions 7

latent utility function (2). Section 4.1 describes FETA, which decomposes (2) into first- and second-order (or, more
generally, higher order) utility functions and aggregates the corresponding scores into an overall utility score. The
FATE approach (Section 4.2), on the other hand, first computes an embedding of the complete object context Q in a
space of fixed dimensionality, and evaluates the utility of each object in that space. The former could be advantageous
for datasets, of which the choice task contexts can be expressed through local interactions, while the latter is useful,
if the set of objects as a whole can be summarized by suitable global properties (e. g., choosing that element of a set,
which is closest to the centroid of all elements in this set).

4.1 First Evaluate Then Aggregate

Recall that the overall objective is to model the context-dependent utility function (2), i. e., the utility of each object
should not only depend on object attributes, but also on the choice task Q. One way of handling the problem of rating
objects in contexts of variable size is to decompose a context into sub-contexts of a fixed size k [85, 101]. More
specifically, the idea is to learn sub-utility functions U0, . . . ,UK of the form U0 : X −→ R and

Uk : Dk −→ R , Dk B {(x, A) : x ∈ X and A ⊆ X \ {x} with |A| = k}

for 1 ≤ k ≤ K ≤ |Q|, and represent the original function (2) as an aggregation

U(x,Q) B U0(x) +

K∑
k=1

Uk(x,Q), (10)

where Uk(x,Q) is the average over the values Uk(x,Q′) for subsets Q′ of Q \ {x} consisting of k distinct elements, i. e.,
formally

Uk(x,Q) =
1(

|Q|
k

)
−

(
|Q|−1
k−1

) ∑
Q′⊆Q\{x} : |Q′ |=k

Uk(x,Q′).

Note, that the sum is taken w.r.t. to all k-sized subsets Q′ of Q\{x}, potentially including some in 2X \Q. Here, Uk(x,Q)
may be thought of as a measure to which extent an item x is preferred to the elements of Q, and Uk(x,Q) as an indicator
of how much x is on average preferred to k distinct elements from Q \ {x}. We refer to this approach as First Evaluate
Then Aggregate (FETA), because an alternative is first evaluated in each sub-context, and these evaluations are then
aggregated. Accordingly, we call U defined in (10) the FETA utility function with sub-utility functions U0, . . . ,UK and
denote it by UU0,...,UK

FETA .

Batsell and Polking [7] propose a related expansion in the context of market share modelling. Seshadri, Peysakhovich,
and Ugander [101] call it an instantiation of the universal logit model, since it can be seen as a generalization of the
multinomial logit model (5), when conditioning on the task Q.

Roughly speaking, the motivation behind the above decomposition is that dependencies and interaction effects between
objects should only occur up to a certain order K + 1, or at least can be limited to this order without losing too much
information. To see what we mean by “order” in this context, observe that the first order model (K = 0) reduces to
U0(x) and thus only models the inherent utility of each object. A second order model (K = 1) then introduces pairwise
terms. This is an assumption that is commonly made in the literature on aggregation functions [44]. The reason why
the utilities are averaged for a fixed k, but summed across different k, is to give each order equal weight. This prevents
the utility from being dominated by higher-order interactions. Furthermore, it allows the sub-utility functions to output
scores in roughly the same scale, which is advantageous when the model is applied to choice tasks Q of varying size.

Given the models of context-dependent choices as outlined above, the learning problem essentially comes down to
learning the utility function (10) of order K + 1. From this function, one can then derive the utility function (2), which
in turn allows for deriving predictions of choices via the choice functions discussed before.

In this paper, we realize (10) for the special case K = 1, which can be seen as a second-order approximation of
a context-dependent utility function. Thus, we propose the representation of a choice function c based on a latent
sub-utility function U0 : X −→ R and a pairwise function U1 : D1 −→ R. In this way, the FETA utility function with
sub-utility functions U0,U1 may be written as

U(x,Q) = U0(x) +
1

|Q| − 1

∑
y∈Q\{x}

U1(x, {y}) . (11)

The value U0(x) can be seen as a kind of inherent, context-independent utility of x, whereas the scores U1(x, {y}),
y ∈ Q \ {x}, serve as “corrections” of this utility in the context of the task Q. Seshadri, Peysakhovich, and Ugander

Learning Context-Dependent Choice Functions 8

Example 4.1 (FETA: Context-dependence) As a simple illustration, suppose X to consist of 4 elements
a, b, c, d ∈ Rd, let Q = 2X \ {∅} and U be the FETA utility function with sub-utility functions U0,U1 defined
as follows:

U0(·) U1(·, a) U1(·, b) U1(·, c) U1(·, d)

a −0.8 — 1.2 0.8 0.0
b −0.7 0.0 — 1.2 1.4
c −0.7 0.6 0.0 — 0.2
d −0.8 1.0 0.0 0.8 —

Then, the utilities for the tasks {a, b, c} and {a, b, d} are given as
U(·, {a, b, c}) U(·, {a, b, d})

a 0.2 −0.2
b −0.1 0.0
c −0.4 —
d — −0.3

For the task {a, b, c} the item a has a higher utility score than b, whereas b is preferred over a for the task {a, b, d},
i. e., the preference between a and b changes depending on whether the third item in the task set is c or d.

[101] propose a similar approximation, but instead of averaging the task context, the authors simply sum up all utilities
and impose sum-to-zero constraints to guarantee identifiability.

As for the FETA model U(U0,U1)
FETA , we will now see that it is identifiable up to the choice of U0.

Proposition 4.2 Suppose |X| ≥ 4 and Q to be such that for any distinct x, y, z ∈ X there is some Q ∈ Q with
{x, y} ⊆ Q = z. Let U0, Ũ0 : X −→ R and U1, Ũ1 : D1 −→ R be arbitrary. Then, we have U(U0,U1)

FETA = U(Ũ0,Ũ1)
FETA if and

only if
∀x ∈ X,∀y ∈ X \ {x} : Ũ1(x, {y}) = U1(x, {y}) − Ũ0(x) + U0(x).

Proof. ⇐ is clear. For proving the remaining implication⇒, suppose that U(U0,U1)
FETA = U(Ũ0,Ũ1)

FETA .
Claim 4.2.1 For any distinct x, y, z ∈ X we have

U1(x, {y}) − U1(x, {z}) = Ũ1(x, {y}) − Ũ1(x, {z}).
Proof. For arbitrary Q,Q′ ⊆ X with |Q| = |Q′|, {x, y} ⊆ Q = z and {x, z} ⊆ Q′ = y we have

U(U0,U1)
FETA (x,Q) − U(U0,U1)

FETA (x,Q′) =
1

|Q| − 1
(U1(x, {y}) − U1(x, {z})) .

Since this holds for arbitrary (U0,U1) (and thus also for (Ũ0, Ũ1)), Claim 4.2.1 follows. �

Now, let x0 ∈ X be fixed for the moment and define b : X −→ R via

b(x) B
{

Ũ0(x) − U0(x), if x = x0,

U1(x, {x0}) − Ũ1(x, {x0}), if x , x0.

According to Claim 4.2.1 we have for any distinct x, y ∈ X \ {x0} the identity

Ũ1(x, {y}) = U1(x, {y}) −
(
U1(x, {x0}) − Ũ1(x, {x0})

)
= U1(x, {y}) − b(x).

Moreover, the definition of b assures that Ũ1(x, {x0}) = U1(x, {x0}) − b(x) holds for any x , x0, i. e., b already fulfills

∀x ∈ X \ {x0} : ∀y ∈ X \ {x} : Ũ1(x, {y}) = U1(x, {y}) − b(x). (12)

For x ∈ X \ {x0} we may choose a query set Q ⊆ X \ {x0} and then (12) assures us

Ũ0(x) − U0(x) = U(Ũ0,Ũ1)
FETA (x,Q) − U(U0,U1)

FETA (x,Q) +
1

|Q| − 1

∑
y∈Q\{x}

(
U1(x, {y}) − Ũ1(x, {y})

)
=

1
|Q| − 1

∑
y∈Q\{x}

(
U1(x, {y}) − Ũ1(x, {y})

)
=

1
|Q| − 1

∑
y∈Q\{x}

b(x)

= b(x).

Learning Context-Dependent Choice Functions 9

Since Ũ0(x0) = U0(x0) + b(x0) holds by definition of b, we thus have shown
∀x ∈ X : b(x) = Ũ0(x) − U0(x). (13)

With regard to (12) it remains to show
∀y ∈ X \ {x0} : Ũ1(x0, {y}) = U1(x0, y) − b(x0). (14)

For this, note that the same argumentation as before with x0 replaced by some arbitrary x1 ∈ X \ {x0} shows us that b
also fulfills (12) with x0 replaced by x1. In particular, (14) holds. Combining (12), (13) and (14) completes the proof.

�

Corollary 4.3 Suppose X and Q are as in Proposition 4.2 and let U0 : X −→ R be fixed. Then, the mapping U1 7→

U(U0,U1)
FETA is injective.

Another interesting theoretical question concerns the expressiveness of the FETA decomposition: Which predictors
c : Q −→ C can be represented by FETA? The following result shows that the decomposition into pairwise utilities (11)
is indeed a restriction, in the sense that it does not allow for representing the entire class of predictors in case |X| ≥ 7.
Proposition 4.4 If |X| ≥ 7, not every singleton choice function on X can be expressed via the second order FETA
model. More precisely: For distinct a, b, c, x, y, x′, y′ ∈ X there do not exist sub-utility functions U0 : X −→ R,
U1 : D1 −→ R and t ∈ R such that the choice function c : Q −→ C defined either via c(·) B Csingleton(UU0,U1

FETA , ·) or via
c(·) B Ct

subset(U
U0,U1
FETA , ·) fulfills

c({a, b, c, x}) = {a}, c({a, b, c, y}) = {a}, c({a, b, x, y}) = {b}, (15)
c({a, b, c, x′}) = {b}, c({a, b, c, y′}) = {b}, c({a, b, x′, y′}) = {a}. (16)

Proof. We prove the statement indirectly. To this end, fix distinct a, b, c, x, y, x′, y′ ∈ X and assume there were some
U0,U1 and t ∈ R such that c defined either via c(·) B Csingleton(UU0,U1

FETA , ·) or via c(·) B Ct
subset(U

U0,U1
FETA , ·) fulfills both

(15) and (16). With the convenient abbreviations ur B U0(r) and ur,s B U1(r, {s}), the following constraints for (11)
immediately follow from (15):

ua +
1
3

(
ua,b + ua,c + ua,x

)
> ub +

1
3

(
ub,a + ub,c + ub,x

)
,

ua +
1
3

(
ua,b + ua,c + ua,y

)
> ub +

1
3

(
ub,a + ub,c + ub,y

)
,

ub +
1
3

(
ub,a + ub,x + ub,y

)
> ua +

1
3

(
ua,b + ua,x + ua,y

)
.

Summing up the first two inequalities and then applying the third one yields

2ua +
1
3

(
2ua,b + 2ua,c + ua,x + ua,y

)
> ub +

1
3

(
ub,a + ub,x + ub,y

)
+ ub +

1
3

(
ub,a + 2ub,c

)
> ua +

1
3

(
ua,b + ua,x + ua,y

)
+ ub +

1
3

(
ub,a + 2ub,c

)
,

from which we obtain via subtracting common terms

ua +
1
3

(
ua,b + 2ua,c

)
> ub +

1
3

(
ub,a + 2ub,c

)
. (17)

Exactly the same argumentation (with the roles of a and b interchanged and x resp. y replaced by x′ resp. y′) lets us
infer from (16)

ub +
1
3

(
ub,a + 2ub,c

)
> ua +

1
3

(
ua,b + 2ua,c

)
,

which contradicts (17). This completes the proof. �

Note that a limited expressivity should not necessarily be seen as a negative property. In particular, from a machine
learning perspective, an overly excessive expressivity (or capacity of the underlying hypothesis space) is connected
with the practical problem of poor generalization due to overfitting, i. e., being overly expressive may prevent the
learner from identifying the right model. In any case, we expect FETA to work well for all choice functions that
(approximately) decompose into a pairwise relation between objects. Naturally, this leads to the question whether it
is possible to incorporate more of the set-based context without ultimately increasing computational complexity. This
question motivated our next decomposition.

Learning Context-Dependent Choice Functions 10

4.2 First Aggregate Then Evaluate

To deal with the problem of task contexts of variable size, our previous approach was to decompose the context into
sub-contexts of a fixed size, evaluate an object x in each of the sub-contexts, and then aggregate these evaluations into
an overall assessment. An alternative to this FETA strategy, and in a sense contrariwise approach, consists of first
aggregating the task into a representation of fixed size, and then evaluating the object x in the presence of this task
representative.

More specifically, the FATE approach requires a mapping φ from X to some m-dimensional embedding spaceZ ⊆ Rm

as well as a context-dependent sub-utility function U′ : X ×Z −→ R. To evaluate an object x in a choice task Q ∈ Q,
the FATE strategy first computes 1

|Q|
∑

y∈Q φ(y) as representative for the task and then evaluates it via U′ as

U(x,Q) B U′
(
x,

1
|Q|

∑
y∈Q

φ(y)
)
. (18)

We call this U the FATE utility function with sub-utility function U′ and transformation φ and denote it by UU′,φ
FATE.

Example 4.5 (FATE: Context-dependence) Similar as in Example 4.1, suppose X to consist of four elements
a, b, c, d ∈ Rd, letZ B R and φ : X −→ Z and U′ : Z −→ R be such that

X φ(·) U′(·, 2) U′(·, 3)

a 1 0.5 −0.1
b 2 −0.1 0.5
c 3 −0.2 −0.2
d 6 −0.3 −0.3

and U′(·, z) be arbitrary for any z ∈ R \ {2, 3}. For Q1 B {a, b, c} and Q2 B {a, b, d} the quantity 1
|Qi |

∑
y∈Qi

φ(y) is 2
if i = 1 and 3 if i = 2. Consequently, we have U(a,Q1) = U′(a, 2) = 0.5 > −0.1 = U′(b, 2) = U(b,Q1) and at the
same time U(a,Q2) = U′(a, 3) < U′(b, 3) = U(b,Q2), i. e., the preference between a and b changes depending on
whether the third item in the set is c or d.

This approach is related to recent advances on dealing with set-valued inputs in neural networks [126, 90, 8], where
a permutation-equivariant network directly maps from sets of objects to scores. Rosenfeld, Oshiba, and Singer [95]
propose to learn set-dependent aggregation functions with an inductive bias towards principles from behavioral choice
theory. They note that general models like Deep Sets [126], which try to approximate set functions using a permutation-
invariant neural network, are overly general, because they have a high violation capacity, i. e., the flexibility of the
model to change its choices, when objects are removed from the choice task. The FATE approach on the other hand
first condenses the task context into a representative and only then scores each object. The resulting model has an
inductive bias that favors functions for which the object utility depends on such a set-global reference object. This
could be advantageous for datasets where the set of objects as a whole can be summarized by suitable global properties
(e. g., choosing that element from a set, which is closest to the centroid of all elements in the set), such that the task to
score the objects with this context becomes easy. FETA on the other hand, incorporates task-information through local
interactions.

Without further assumptions on φ and U′, this model is able to express any possible choice function c on Q, as we show
in the following. The proof of the upcoming result is similar to the proof of Theorem 2 by Zaheer et al. [126].
Proposition 4.6 Suppose X to be countable and Q ⊆ {Q ⊆ X : |Q| < ∞}. There exists a parametrization φ : X −→ R
with the following property:

(i) For any singleton choice function c on Q, there is a utility function U′c : X × R −→ R such that
Csingleton(UU′c,φ

FATE,Q) = c(Q) holds for any Q ∈ Q.

(ii) For any subset choice function c on Q there exists a utility function U′c : X×R −→ R with C1/2
subset(U

U′c,φ
FATE,Q) =

c(Q) for any Q ∈ Q.
Proof. Since X is countable, there exists an injective function δ : X −→ N. For x ∈ X define

φ(x) B ln
(
pδ(x)

)
,

wherein pi ∈ N denotes the i-th prime number for any i ∈ N. Before proving (i) and (ii), we show that the mapping

Φ : Q −→ R, Q 7→
1
|Q|

∑
x∈Q

φ(x)

Learning Context-Dependent Choice Functions 11

is injective. For this, let Q,Q′ ∈ Q with Φ(Q) = Φ(Q′). Then,

|Q′|
|Q|

=
ln

(∏
x∈Q′ pδ(x)

)
ln

(∏
x∈Q pδ(x)

) = logb(a)

holds for the integers a B
∏

x∈Q′ pδ(x) and b B
∏

x∈Q pδ(x), i. e., a|Q| = b|Q
′ |. As a and b are both products of distinct

primes, the uniqueness of the prime factorization lets us infer a = b and thus also Q = Q′.

We proceed with proving (i) and (ii) simultaneously. For this, suppose any choice function c on Q to be fixed. Since Φ
from above is injective, there exists a mapping Ψ : R −→ Q such that Ψ(1

|Q|
∑

x∈Q φ(x)) = Q holds for any Q ∈ Q. Note,
that Ψ�Φ(Q) is the inverse function of Φ. Thus, the claim follows with the choice

U′c(x, z) B Jx ∈ c(Ψ(z))K.

�

Although this expressivity is desirable in general, it comes at a cost. The FATE model U(φ,U′)
FATE as such is not identifiable:

For example, suppose U′ : X ×Z −→ R is of the form U′(x, z) B f (x) + ‖z‖2 for some function f : X −→ R, where
‖·‖2 denotes the standard euclidean norm in Rd ⊇ Z. For arbitrary φ1 : X −→ Z, we obtain with φ2 B −φ1 that

U(φ1,U′)
FATE (x,Q) − U(φ2,U′)

FATE (x,Q) =

∥∥∥∥∥ 1
|Q|

∑
y∈Q

φ1(x)
∥∥∥∥∥

2
−

∥∥∥∥∥− 1
|Q|

∑
y∈Q

φ1(x)
∥∥∥∥∥

2
= 0

for any Q ∈ Q, x ∈ Q ⊆ X, i. e., U(φ1,U′)
FATE = U(φ2,U′)

FATE holds.

4.3 Linear Sub-Utility Functions

A related question concerns the expressivity of the FATE and FETA approaches, when the underlying sub-utility
functions and transformations are linear functions. In case φ and U′ are chosen as linear functions in the sense that
φ(x) = Ax and U′(x, z) = ct x + dt z for any (x, z) ∈ X × Z and some A ∈ Rd×m, c ∈ Rd and d ∈ Rm, (18) takes the
form

UU′,φ
FATE(x,Q) = ct x + dt

(
1
|Q|

∑
y∈Q

Ay
)
.

As the second summand therein does not depend on x, for any Q ∈ Q, the singleton choice Csingleton(UU′,φ
FATE,Q) is the

same as that corresponding to the linear utility function x 7→ ct x and thus independent of the context Q. Consequently,
at least one of U′ and φ has to be non-linear in order to model context-dependent choices.

In contrast to this, for the case of FETA, linearity of the sub-utility functions does not imply context-independence of
the model: If U0 and U1 are linear in the sense that U0(x) = bt x and U1(x, {y}) = ct x + dt y for any distinct x, y ∈ X
and some weight vectors b, c, d ∈ Rd, the FETA utility function with sub-utility functions U0,U1 is given as

U(x,Q) = bt x +
1

|Q| − 1

∑
y∈Q\{x}

(
ct x + dt y

)
= (b + c)t x +

1
|Q| − 1

∑
y∈Q\{x}

dt y

for any x ∈ Q ∈ Q. As the second summand therein depends not only on Q but also on x, U can in general not be
represented as a linear function.

5 Implementation Using Neural Networks

Having defined the decomposition strategies FETA and FATE in the preceding section, we are still missing an algorithm,
which can actually learn the utility functions involved. In this section, we propose realizations of the FETA and FATE
approaches in terms of neural network architectures FETA-Net and FATE-Net, respectively. Our design goals for both
neural networks are twofold. First, they should be end-to-end trainable using (stochastic) gradient descent, such that
they can be used as part of a larger neural network architecture. To this end, we ensure that the outputs of the networks
are differentiable almost everywhere with respect to the weights. Similarly, the loss functions employed in conjunction
with a regularization term for the weights should also be differentiable almost everywhere and convex with respect to
the utilities. Second, the architectures should be able to generalize beyond the task sizes encountered in the training
data, since in practice it is unreasonable to expect all choice tasks to be of the same size.

Learning Context-Dependent Choice Functions 12ϕ

|Q |×|Q | |Q |×1

|Q |×1

Query Q
U1

U0

SE
LU

Li
ne

ar

k times

l times

Li
ne

ar

SE
LU

xi

xj
Co

nc
at

x1

+

-Li
ne

ar

R = (ri,j)

Mean

U(·,Q)

Sum

Li
ne

ar 1

1

1

|Q |×1

U(xi,Q)

Sigmoid

Figure 3: The FETA-Net architecture implementing the FETA approach. Layers with trainable weights are shown in
orange, while operations without trainable weights are drawn in blue and non-linearities are depicted in green.

5.1 FETA-Net Architecture

We will now describe our first neural network architecture FETA-Net and its training. Recall from Section 4.1 that we
seek to predict utility scores U(xi,Q) of the form (11) for every object xi ∈ Q. What we need to learn, therefore, is
the functions U0 and U1. In FETA-Net, we do so by means of a deep neural network architecture (shown in Figure 3).
The network is trained in a set of data D = {(Qi,Ci)}Ni=1, where each Qi is a choice task and Ci ∈ 2Qi \ {∅} the choice
set observed for that task.

The main component is the neural network tasked with learning the pairwise utility function U1 (depicted in blue). It
receives the feature vectors of two objects xi and x j and outputs a score for xi in the presence of object x j. To build up
the complete matrix R = (ri, j) would require iterating over all pairs of objects in Q. This is why we choose to adopt
the CmpNN approach by Rigutini et al. [93] for the pairwise scoring function, i. e., instead of one output neuron we
utilize two U+

1 and U−1 . Weight sharing ensures that U+
1 (xi, x j) = U−1 (x j, xi) and U−1 (xi, x j) = U+

1 (x j, xi) holds. For the
diagonal, we evaluate a separate network U0(xi), which learns a latent utility component for each object (corresponding
to the case k = 0 in (10)). With that it suffices to iterate over all combinations of objects once, and to construct the
matrix R as follows:

ri, j =


U+

1 (xi, x j) if i < j
U−1 (xi, x j) if i > j
U0(xi) otherwise

(19)

Then, each row of the relation R is averaged to obtain a score U(xi,Q) = ri,i + 1
|Q|−1

∑
1≤ j,i≤|Q| ri, j for each object xi ∈ Q.

Therefore, the network U1 is a mapping Rd ×Rd −→ R2 and U0 a mapping Rd −→ R which can be instantiated by any
neural network architectures suitable for the given objects. For our experiments later on, we shall use deep, densely
connected networks. We treat the number of layers and units as hyperparameters and optimize them jointly with all the
other hyperparameters.

The complete training algorithm for FETA-Net is shown in Algorithm 1, which is an instantiation of stochastic gradient
descent. We will denote the weight vectors of the networks U0 and U1 by θ0 and θ1, respectively. In the beginning,
these weight vectors are suitably initialized in order to avoid exploding/vanishing gradients [42, 48]. In each epoch,
the algorithm shuffles the given dataset and constructs mini-batches B1, . . . ,BT with Bi ⊂ D for all i ∈ [T]. In lines 10
to 18, the pairwise relation is constructed as described above. The utilities u = (u1, . . . u|Q|) for the objects inside the
task Q are computed in line 19 by summing the pairwise relation ri, j across the columns of the matrix. Finally, the loss
is computed in line 20 and added to the cumulative loss for the batch. The weight vectors θ0 and θ1 are updated using
backpropagation in lines 22–23.

It is easy to see, that the training runtime complexity per epoch (including backpropagation) of FETA-Net is O
(
Ndq2

)
,

where N denotes the number of instances, d is the number of features per object, and q B max(Q,Y)∈D |Q| is an upper
bound on the number of objects in each choice task. For a new task Q, the prediction time is in O

(
d|Q|2

)
.

Learning Context-Dependent Choice Functions 13

Algorithm 1 FETA-Net training algorithm

Require:
DatasetD = {(Qi,Ci)}Ni=1 with Qi ⊂ Rd

Pairwise network U1 : Rd × Rd −→ R2, parametrized by θ1
Diagonal network U0 : Rd −→ R, parametrized by θ0
Batch size b ∈ N, Number of epochs E ∈ N
Step size schedule η = (η1, η2, . . .) with ηi ∈ R>0 ∀i ∈ N
Loss function L : C ×

⋃
k∈N Rk −→ R

1: procedure Train-FETA-Net(D,U0,U1, b, E, η, L)
2: Initialize random weight vectors θ0, θ1
3: for Epoch ep ∈ [E] do
4: D ← Shuffle(D)
5: T ←

⌈
N
b

⌉
6: Construct mini-batches B1, . . . ,BT
7: for Iteration t ∈ [T] do
8: `t ← 0
9: for all (Q,C) ∈ Bt do

10: for 1 ≤ i ≤ j ≤ |Q| do
11: if i < j then
12: rtmp ← U1(xi, x j)
13: ri, j ← rtmp

0 , r j,i ← rtmp
1

14: else
15: ri,i ← U0(xi)

16: u←
(
ri,i + 1

|Q|−1
∑

1≤ j,i≤|Q| ri, j

)|Q|
i=1

17: `t ← `t + L(C,u)
18: θ0 ← θ0 −

ηep·T+t

|Bt |
∇θ0`t

19: θ1 ← θ1 −
ηep·T+t

|Bt |
∇θ1`t

Query Q

ϕ
U’

xi

Sigmoidk times

Embedding

l times

Li
ne

arxj

μQ

1×d

1×d’
Mean

|Q |×d’

Li
ne

ar

SE
LU

Linear

Linear

SELU

Concat

U(xi,Q)
Figure 4: The FATE-Net architecture implementing the FATE approach. Here we show the score head for object xi.
Layers with trainable weights are shown in orange, while operations without trainable weights are drawn in blue and
non-linearities are depicted in green.

5.2 FATE-Net Architecture

The second architecture we propose is called FATE-Net, and the structure for predicting the score for one object is
depicted in Figure 4. Inputs are the n objects of the task Q = {x1, . . . , xn} (shown in green). Each object is independently
passed through a deep, densely connected embedding layer (shown in blue). The embedding layer approximates the
function φ in (18) and is a map Rd −→ Rd′ . Note that we employ weight sharing, i. e., the same embedding is used for
each object. Then, the representative µQ for the task Q is computed by averaging the representations of each object. To
calculate the score U(xi, µQ) for an object xi, the feature vector is concatenated with µQ to form the input to the final
joint neural network layers (here depicted in orange). Again, weight sharing is used to learn only one scoring network.

Learning Context-Dependent Choice Functions 14

Algorithm 2 FATE-Net training algorithm

Require:
DatasetD = {(Qi,Ci)}Ni=1 with Qi ⊂ Rd

Embedding network φ : Rd −→ Rd′ , parametrized by θφ
Utility network U : Rd × Rd′ −→ R, parametrized by θU
Batch size b ∈ N, Number of epochs E ∈ N
Step size schedule η = (η1, η2, . . .) with ηi ∈ R>0 ∀i ∈ N
Loss function L : C ×

⋃
k∈N Rk −→ R

1: procedure Train-FATE-Net(D,U0,U1, b, E, η, L)
2: Initialize random weight vectors θφ, θU
3: for Epoch ep ∈ [E] do
4: D ← Shuffle(D)
5: T ←

⌈
N
b

⌉
6: Construct mini-batches B1, . . . ,BT
7: for Iteration t ∈ [T] do
8: `t ← 0
9: for all (Q,C) ∈ Bt do

10: µQ ←
1
|Q|

∑
x∈Q φ(x)

11: u←
(
U(x, µQ)

)
x∈Q

12: `t ← `t + L(C,u)
13: θU ← θU −

ηep·T+t

|Bt |
∇θU `t

14: θφ ← θφ −
ηep·T+t

|Bt |
∇θφ`t

For both neural networks, we treat the number of layers, units and embedding dimensions as hyperparameters, which
are to be optimized.

The detailed training algorithm is shown in Algorithm 2. As mentioned before for FETA-Net, it is an instantiation
of stochastic gradient descent. We will denote the weight vectors of the networks U and φ by θU and θφ, respectively.
The initialization of the weight vectors and the construction of the mini-batches (lines 2–6) is again the same as for
FETA-Net. In line 10, the representative object µQ is constructed by first mapping each object to the embedding space
using φθφ , and then computing the centroid of the embedded points. The embedding network can be any network that
receives an object and returns a d′-dimensional real-valued vector, and should be adapted to the data at hand. The
utility scores u are then computed by evaluating each object x ∈ Q in conjunction with the representative point µQ (see
line 11). The cumulative loss for the mini batch is updated in line 12. The weight vectors θφ and θU are updated by
calculating the gradient of the loss using backpropagation and scaling it by an appropriate learning rate (lines 14–13).

The training runtime complexity per epoch of FATE-Net (including backpropagation) is O
(
Ndq2

)
, where N denotes

the number of choice tasks, d is the number of features per object, and q is an upper bound on the number of objects
in each task. For a new choice task Q, the prediction can be done in only O(d|Q|) time (i. e., linear in the number of
objects). This is due to the fact that µQ only needs to be computed once.

6 Empirical Evaluation

The main goal of our empirical evaluation is to find out for which kind of problems FATE-Net and FETA-Net work
well. Moreover, we wish to compare these approaches with existing methods for ranking and choice. In particular, the
following questions will be addressed:

• Are the decompositions FATE and FETA suitable for learning context-dependent choice functions?
• How important is (i) the complexity/expressiveness of the underlying model class and (ii) its ability to model

context-dependent choice functions, and how do these two factors interact? For example, are deep neural
networks (i. e. FATE-Net and FETA-Net) really needed, or would a simpler (e. g. linear) model also suffice?
Can the additional complexity/expressiveness compensate for the inability to model context-dependent choice
functions?
• To what extent is our approach able to generalize over the task size? For example, is it possible to produce

accurate predictions on tasks of a specific size, even if that size has never occurred in the training data?

Learning Context-Dependent Choice Functions 15

For the first two questions, we evaluate the approaches on a variety of general choice and singleton choice problems.
We also introduce the variant FETA-Linear, which learns the FETA decomposition using only linear functions, to
ascertain whether it is able to account for some of the context-effects present in the data.

In addition, we evaluate the performance of different logit models used in economics: multinomial logit (MNL) [75],
nested logit (NL) [123], generalized nested logit (GNL) [122] and mixed logit (ML) [110]. The first logit model is the
MNL model (referred as GenLinearModel for subset choice task), which assumes that the choice between two objects
does not depend on other objects in the set [67]. The NL and GNL belong to the generalized extreme value (GEV) class
of models that learn correlations amongst the objects in the given set, which implicitly accounts for some of the context
effects, but mainly the similarity effect [9, 113]. GEV models allocate the objects in the given task Q into different
sets called nests and learn correlations between the objects inside each nest [122, 110]. These nests are disjoint in case
of NL [123]. GNL is the most general model of this class, which allows the fractional allocation of each object in
Q to each nest and it learns the correlation between them [122]. ML estimates the choice probability as a mixture of
multiple logits [76, 125].

Another model which was proposed for solving the task of singleton choice is the PairwiseSVM, which makes use of
induced pairwise preferences to fit a linear model [32, 68].

As a recent context-dependent baseline model, we implement the set-dependent aggregation (SDA) approach by
Rosenfeld, Oshiba, and Singer [95]. We also implement the RankNet model as an additional context-independent
baseline, which learns a non-linear utility for each object by converting them to pairwise preferences [107, 18]. Due
to a lack of algorithms specifically designed for the subset choice problem, we employ the same thresholding of the
utilities described in (4) we use for our approaches. The threshold is tuned on a small validation set for all approaches,
using the F1-score as target loss (see Appendix C for details).

All in all, we compare to both deep neural networks and linear models, so that we have baselines of varying represen-
tative power, which helps to contextualize the performance of our approaches on each dataset. Finally, to answer the
third question, we train the different models on a fixed task size and predict on queries of deviating size.

6.1 Setup

All experiments are implemented in Python, and the code and the dataset generators are publicly available5. To
properly compare all models in a fair and unbiased way, we make sure to optimize the hyperparameters of each model
by employing Bayesian optimization in a nested validation loop (we use the Gaussian process based implementation
in scikit-optimize [49]) The final out-of-sample estimates are then computed using another outer cross-validation loop
with the best hyperparameters found in each fold. The loss functions and the datasets considered throughout our
empirical evaluation are introduced in the following two subsections, respectively (see Appendix C for more details).

The experiments were run on a compute cluster with a mix of NVIDIA GTX 1080 Ti and RTX 2080 Ti GPUs (on
average 15-20) and Intel Xeon E5-2670 processors. One job consisting of one outer split with complete hyperparameter
optimization on the validation set took on average 8 hours. The training of FATE-Net and FETA-Net on average (across
datasets) required 11 hours. Combined, all experiments took roughly 11 400 GPU hours and 6000 CPU hours.

6.2 Loss Functions

As explained in Section 4, our goal during learning is to minimize a suitable target loss L : C × C −→ R. This is
usually the loss one is interested in minimizing, e. g., the F1-measure in our case. Since these losses are usually
not differentiable, they cannot readily be used in a gradient descent algorithm. Therefore, during training we opt to
minimize surrogate losses which are differentiable almost everywhere instead. In this section, we will first introduce
the target losses we consider (cf. Section 6.2.1). We then derive surrogate losses based on the probabilistic choice
models introduced in Section 3 and based on practical considerations (cf. Section 6.2.2).

6.2.1 Target Loss Functions

The canonical loss function, which we focus on in the singleton choice setting, is the categorical 0/1-loss

L0/1(C,C′) B JC , C′K, (20)

i. e., in case the ground-truth choice C is {x}, each false prediction C′ , {x} is penalized with a loss of 1. In addition, we
will call the quantity 1− L0/1(C,C′) the categorical accuracy. Moving from singleton to subset choice, where C and C′
can now be choice sets of arbitrary size, the same loss function (20) can still be used. To signify that it is used in subset

5https://github.com/kiudee/cs-ranking

https://github.com/kiudee/cs-ranking

Learning Context-Dependent Choice Functions 16

choice, we will call it the subset 0/1-loss. Targeting the subset 0/1-loss is problematic, especially whenever a task Q
contains many objects, since already one incorrectly predicted object results in the whole prediction being declared
incorrect. One could instead opt to consider the average of the item-wise 0/1-loss, which is called the Hamming loss
in the setting of multi-label classification [54]. However, this loss exhibits some properties that could be questioned in
the context of choice. In particular, the non-prediction of a selected item (false negative) is penalized in the same way
as the prediction of a non-selected item (false positive), although positives and negatives might be highly imbalanced.

A more suitable measure, which is widely used in classification, is the F1-measure defined as

F1(C,C′) B
2
∑

x∈XJx ∈ C ∩C′K∑
x∈XJx ∈ CK +

∑
x∈XJx ∈ C′K

(21)

for any C,C′ ∈ C. This measure takes values in [0, 1] and large values indicate conformity between C and C′, whence
an appropriate loss can be defined as 6

LF1 (C,C′) ..= 1 − F1(C,C′).
In spite of the existence of other measures that specifically aim at correctly predicting positives, such as the informed-
ness [88, 87], we will mostly focus on LF1 as the target loss, because it is well known and commonly used as a
performance metric. That means that we will use it as the validation loss for the Bayesian hyperparameter optimization
we run for every learner. Additional evaluation measures we report are described in Appendix B.

6.2.2 Surrogate Losses

The probabilistic setting for choice that we introduced in Section 3 suggests a natural approach to learning and
prediction:

• First, a learner is trained using the log-likelihood of the probabilistic model as a loss function. This loss
function is not only differentiable, but also calibrated in the sense of being minimized by the true (conditional)
probabilities. In other words, a learner trained with this loss is supposed to predict (unbiased) probabilities on
the choice space C (conditioned on the query).
• Thus, given a query for which a prediction is sought, a probability distribution on the choice space C can be

obtained as a prediction, which in turn allows for minimizing any target loss in expectation.

More specifically, let U(·,Q) denote the latent utility scores U(x,Q), x ∈ Q, predicted by a learner on a query Q ∈
Q. In a singleton choice scenario, where the data is supposed to be generated according to choice probabilities
pŨ

MNL(x | Q) = pMNL(x | Q) of the form (5) for some unknown ground-truth Ũ, one may define the corresponding
categorical cross-entropy loss gained when observing C = {x} ∈ C

LCE
(
{x},U(·,Q)

)
B − log

(
pU

MNL(x | Q)
)

= log
(∑

y∈Q
exp(U(y,Q))

)
− U(x,Q) . (22)

This expression is minimized in case x = arg maxy∈Q U(y,Q).

If dealing with subset choice data that is presumably sampled according to the choice probability distribution pU(C |
Q) = p(C | Q) from (6), it is natural to measure prediction C ∈ 2Q \ {∅} by means of the corresponding binary
cross-entropy loss

LBE(C,U(·,Q)) B − log
(

pU(C | Q)
)

=
∑

y∈Q
log

(
1 + exp(U(y,Q))

)
− Jy ∈ CKU(y,Q). (23)

In spite of the theoretical justification of the logistic losses discussed above, we found that “hinge-variants” of the
respective 0/1-losses may sometimes lead to more stable results. More specifically, for the singleton choice setting
categorical hinge loss defined via

LCH({x},U(·,Q)) B max
(
1 + maxy∈Q\{x} U(y,Q) − U(x,Q), 0

)
, (24)

for any x ∈ Q ∈ Q, is inspired by the hinge loss used in multi-class classification [29, 78] and can be used instead of
(22).

Finally, for training FATE-Net and FETA-Net in the experiments below, we use the binary cross-entropy loss for the
subset choice setting and the categorical hinge loss for the singleton choice setting, since these turned out to work
well in preliminary experiments. In addition, an L2-regularization term for the magnitude of the weights is added and
optimized as part of the loss during training.

6Later on, we will nevertheless report the F1-measure itself, which is common practice in machine learning.

Learning Context-Dependent Choice Functions 17

Table 1: Overview of the choice datasets used in the experiments. Bracket notation is used to denote the range of
values.

Problem Dataset # Train # Test # Features |Q|

Singleton Choice

Medoid 10 000 100 000 5 10
Hypervolume 10 000 100 000 2 10
MNIST-Mode 10 000 100 000 128 10
MNIST-Unique 10 000 100 000 128 10
Tag Genome Dissimilar Movie 10 000 100 000 1128 10
Tag Genome Similar Movie 10 000 100 000 1128 10
LETOR-MQ2007-list [1353, 1356] [336, 339] 46 [257, 1346]
LETOR-MQ2008-list [627, 628] [156, 157] 46 [204, 1831]
Expedia 78 041 312 229 17 [5, 38]
Sushi 7000 3000 7 10

Subset Choice

Pareto-front-2D 10 000 100 000 2 30
Pareto-front-5D 10 000 100 000 5 30
MNIST-Mode 10 000 100 000 128 10
MNIST-Unique 10 000 100 000 128 10
LETOR-MQ2007 [1160, 1172] [283, 295] 46 [6, 147]
LETOR-MQ2008 [442, 459] [105, 122] 46 [5, 121]
Expedia 79 855 319 489 17 [5, 38]

Convexity of the Surrogate Losses An important consideration for the surrogate losses to be used during training
is whether they are convex with respect to the utility scores U(x,Q). All three losses introduced above are indeed
convex. To see this for LCE, notice that (22) can equivalently be written as log

(∑
y∈Q exp(U(y,Q)−U(x,Q))

)
. The inner

difference of utilities is linear and therefore convex. The outer function is also known as LogSumExp and is defined via
LSE(x) B log(

∑
j∈[m] exp(x j)). It is convex and since it is also strictly decreasing in each argument, the composition

(22) is convex as well.

As for the binary cross-entropy LBE, note that the inner function s : R −→ R, s(x) B log(1 + exp(x)) of (23) is smooth
with strictly positive first and second derivatives and hence convex and non-decreasing. Similarly, s̃(x) B s(x) − x is
convex and strictly decreasing on R. Hence, we can conclude that (23) is convex.

Finally, the categorical hinge (24) contains the function h : Rm −→ R, x 7→ log
(∑

j∈[m] exp(x j − xi)
)
, which is convex as

the logarithm of a maximum of convex functions. Since s : R −→ R, x 7→ max(1 + x, 0) is convex and non-decreasing,
s ◦ h and therefore (24) is convex as well.

The FETA model further decomposes U(x,Q) into an aggregation of sub-utility functions U0 and U1. It is therefore
interesting to ask whether the surrogate losses are also convex with respect to the sub-utility values U0(x), U1(x, {y}).
We can answer this question in the affirmative, since the FETA utility values are positively weighted sums of these
sub-utility scores.

However, the overall learning problem depends on the parameter θ of the realization of UFETA and UFATE and the
corresponding loss function can possibly still be non-convex w.r.t. θ (as this is the case with the neural networks
employed here). That means in practice we lose the guarantee of stochastic gradient descent to find a global optimum,
but with careful tuning of the optimization process one can still expect to find reasonable solutions.

6.3 Datasets

We now introduce the learning problems used for the empirical comparison as follows:

(a) The Medoid problem, where the task is to predict the medoid of a set of points in a Euclidean space.

(b) The Pareto-front problem, in which the learner has to predict the set of points which are Pareto-optimal.

(c) The Hypervolume singleton choice problem, where the task is to select the point of the Pareto-front which
contributes the most to the hypervolume.

(d) Different choice problems defined on the well-known MNIST dataset.

(e) Similarity/dissimilarity-based movie selection using the MovieLens Tag Genome dataset [118].

Learning Context-Dependent Choice Functions 18

(f) The LEarning TO Rank (LETOR) MQ2007 and MQ2008 datasets [89] consisting of query-document pairs,
with the goal to select the relevant documents.

(g) The Expedia hotel dataset featuring search results and relevance labels for each hotel with the goal to select
booked/considered hotels [33].

(h) The Sushi dataset, where the task is to choose the most preferred sushi from a set of 10 options provided to a
user.

See Table 1 for an overview of the datasets and their properties. In the following sections, we will describe the different
datasets, their motivation, and if applicable, how they are generated.

6.3.1 The Medoid Problem

The motivation for this problem is the general idea of learning to choose a most representative element from a set.
More concretely, the medoid of a set is the object with the smallest cumulative dissimilarity to all other objects of the
set7. It is commonly used as a representative element, especially for structured objects such as graphs, 2-D trajectories,
images, etc. [116, 127].

Formally, we are interested in learning the choice function cmedoid : Q −→ C given as

cmedoid(Q) B arg minx∈Q
1
|Q|

∑
y∈Q
‖x − y‖,

where we write here and throughout the remainder of this paper ‖·‖ for the standard euclidean norm defined as
‖z‖ =

√
zt z. The singleton choice produced by this procedure incorporates all pairwise distances among the objects,

which makes it a good context-dependent learning problem to investigate. In particular, cmedoid is sensitive to changes
of the elements in the task. With U0(x) B 0 and U1(x, {y}) B −‖x − y‖ we clearly have

cmedoid(Q) = arg min
x∈Q

1
|Q| − 1

∑
y∈Q

‖x − y‖

= arg max
x∈Q

U0(x) +
1

|Q| − 1

∑
y∈Q\{x}

U1(x, {y})

and thus UU0,U1
FETA is able to exactly model cmedoid.

In contrast to this, for the FATE approach, it is not immediately obvious if and how it is capable of modelling cmedoid
exactly. However, the choicesZ B X, φ B idX and U′(x, z) B −‖x − z‖ yield

UU′,φ
FATE(x,Q) = −‖x − centroid(Q)‖

with centroid(Q) B 1
|Q|

∑
y∈Q y being the centroid of Q. Thus, the item x ∈ Q, which is closest to centroid(Q), i. e.,

arg maxx∈Q UU′,φ
FATE(x,Q), is likely to coincide with the medoid of Q. As we construct our synthetic medoid dataset by

sampling Q according to the uniform distribution ν on {A ⊆ [0, 1]d : |A| = r} for some predefined r ∈ N, there is with
UU′,φ

FATE a FATE-instance, which is expected to have (for the case of singleton choice) an accuracy of at least

PQ∼ν

(
cmedoid(Q) = arg minx∈Q‖x − centroid(Q)‖

)
on the synthetic medoid dataset. An empirical evaluation revealed that this value is 89.56 % for r = 10 and d = 5. For
the details on this dataset, confer Appendix E.1.

6.3.2 The Pareto-Front Problem

The computation of a Pareto-optimal set of points is an important problem in optimization and various fields of
application [41]. We say x ∈ X ⊆ Rd is dominated by y ∈ Rd (short: y � x) if xi ≤ yi holds for any 1 ≤ i ≤ d and
x j < y j for at least one 1 ≤ j ≤ d. For any set Q ∈ Q we define the Pareto-set or Pareto-front of Q as

cPareto(Q) B {x ∈ Q : x is not dominated by any element y ∈ Q \ {x}}.

7As opposed to the centroid, which is usually not part of the original set.

Learning Context-Dependent Choice Functions 19

We wish to investigate the possibility to learn the mapping from sets of points to their respective Pareto-sets. It is clear
that the size of the Pareto-sets is not constant, which makes it a good candidate for a general subset choice problem.
With the choices U0(x) B 0 and U1(x, {y}) B −Jy � xK we have

UU0,U1
FETA (x,Q) = −

∑
y∈Q

Jy � xK ∈
{

(−∞,−1], if x < cPareto(Q),
{0}, otherwise.

.

Hence, cPareto(Q) = arg maxx∈Q U(U1)
FETA(x,Q) holds trivially for each Q ∈ Q, i. e., the Pareto problem is exactly solvable

via the FETA approach. We created our corresponding synthetic dataset by generating a set of points uniformly at
random in R2 and R5 to construct a choice task Q, and the ground-truth is the Pareto-set of Q containing only the
non-dominated objects. In order to perform the experiments, we generate sets of 30 random points in R2 and R5, and
determine the choices as described in detail in Appendix E.2.

6.3.3 Hypervolume

A related but much harder problem is the computation of hypervolume contributions of objects on a Pareto front. The
hypervolume λHypVol(Q) of a subset Q ⊆ Rd describes the volume of the union of the subspaces dominated by each
individual point x = (x1, . . . , xd) in the Pareto set of Q and can formally be defined as

λHypVol(Q) B λ
(⋃

x∈cPareto(Q)
[0, x1] × · · · × [0, xd]

)
= λ

(⋃
x∈Q

[0, x1] × · · · × [0, xd]
)

where λ denotes the Lebesgue measure of Rd. In the context of multi-objective evolutionary algorithms (MOEAs),
one usually computes the contributions λHypVol(Q) − λHypVol(Q \ {x}) of each point x ∈ Q to the overall hypervolume
λHypVol(Q), i. e., the reduction in hypervolume caused by removing one object from the set. We consider the problem
of learning the corresponding Hypervolume choice function cHypVol : Q −→ C, which picks that element x ∈ Q with
the smallest contribution to the overall hypervolume, i. e.,

cHypVol(Q) B arg max
x∈Q

λHypVol(Q) − λHypVol(Q \ {x})

= arg min
x∈Q

λHypVol(Q \ {x}).

As shown by Bringmann and Friedrich [17, Theorem 1], it is #P-hard to calculate cHypVol(Q). Here, we generate sets of
10 random points in R2 and determine the singleton choice.

6.3.4 MNIST Number Problems

The original goal of the Modified National Institute of Standards and Technology (MNIST) dataset was to facilitate the
comparison between different handwritten digits classifiers [65]. It consists of 70 000 28 × 28 grayscale images. We
use the dataset to create challenging choice problems, both singleton and general subset choice. To level the playing
field between all the approaches, we first train a convolutional neural network (CNN) on 10 000 instances and use it to
extract high level features for the remaining 60 000 images (see Appendix E.3 for more details). To convert this dataset
to a choice problem, we randomly sample sets of 10 numbers and choose based on the following procedures:

1. Mode: For the Mode dataset, we choose the numbers that occur most often in the choice task Q. For example,
given a set of numbers {1, 1, 2, 4, 4, 5, 5, 6, 6, 6}, we choose all instances with value equal to the mode value
6. For the singleton choice task, we only output one of the numbers (the representation of which has the least
angle to a predefined vector).

2. Unique: Here, we choose all numbers that occur only once in the set of sampled label values. For example,
given a set of numbers {1, 1, 2, 3, 4, 4, 5, 5, 6, 6}, we choose the numbers {2, 3}. For the singleton choice
problem, we ensure that exactly one of the digits is unique.

6.3.5 MovieLens Tag Genome

The MovieLens Tag Genome dataset consists of a large collection of movies and community curated tags [118]. For
each movie, the relevance of every tag is provided on a continuous scale in [0, 1]. Thus, the complete relevance vector
of a movie can be regarded as that movies’ “genome.”

Learning Context-Dependent Choice Functions 20

We consider the problem of choosing the most similar/dissimilar movie from a set of movies, where one movie is
regarded as the reference to which the others are compared. We define this reference movie to be the medoid of the
movies in a given set. To compute similarities in tag relevance space, we use the weighted cosine similarity as proposed
by Vig, Sen, and Riedl [117].

6.3.6 LETOR

LETOR is a collection of benchmark datasets for different learning-to-rank problems [89]. The Gov2 web page
collection, consisting of roughly 25 M pages, is the corpus and the query sets of the Million Query track of the TREC
2007 and 2008 [111, 112] are used to create 8 datasets. Each query-document pair is defined by a vector consisting
of 46 features. We use the supervised ranking datasets MQ2007 and MQ2008 to create the choice dataset. We treat
all documents with a relevance score of 1 and 2 as the chosen objects. Since all queries include multiple documents
with relevance scores 1 and 2, we cannot extract singleton choices from this dataset. The listwise ranking datasets
MQ2007-list and MQ2008-list contain real-valued scores of the documents in the underlying permutations, and hence
facilitate the singleton choice for each query (details of the exact procedure can be found in Appendix F.1).

6.3.7 Expedia

The Expedia dataset was released on the Kaggle website as a competition in 2016 [33]. It consists of 399 344 lists
of hotels, each resulting from a search query of a user. For each hotel, there are 45 features and a relevance score,
indicating how relevant the hotel is to the provided query. A score of 0 means that it was not relevant, a score of 1
indicates that the user clicked on it, and a 2 implies that the hotel was booked. It is straightforward to construct choice
datasets: for singleton choice the goal is simply to predict the booked hotel, whereas for subset choice we required the
learners to output the complete set of hotels that were at least clicked on (see Appendix F.2 for more details).

6.3.8 SUSHI

SUSHI8 is a dataset created by Kamishima [57] specifically for the task of object ranking. The authors considered 100
sushis and asked users to rank them according to their preference. The dataset consists of two sets of 5000 rankings.
Each ranking consists of 10 sushis, which were ranked by users in a survey. For the first set, the authors asked the
users to rank the top-10 most popular sushis. In the second set, users were shown random sets of 10 sushis instead.
Each sushi is described by 7 object features. Additional user features are available, but not used in our experiments.
For our experiments, we merge both datasets into a single one containing 10 000 instances. We use it as a singleton
choice dataset by choosing the most preferred sushi as the singleton choice for the given task set Q (details of the exact
procedure can be found in Appendix F.3).

6.4 Results and Discussion

In this section, we provide the results obtained by evaluating different subset choice and singleton choice models on the
datasets. To be concise, we only show plots for the target losses here and list the complete set of results in Tables 9 to 11
in Appendix G. It is illuminating to compare the performance of FATE-Net and FETA-Net to the context-independent
neural network RankNet. This provides a rough indicator for how important being able to model context-dependence
is.

6.4.1 Singleton Choice

We will start by discussing the results for the singleton choice models (cf. Figure 5), where the bars depict the
mean value of the categorical accuracy (26) across the cross-validation folds, with black lines depicting the standard
deviation.

The first observation is that FATE-Net and FETA-Net significantly outperform all other baselines on the tasks for
which it was clear that the underlying choice function is context-dependent (i. e., Hypervolume, Medoid and the
MNIST datasets). The SDA network, which is also a context-dependent model, achieves competitive results on the
Medoid and the MNIST datasets. The linear FETA variant FETA-Linear non-linear neural network RankNet perform
comparably to the other baseline approaches. This suggests that a combination of non-linearity and the ability to model
context-dependence is really necessary to improve on these tasks. One notable exception is the Medoid dataset, for
which RankNet and FETA-Linear manage to outperform the other baselines by a large margin.

8This dataset can be downloaded from http://www.kamishima.net/sushi/

http://www.kamishima.net/sushi/

Learning Context-Dependent Choice Functions 21

Hypervolume Medoid MNIST
Mode

MNIST
Unique

Sushi
0%

20%

40%

60%

80%

100%

A
cc

u
ra

cy

Tag Genome
Dissimilar

Movie

Tag Genome
Similar
Movie

LETOR
MQ2007list

LETOR
MQ2008list

Expedia
0%

20%

40%

A
cc

u
ra

cy

FETA-Net

FATE-Net

FETA-Linear

SDA

RankNet

PairwiseSVM

LogitModel

NestedLogit

GenNestedLogit

MixedLogit

Figure 5: Categorical accuracies and standard deviations (vertical bars) of the singleton choice models on different
singleton choice tasks (measured across 5 outer cross-validation folds).

0 20 40 60 80 100

Epoch

0%

20%

40%

60%

80%

100%

A
cc

u
ra

cy

FATE

FETA

SDA

0 100 200 300 400 500

Epoch

FATE

Figure 6: Result of the infinite data experiment for FATE-Net, FETA-Net and SDA on the synthetic unique problem.
For the left plot the neural networks were calibrated to have roughly equal numbers of parameters. The right plot shows
the repetition of the experiment where FATE-Net received a higher epoch and parameter budget.

For the MNIST-Unique problem, FATE-Net and FETA-Net achieve an accuracy of more than 90 % and SDA is
competitive with over 80 %. Additionally, the GNL and ML models are also able to perform better than the other
baselines. It is easy to see that the dataset exhibits the similarity context effect proposed by Huber and Puto [52], i. e.,
adding multiple instances of the same digit to the choice task reduces the choice probability of all equal digits to 0. As
is apparent, the GNL and ML model are able to account for it and score better than chance.

Since FATE-Net, FETA-Net and SDA were able to achieve close to 100 % accuracy on the MNIST-Unique problem, we
performed an additional experiment where we generated instances completely synthetically. Each number i ∈ {0, . . . , 9}
we represent by the corresponding standard unit vector ei, which is 1 in the i-th position and is 0 everywhere else. Apart
from that, the task remains the same. We calibrate each network to have roughly the same number of parameters (2870
for FATE-Net, 2849 for FETA-Net and 2850 for SDA) and the remaining hyperparameters were equal for all networks.
We then trained them on a stream of newly generated batches with 1024 instances, each of which with 10 objects until
convergence. The resulting convergence behavior is shown in Figure 6. Both FETA-Net and SDA are able to converge
to 100 % out-of-sample categorical accuracy within 100 epochs, while FATE-Net only achieves slightly over 60 % and
more epochs alone were not able to let it learn the target function without error. We therefore repeated the experiment
for FATE-Net with a higher epoch and parameter budget. With 5985 parameters, FATE-Net is now able to perfectly

Learning Context-Dependent Choice Functions 22

Pareto
front-2D

Pareto
front-5D

MNIST
Mode

MNIST
Unique

LETOR
MQ2007

LETOR
MQ2008

Expedia
0%

20%

40%

60%

80%

100%

F
1
-m

ea
su

re

FETA-Net

FATE-Net

FETA-Linear

SDA

RankNet

PairwiseSVM

GenLinearModel

AllPositive

Figure 7: Average F1-measure and standard deviation (vertical bars) of the subset-choice models on the tasks different
choice tasks (measured across 5 outer cross-validation folds).

learn the fully synthetic unique problem within 400 epochs. On the one hand, this shows that from a representational
perspective, all three models are able to learn this particular target choice function perfectly. FATE-Net appears to
be less parameter- and data-efficient though, which could indicate that evaluating the utilities in the context of the set
embedding is not well suited to represent these kinds of problems. The behavior of all three networks was consistent
across repetitions of the experiment.

On the real-world datasets (i. e. Sushi, Movielens Tag Genome, LETOR and Expedia) the performance of FATE-
Net and FETA-Net is closer to the ones achieved by the remaining baselines. Although they still obtain slightly
higher accuracy on average, the margin is not as pronounced. Surprisingly, the SDA achieved the worst accuracy on
LETOR and Expedia. We suspect that this results from the models being trained only on a fixed choice task size
in our experiments, while they are evaluated on choice tasks of varying size during test time. Since SDA learns a
set-dependent aggregation function, it could be that this does not generalize well to the larger choice tasks present in
the real-world datasets.

6.4.2 Subset Choice

We evaluate the subset choice models in terms of their F1-measure (21) and report the results in Figure 7. To see if
the models are able to learn anything, we also show the performance of the baseline that always predicts positive. The
general pattern is confirmed: FATE-Net, FETA-Net and SDA surpass the other baselines on the datasets Pareto-front
2D, MNIST Mode, and MNIST Unique, while being competitive for the real-world datasets LETOR and Expedia.
For the MNIST tasks Unique and Mode, the first observation is that all linear and/or context-independent baseline
approaches fail to learn anything on these datasets, since they all achieve the same F1-measure as the all-positive
baseline. Thus, it is clear that these tasks can only be solved by models that are both context-dependent and non-linear.

For the Pareto problem, it can be observed that the context-dependent models FETA-Net, FATE-Net, and SDA
outperform all benchmark choice models on the 2D version. On the 5D version of the dataset, however, the performance
of all approaches reach a comparable level. This indicates that solving the task of selecting the Pareto-front becomes
less context-dependent in higher dimensions, since the distance of a point from the center becomes more and more
informative. At the same time, more points are on the Pareto-front overall, which is apparent from the high F1-measure
of the AllPositive baseline.

As before, the results are more homogeneous on the real-world datasets Expedia and LETOR MQ2007/MQ2008.
FATE-Net and FETA-Net are still outperforming all the benchmarks. This suggests that the ability to model context-
dependence in the data is slightly more important for these datasets than learning a non-linear utility function. SDA
achieves the best result on the Expedia dataset, which when compared to the bad performance on the singleton choice
variant of the dataset suggests that the thresholding of the utilities is robust to the model output changing with varying
choice task sizes.

Overall, the results demonstrate that FATE-Net and FETA-Net are able to improve on the context-independent baselines
by a large margin on tasks which are strongly context-dependent and show competitive results when compared to SDA.
The improvement is due to both the task-sensitivity of these models and the ability to model non-linear utility functions.
For the real-world datasets, the improvements are smaller, suggesting that context-effects are either less pronounced or
that the context-effects in real-world data cannot fully be captured yet.

Learning Context-Dependent Choice Functions 23

5 10 15 20 25 30
Number of Objects

−20%

0%

20%

40%

60%

80%
N

or
m

al
iz

ed
A

cc
ur

ac
y

Medoid

5 10 15 20 25 30
Number of Objects

Hypervolume
FETA-Net
FATE-Net
FETA-Linear
SDA
RankNet
PairwiseSVM
LogitModel
NestedLogit
GenNestedLogit
MixedLogit
Random

Figure 8: Normalized Accuracy of the singleton choice models (SCMs) trained on queries of size 10, then predicting
on queries of a varying size.

6.4.3 Generalization Across Task Sizes

We conduct additional experiments to gauge the generalization capability of the learned models to unseen task sizes
(refer to Appendix D for more details). We show the results for the datasets Medoid and Hypervolume, because, as will
be seen, they exhibit some interesting properties. We specifically compare the performance on the singleton choice
datasets (Figure 8). We train the models on a fixed task size and then test them on sets containing between 3 and 21
objects. Note that for singleton choice, the accuracy is not comparable across differing task sizes. We instead report
the normalized accuracy (see Appendix B.2), which fixes this issue and guarantees that random guessing achieves
exactly 0.

Overall, the models manage to generalize quite well to task sizes for which they were not trained. The exact gener-
alization behavior depends on the dataset, though. Considering the Medoid dataset, we can observe that the models
FETA-Net, FETA-Linear and RankNet even improve in performance with larger task sizes. This is plausible, since
the more points fill the space, the more the problem can be solved by a context-independent model, which assigns
the highest score to objects in the center. For the singleton choice version of Hypervolume, on the other hand, the
performance of all models drops with an increasing numbers of objects, suggesting it becomes much harder to identify
the object that contributes the most to the overall hypervolume. This is especially visible for the baselines, which,
even though they were trained on 10 objects, achieve their best performance on 3 objects. FETA-Net, FATE-Net, and
FETA-Linear stand out here, since their performance decays much slower. All in all, we conclude that our networks
FETA-Net and FATE-Net are able to generalize very well to unseen task sizes, with FETA-Net additionally benefiting
if the task becomes less context-dependent with larger task sizes.

7 Conclusion and FutureWork

In this paper, we tackle the problem of choice from a machine learning perspective. More specifically, we propose a
framework for learning context-dependent choice functions, which, on the basis of choice behavior observed in the past,
allow for predicting the choice of objects in new situations. This is essentially accomplished by learning generalized
(latent) scoring (utility) functions, which are supposed to control the choice behavior.

Violations of context-independence are common in human choice behavior. Therefore, accounting for the various
context effects they can exhibit can be seen as an important problem. Still, we consider the space of interesting non-
trivial choice functions to be vastly larger, and the goal is to have general purpose models that can adapt to a wide
variety of (yet unknown) context effects.

To this end, we propose two principled decompositions: The FETA decomposition is a first-order approximation to
a more general utility decomposition. It considers each object in local sub-contexts, the contributions of which are
averaged. The FATE approach, on the other side, first transfers each object into an embedding space and computes a
representative of the choice task by averaging these embedded points. The utility of each object is then evaluated with
the representative as global context. Both approaches are complementary and have differing inductive biases. In spite
of this, both show promising predictive performance.

Learning Context-Dependent Choice Functions 24

While the FETA and FATE decompositions are general and in a sense quite natural approaches to model context-
dependent choice functions, a promising direction is the investigation of application-specific models with more focused
inductive biases. An example is the SDA approach, which applies principles from behavioral choice theory and also
tries to take the risk-aversion of humans into account [95].

While the most influential context effects for human choices have been studied, gaining a deeper understanding of the
rich mathematical structure of general choice problems is an important future endeavor.

Acknowledgements

The authors gratefully acknowledge the financial support provided by the European Regional Development Fund
(ERDF) and the valuable feedback provided by the industry partners of the Smart-GM research project – EFRE-
0801915.

Funded by the Deutsche Forschungsgemeinschaft (DFG – German Research Foundation) – 317046553.

This work is part of the Collaborative Research Center “On-the-Fly Computing” at Paderborn University, which is
supported by the German Research Foundation (DFG). Experiments were performed on resources provided by the
Paderborn Center for Parallel Computing.

References

[1] Charu C Aggarwal and Philip S Yu. “Outlier detection for high dimensional data”. In: ACM Sigmod Record.
Vol. 30. 2. ACM. 2001, pp. 37–46.

[2] Qingyao Ai et al. “Learning a Deep Listwise Context Model for Ranking Refinement”. In: SIGIR. ACM, 2018,
pp. 135–144.

[3] Qingyao Ai et al. “Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks”.
In: ICTIR. ACM, 2019, pp. 85–92.

[4] Pavel Anselmo Alvarez, Alessio Ishizaka, and Luis Martı́nez.
“Multiple-criteria decision-making sorting methods: A survey”.
In: Expert Systems with Applications 183 (2021), p. 115368.

[5] Attila Ambrus and Kareen Rozen. “Rationalising Choice with Multi-Self Models”.
In: The Economic Journal 125.585 (Mar. 2014), pp. 1136–1156.

[6] Kenneth J Arrow. Social Choice and Individual Values. John Wiley & Sons, 1951.
[7] Richard R. Batsell and John C. Polking. “A New Class of Market Share Models”.

In: Marketing Science 4.3 (1985), pp. 177–198.
[8] Peter W. Battaglia et al. “Relational inductive biases, deep learning, and graph networks”.

In: CoRR abs/1806.01261 (2018).
[9] Moshe Ben-Akiva and Steven R Lerman.

Discrete Choice Analysis: Theory and Application to Travel Demand. Vol. 9. MIT Press, 1985.
[10] Austin R. Benson, Ravi Kumar, and Andrew Tomkins. “A Discrete Choice Model for Subset Selection”.

In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. WSDM ’18.
New York, NY, USA: ACM, 2018, pp. 37–45.

[11] Jeremy Bentham. An Introduction to the Principles of Morals and Legislation.
London: T. Payne, and Son, 1789.

[12] Joseph Berkson. “Application of the Logistic Function to Bio-Assay”.
In: Journal of the American Statistical Association 39.227 (1944), pp. 357–365.

[13] James R Bettman, Mary Frances Luce, and John W Payne. “Constructive Consumer Choice Processes”.
In: Journal of Consumer Research 25.3 (1998), pp. 187–217.

[14] Bernd Bischl et al. “ASlib: A benchmark library for algorithm selection”.
In: Artificial Intelligence 237 (2016), pp. 41–58.

[15] Amanda Bower and Laura Balzano. “Preference Modeling with Context-Dependent Salient Features”.
In: ICML. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020, pp. 1067–1077.

[16] Ralph Allan Bradley and Milton E. Terry.
“Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons”.
In: Biometrika 39.3/4 (1952), pp. 324–345.

Learning Context-Dependent Choice Functions 25

[17] Karl Bringmann and Tobias Friedrich.
“Approximating the volume of unions and intersections of high-dimensional geometric objects”.
In: Computational Geometry 43.6 (2010), pp. 601–610.

[18] Christopher J. C. Burges et al. “Learning to Rank using Gradient Descent”. In: ICML. Vol. 119.
ACM International Conference Proceeding Series. ACM, 2005, pp. 89–96.

[19] C. Domshlak et al. “Preferences in AI: An overview”.
In: Artificial Intelligence 175.7–8 (2011), pp. 1037–1052.

[20] Dipankar Chakravarti and John G. Lynch Jr.
“A Framework For Exploring Context Effects on Consumer Judgment and Choice”.
In: NA - Advances in Consumer Research 10 (1983), pp. 289–297.

[21] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A survey”.
In: ACM Computing Surveys (CSUR) 41.3 (2009), p. 15.

[22] Shuo Chen and Thorsten Joachims. “Modeling Intransitivity in Matchup and Comparison Data”. In: WSDM.
ACM, 2016, pp. 227–236.

[23] François Chollet et al. Keras. https://keras.io. 2017.
[24] David Rox Cox. “Some Procedures Connected With the Logistic Qualitative Response Curve”.

In: Research Papers in Statistics Festschrift for J. Neyman (1966), pp. 55–71.
[25] Gerard Debreu. “Representation of a preference ordering by a numerical function”.

In: Decision Processes 3 (1954), pp. 159–165.
[26] Gerard Debreu. “Review of R. D. Luce, Individual Choice Behavior: A Theoretical Analysis”.

In: American Economic Review 50.1 (1960), pp. 186–188.
[27] Gerard Debreu. Theory of Value: An Axiomatic Analysis of Economic Equilibrium.

Yale University Press, 1959.
[28] James Diamond and William Evans. “The Correction for Guessing”.

In: Review of Educational Research 43.2 (1973), pp. 181–191.
[29] Ürün Dogan, Tobias Glasmachers, and Christian Igel.

“A Unified View on Multi-class Support Vector Classification”.
In: Journal of Machine Learning Research 17.45 (2016), pp. 1–32.

[30] John R. Doyle et al. “The robustness of the asymmetrically dominated effect: Buying frames, phantom
alternatives, and in-store purchases”. In: Psychology & Marketing 16.3 (1999), pp. 225–243.

[31] John Duchi, Elad Hazan, and Yoram Singer.
“Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”.
In: Journal of Machine Learning Research 12 (2011), pp. 2121–2159.

[32] Theodoros Evgeniou, Constantinos Boussios, and Giorgos Zacharia.
“Generalized Robust Conjoint Estimation”. In: Marketing Science 24.3 (2005), pp. 415–429.

[33] Expedia. Expedia Hotel Recommendations.
https://www.kaggle.com/c/expedia-hotel-recommendations/overview. Accessed: 2021-03-28.
June 2016.

[34] M. Ahmadi Fahandar, E. Hüllermeier, and I. Couso.
“Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening”. In: ICML.
Vol. 70. PMLR, 2017, pp. 1078–1087.

[35] Tom Fawcett. “An Introduction to ROC Analysis”.
In: Pattern Recognition Letters 27.8 (June 2006), pp. 861–874.

[36] Gustav Theodor Fechner. Elemente der Psychophysik. Vol. 2. Breitkopf u. Härtel, 1860.
[37] M. A. Fligner and J. S. Verducci. “Distance based Ranking Models”.

In: Journal of the Royal Statistical Society. Series B (Methodological) 48.3 (1986), pp. 359–369.
[38] Michael A. Fligner and Joseph S. Verducci. “Multistage Ranking Models”.

In: Journal of the American Statistical Association 83.403 (1988), pp. 892–901.
[39] Drew Fudenberg and David K. Levine. “A Dual-Self Model of Impulse Control”.

In: American Economic Review 96.5 (Dec. 2006), pp. 1449–1476.
[40] Johannes Fürnkranz and Eyke Hüllermeier, eds. Preference Learning. Springer, 2010.
[41] Marc Geilen et al. “An Algebra of Pareto Points”. In: Fundamenta Informaticae 78.1 (2007), pp. 35–74.
[42] Xavier Glorot and Yoshua Bengio.

“Understanding the difficulty of training deep feedforward neural networks”. In: AISTATS. Vol. 9.
JMLR Proceedings. JMLR, 2010, pp. 249–256.

https://keras.io
https://www.kaggle.com/c/expedia-hotel-recommendations/overview

Learning Context-Dependent Choice Functions 26

[43] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[44] M. Grabisch et al. Aggregation Functions. Cambridge University Press, 2009.
[45] Jerry Green and Daniel Hojman. Choice, Rationality and Welfare Measurement.

KSG Faculty Research Working Paper Series RWP07-054. Rochester, NY: Harvard University, Nov. 1, 2007.
[46] John Gurland, Ilbok Lee, and Paul A. Dahm. “Polychotomous Quantal Response in Biological Assay”.

In: Biometrics 16.3 (1960), pp. 382–398.
[47] F Maxwell Harper and Joseph A Konstan. “The MovieLens Datasets: History and Context”.

In: ACM Trans. Interact. Intell. Syst. 5.4 (2015).
[48] Kaiming He et al.

“Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. In: ICCV.
IEEE Computer Society, 2015, pp. 1026–1034.

[49] Tim Head et al. scikit-optimize/scikit-optimize: v0.5.2. Version v0.5.2. Mar. 2018.
[50] H. S. Houthakker. “Revealed Preference and the Utility Function”. In: Economica 17.66 (1950), pp. 159–174.
[51] Joel Huber, John W. Payne, and Christopher Puto.

“Adding Asymmetrically Dominated Alternatives: Violations of Regularity and the Similarity Hypothesis”.
In: Journal of Consumer Research 9.1 (1982), pp. 90–98.

[52] Joel Huber and Christopher Puto.
“Market Boundaries and Product Choice: Illustrating Attraction and Substitution Effects”.
In: Journal of Consumer Research 10.1 (1983), pp. 31–44.

[53] Sergey Ioffe and Christian Szegedy.
“Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. In: ICML.
Vol. 37. JMLR Workshop and Conference Proceedings. JMLR, 2015, pp. 448–456.

[54] K. Dembczynski et al. “On Label Dependence and Loss Minimization in Multi-Label Classification”.
In: Machine Learning 88.1–2 (2012), pp. 5–45.

[55] Gil Kalai, Ariel Rubinstein, and Ran Spiegler. “Rationalizing Choice Functions by Multiple Rationales”.
In: Econometrica 70.6 (2002), pp. 2481–2488.

[56] Wagner A. Kamakura and Rajendra K. Srivastava.
“Predicting Choice Shares under Conditions of Brand Interdependence”.
In: Journal of Marketing Research 21.4 (1984), pp. 420–434.

[57] Toshihiro Kamishima. “Nantonac Collaborative Filtering: Recommendation Based on Order Responses”.
In: KDD. ACM, 2003, pp. 583–588.

[58] Toshihiro Kamishima, Hideto Kazawa, and Shotaro Akaho.
“A Survey and Empirical Comparison of Object Ranking Methods”. In: Preference Learning. Springer, 2010,
pp. 181–201.

[59] Jerry S. Kelly and Maxwell Hall. “Impossibility results with resoluteness”.
In: Economics Letters 34.1 (1990), pp. 15–19.

[60] Mark Kelman, Yuval Rottenstreich, and Amos Tversky. “Context-Dependence in Legal Decision Making”.
In: The Journal of Legal Studies 25.2 (1996), pp. 287–318.

[61] Ran Kivetz, Oded Netzer, and V. Srinivasan. “Alternative Models for Capturing the Compromise Effect”.
In: Journal of Marketing Research 41.3 (2004), pp. 237–257.

[62] Günter Klambauer et al. “Self-Normalizing Neural Networks”. In: NIPS. Curran Associates Inc., 2017,
pp. 972–981.

[63] Jon M. Kleinberg, Sendhil Mullainathan, and Johan Ugander. “Comparison-based Choices”. In: EC.
ACM, 2017, pp. 127–144.

[64] Oluwasanmi Koyejo et al. “Consistent Multilabel Classification”. In: NIPS. MIT Press, 2015, pp. 3321–3329.
[65] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. The MNIST database of handwritten digits.

accessed: 2021-03-29. 2010.
[66] David D. Lewis. “Evaluating and Optimizing Autonomous Text Classification Systems”. In: SIGIR.

ACM Press, 1995, pp. 246–254.
[67] R. Duncan Luce. Individual Choice Behavior. Oxford, England: John Wiley, 1959.
[68] Sebastián Maldonado, Ricardo Montoya, and Richard Weber.

“Advanced conjoint analysis using feature selection via support vector machines”.
In: European Journal of Operational Research 241.2 (2015), pp. 564–574.

[69] C. L. Mallows. “Non-Null Ranking Models. I”. In: Biometrika 44.1/2 (1957), pp. 114–130.

http://www.deeplearningbook.org

Learning Context-Dependent Choice Functions 27

[70] Nathan Mantel. “Models for Complex Contingency Tables and Polychotomous Dosage Response Curves”.
In: Biometrics 22.1 (1966), pp. 83–95.

[71] Paola Manzini and Marco Mariotti. “Sequentially Rationalizable Choice”.
In: American Economic Review 97.5 (2007), pp. 1824–1839.

[72] Harry Markowitz. “Portfolio Selection”. In: The Journal of Finance 7.1 (1952), pp. 77–91.
[73] Kenneth O. May. “Intransitivity, Utility, and the Aggregation of Preference Patterns”.

In: Econometrica 22.1 (1954), pp. 1–13.
[74] Donna Katzman McClish. “Analyzing a Portion of the ROC Curve”.

In: Medical Decision Making 9.3 (1989), pp. 190–195.
[75] Daniel McFadden. “Conditional Logit Analysis of Qualitative Choice Behavior”.

In: Frontiers in Econometrics. Academic Press, 1974, pp. 105–142.
[76] Daniel McFadden and Kenneth Train. “Mixed MNL models for discrete response”.

In: Journal of Applied Econometrics 15.5 (2000), pp. 447–470.
[77] Barbara A. Mellers and Michael H. Birnbaum. “Contextual effects in social judgment”.

In: Journal of Experimental Social Psychology 19.2 (1983), pp. 157–171.
[78] Robert Moore and John DeNero. “L1 and L2 Regularization for Multiclass Hinge Loss Models”. In: MLSLP.

2011, pp. 1–5.
[79] Yurii Nesterov. “A method of solving a convex programming problem with convergence rate O(1/k2)”.

In: Soviet Mathematics Doklady. Vol. 27. 2. 1983, pp. 372–376.
[80] A. Yeşim Orhun.

“Optimal Product Line Design When Consumers Exhibit Choice Set-Dependent Preferences”.
In: Marketing Science 28.5 (2009), pp. 868–886.

[81] Ali I. Ozkes and M. Remzi Sanver. “Anonymous, neutral, and resolute social choice revisited”.
In: Social Choice and Welfare 57.1 (July 2021), pp. 97–113.

[82] John W Payne, James R Bettman, and Eric J Johnson.
“Behavioral Decision Research: A Constructive Processing Perspective”.
In: Annual Review of Psychology 43.1 (1992), pp. 87–131.

[83] John W Payne et al. “Measuring Constructed Preferences: Towards a Building Code”.
In: Elicitation of Preferences. Springer, 1999, pp. 243–275.

[84] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[85] Karlson Pfannschmidt, Pritha Gupta, and Eyke Hüllermeier.
“Deep Architectures for Learning Context-dependent Ranking Functions”. In: CoRR abs/1803.05796 (2018).

[86] R. L. Plackett. “The Analysis of Permutations”.
In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 24.2 (1975), pp. 193–202.

[87] David Martin Powers.
“Evaluation: From Precision, Recall and F-measure to ROC, Informedness, Markedness & Correlation”.
In: Journal of Machine Learning Technologies 2.1 (2011), pp. 37–63.

[88] David Martin Powers. “Recall & Precision versus The Bookmaker”. In: ICCS.
University of New South Wales, 2003, pp. 529–534.

[89] Tao Qin and Tie-Yan Liu. “Introducing LETOR 4.0 Datasets”. In: CoRR abs/1306.2597 (2013).
[90] Siamak Ravanbakhsh, Jeff G. Schneider, and Barnabás Póczos. “Equivariance Through Parameter-Sharing”.

In: ICML. Vol. 70. Proceedings of Machine Learning Research. PMLR, 2017, pp. 2892–2901.
[91] John R. Rice. “The Algorithm Selection Problem”. In: Advances in Computers. Vol. 15.

Advances in Computers. Elsevier, 1976, pp. 65–118.
[92] Jörg Rieskamp, Jerome R. Busemeyer, and Barbara A. Mellers.

“Extending the Bounds of Rationality: Evidence and Theories of Preferential Choice”.
In: Journal of Economic Literature 44.3 (Sept. 2006), pp. 631–661.

[93] Leonardo Rigutini et al. “SortNet: Learning to Rank by a Neural Preference Function”.
In: IEEE Trans. Neural Networks 22.9 (2011), pp. 1368–1380.

[94] Robert P Rooderkerk, Harald J Van Heerde, and Tammo HA Bijmolt.
“Incorporating Context Effects into a Choice Model”.
In: Journal of Marketing Research 48.4 (2011), pp. 767–780.

[95] Nir Rosenfeld, Kojin Oshiba, and Yaron Singer. “Predicting Choice with Set-Dependent Aggregation”.
In: ICML. Vol. 119. Proceedings of Machine Learning Research. PMLR, July 2020, pp. 8220–8229.

Learning Context-Dependent Choice Functions 28

[96] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 4th. Pearson, 2020.
[97] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck.

“Probabilistic programming in Python using PyMC3”. In: PeerJ Computer Science 2 (Apr. 2016), e55.
[98] P. A. Samuelson. “A Note on the Pure Theory of Consumer’s Behaviour”.

In: Economica 5.17 (1938), pp. 61–71.
[99] Constantine Sedikides, Dan Ariely, and Nils Olsen.

“Contextual and Procedural Determinants of Partner Selection: Of Asymmetric Dominance and Prominence”.
In: Social Cognition 17.2 (1999), pp. 118–139.

[100] Amartya K. Sen. “Choice Functions and Revealed Preference”.
In: The Review of Economic Studies 38.3 (1971), pp. 307–317.

[101] Arjun Seshadri, Alex Peysakhovich, and Johan Ugander.
“Discovering Context Effects from Raw Choice Data”. In: ICML. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 5660–5669.

[102] Eldar Shafir, Itamar Simonson, and Amos Tversky. “Reason-based choice”.
In: Cognition 49.1 (1993), pp. 11–36.

[103] Itamar Simonson. “Choice Based on Reasons: The Case of Attraction and Compromise Effects”.
In: Journal of Consumer Research 16.2 (1989), pp. 158–174.

[104] Itamar Simonson and Amos Tversky. “Choice in Context: Tradeoff Contrast and Extremeness Aversion”.
In: Journal of Marketing Research 29.3 (1992), pp. 281–295.

[105] Gene Smith. Tagging: People-Powered Metadata for the Social Web. New Riders, 2007.
[106] Richard P. Stanley. Enumerative Combinatorics. 2nd. Vol. 1. Cambridge University Press, 2011.
[107] Gerald Tesauro. “Connectionist Learning of Expert Preferences by Comparison Training”. In: NIPS.

Morgan Kaufmann Publishers Inc., 1989, pp. 99–106.
[108] Henri Theil. “A Multinomial Extension of the Linear Logit Model”.

In: International Economic Review 10.3 (1969), pp. 251–259.
[109] Kiran Tomlinson and Austin Benson.

“Choice Set Optimization Under Discrete Choice Models of Group Decisions”. In: ICML. Vol. 119.
Proceedings of Machine Learning Research. PMLR, July 2020, pp. 9514–9525.

[110] Kenneth E Train. Discrete Choice Methods with Simulation. 2nd. Cambridge University Press, 2009.
[111] TREC. TREC 2007 Million Query Track. Accessed: 2021-03-29. 2007.
[112] TREC. TREC 2008 Million Query Track. Accessed: 2021-03-29. 2008.
[113] Amos Tversky. “Elimination by Aspects: A Theory of Choice”. In: Psychological Review 79.4 (1972), p. 281.
[114] Amos Tversky. “Intransitivity of Preferences”. In: Psychological Review 76.1 (1969), p. 31.
[115] Amos Tversky and Itamar Simonson. “Context-dependent Preferences”.

In: Management Science 39.10 (1993), pp. 1179–1189.
[116] Mark Van der Laan, Katherine Pollard, and Jennifer Bryan. “A new partitioning around medoids algorithm”.

In: Journal of Statistical Computation and Simulation 73.8 (2003), pp. 575–584.
[117] Jesse Vig, Shilad Sen, and John Riedl. “Navigating the Tag Genome”. In: IUI. ACM. 2011, pp. 93–102.
[118] Jesse Vig, Shilad Sen, and John Riedl.

“The Tag Genome: Encoding Community Knowledge to Support Novel Interaction”.
In: ACM Trans. Interact. Intell. Syst. 2.3 (2012), p. 13.

[119] Milan Vojnovic and Se-Young Yun. On the Team Selection Problem. Tech. rep. MSR-TR-2016-7.
Microsoft Research, Feb. 2016.

[120] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. 1st.
Princeton University Press, 1944.

[121] Willem Waegeman et al. “On the Bayes-Optimality of F-Measure Maximizers”.
In: Journal of Machine Learning Research 15.1 (2014), pp. 3333–3388.

[122] Chieh-Hua Wen and Frank S Koppelman. “The generalized nested logit model”.
In: Transportation Research Part B 35.7 (2001), pp. 627–641.

[123] H C W L Williams.
“On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit”.
In: Environment and Planning A: Economy and Space 9.3 (1977), pp. 285–344.

[124] Nan Ye et al. “Optimizing F-measure: A Tale of Two Approaches”. In: ICML. icml.cc / Omnipress, 2012,
pp. 1555–1562.

Learning Context-Dependent Choice Functions 29

[125] L. Yu and B. Sun. “Four types of typical discrete Choice Models: Which are you using?”
In: Proceedings of 2012 IEEE International Conference on Service Operations and Logistics, and Informatics.
2012, pp. 298–301.

[126] Manzil Zaheer et al. “Deep Sets”. In: NIPS. Vol. 30. Curran Associates, Inc., 2017, pp. 3394–3404.
[127] Qiaoping Zhang and Isabelle Couloigner. “A New and Efficient K-Medoid Algorithm for Spatial Clustering”.

In: ICCSA. ICCSA’05. Singapore: Springer-Verlag, 2005, pp. 181–189.

Learning Context-Dependent Choice Functions 30

A Notation

Table 2: Notation used throughout the paper.
Symbol Meaning
[n] {1, 2, . . . , n}
JAK 1 if A is a true statement and 0 otherwise
Id the unit matrix of size d × d
X set of reference objects
x object, choice alternative
Q choice task space
C choice space
Z embedding space
Q task
C choice set, i. e., an element of C
c choice function Q −→ C
π ranking
P probability measure
p probability distribution (mass function)
L loss function on C
U utility function
Csingleton(U,Q) singleton choice from Q according to U;

formally defined as arg maxx∈Q U(x)
CU

subset(t,Q) subset choice from Q according to U and t;
formally defined as {x ∈ Q : U(x,Q) ≥ t}

Dk domain of the sub-utility function Uk of FETA; formally defined as
{(x, A) : x ∈ X and A ⊆ X \ {x} with |A| = k}

UU0,U1
FETA FETA utility function with sub-utility functions U0 and U1

φ embedding function
UU′,φ

FATE FATE utility function with sub-utility function U′ and transformation φ

‖·‖ standard euclidean norm in Rn, i. e., ‖x‖ =

√
x2

1 + · · · + x2
n

θ parameters of a model
D Dataset

B EvaluationMeasures

Besides the target losses introduced in Section 6.2, we evaluate the trained models using additional evaluation measures.
These should give a more complete picture of the performance of the different models. The results including the
additional measures can be found in Appendix G.

B.1 Singleton Choice

To define the evaluation measures in the singleton choice setting, suppose in the following a choice task space Q ⊂ 2X,
a utility function U for Q as well as Q ∈ Q and x ∈ Q to be arbitrary but fixed.

Top-k Categorical Accuracy The top-k categorical accuracy is defined as the fraction of times in which the set
of objects in the top k positions, according to the predicted scores, contains the ground-truth chosen object [23, 9].
Formally, writing Q = {y1, . . . , y|Q|} with U(y1,Q) ≥ · · · ≥ U(y|Q|,Q), we have

mtop-k(U,Q, {x}) B Jx ∈ {y1, . . . , yk}K . (25)

Categorical Accuracy The categorical accuracy is defined as the fraction of times in which the object with the
largest score is the same as that ground-truth singleton choice, i. e.,

mCA(U,Q, {x}) = Jx ∈ arg maxy∈Q U(y,Q)K . (26)

The categorical accuracy is the most common measure used for the evaluation of SCMs and commonly referred to as
hit-rate [9]. It is evident that mCA(U,Q, {x}) = mtop-1(U,Q, {x}) holds, provided arg maxy∈Q U(y,Q) is a singleton set.

Learning Context-Dependent Choice Functions 31

Normalized Accuracy The measures defined above are not a reasonable estimate when observing the performance
of an SCM on the choice tasks of different sizes |Q|, since the task becomes harder as the choice task size increases.
The hardness of the task should be adjusted with respect to the accuracy that random guessing can achieve, which is
defined as the probability of choosing the correct singleton choice from the choice task Q. Assuming each object to be
chosen with the same probability, the probability for choosing a fixed object is 1

|Q| . These considerations motivate the
definition of the normalized accuracy as follows:

mCANorm(U,Q, {x}) B
mCA(U,Q, {x}) − 1

|Q|

1 − 1
|Q|

. (27)

Note that this measure takes values in [− 1
|Q|−1 , 1]. The minimum value of − 1

|Q|−1 is achieved when the algorithm
performs with an accuracy of 0, i. e., it is worse than random guessing, and the maximum value of 1 when the learner
always predicts correctly. A value of 0 indicates that the learner performs similar to random guessing. This measure
was derived using the “correction for guessing” formulation [28].

B.2 Subset Choice

For the subset choice setting, we introduce accuracy measures in terms of a choice task Q and two corresponding
choices C, Ĉ ⊆ Q for Q. Here, C may be thought of as the ground-truth choice for Q and Ĉ as a prediction made by a
learner. In contrast to the singleton choice setting, these measures do not depend on a utility function. For the sake of
convenience, we suppose Q, C and Ĉ to be arbitrary but fixed in the following. To prepare some of the measures, let us
formally define the quantities true positives (T̂ P), true negatives (T̂ N), false positives (F̂P) and false negatives (F̂N)
via

T̂ P(Q,C, Ĉ) B
1
|Q|

∑
x∈Q

Jx ∈ C, x ∈ ĈK,

T̂ N(Q,C, Ĉ) B
1
|Q|

∑
x∈Q

Jx < C, x < ĈK,

F̂P(Q,C, Ĉ) B
1
|Q|

∑
x∈Q

Jx < C, x ∈ ĈK,

F̂N(Q,C, Ĉ) B
1
|Q|

∑
x∈Q

Jx ∈ C, x < ĈK,

respectively. These quantities are similar to those used to define the confusion matrix in the case of binary classification
[64].

Subset 0/1 Accuracy The Subset 0/1 Accuracy measures the number of times the ground-truth choice set C and the
predicted choice set Ĉ are exactly the same. This measure is used to measure how often the algorithms predictions
match the complete choice set. Formally, it is defined as

mSUBSET(Q,C, Ĉ) B JC = ĈK.

Recall Recall is defined as the proportion of real positive cases that are correctly predicted positive [87]. In the field
of information retrieval, it is the fraction of the relevant documents that are successfully retrieved. For our choice
setting this can be defined as the fraction of objects from the ground-truth choice set C which chosen successfully or
are present in the predicted choice set Ĉ, i. e., formally as

mRE(Q,C, Ĉ) B
T̂ P(Q,C, Ĉ)

T̂ P(Q,C, Ĉ) + F̂N(Q,C, Ĉ)

Precision Precision denotes the proportion of predicted positive labels that are correct [87]. For the choice setting,
this can be defined as the fraction of objects from the predicted choice set Ĉ that are actually chosen by the decision
maker or that are present in the ground-truth choice set C. Formally, it is defined as:

mPR(Q,C, Ĉ) B
T̂ P(Q,C, Ĉ)

T̂ P(Q,C, Ĉ) + F̂P(Q,C, Ĉ)

Learning Context-Dependent Choice Functions 32

F1-Measure The F1-measure is defined as the harmonic mean of precision and recall:

mF1 (Q,C, Ĉ) B
2 mPR(Q,C, Ĉ) mRE(Q,C, Ĉ)

mPR(Q,C, Ĉ) + mRE(Q,C, Ĉ)
It can also be expressed in form of the confusion matrix quantities as follows [64]:

mF1 (Q,C, Ĉ) =
2T̂ P(Q,C, Ĉ)

2T̂ P(Q,C, Ĉ) + F̂N(Q,C, Ĉ) + F̂P(Q,C, Ĉ)

Informedness The informedness is a measure proposed by Powers [88, 87], which is, in contrast to the F1-measure,
unbiased with respect to the population prevalence of positives. It specifies the probability that the learner makes an
informed prediction if compared to chance and is formally defined as

mInf(Q,C, Ĉ) B
T̂ P(Q,C, Ĉ)

T̂ P(Q,C, Ĉ) + F̂N(Q,C, Ĉ)
+

T̂ N(Q,C, Ĉ)

T̂ N(Q,C, Ĉ) + F̂P(Q,C, Ĉ)
− 1

A very desirable property of this measure is that it is exactly 0 in case the learner is guessing or is constant.

AUC-ROC The AUC-ROC is a performance measure, which estimates the capacity of a classification model to
distinguish between two classes [35, 74]. It computes the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one [74]. It is estimated by computing the area under the
ROC-curve, which is created by plotting the true positive rate mTPR against the false positive rate mFPR, where

mTPR(Q,C, Ĉ) B
T̂ P(Q,C, Ĉ)

T̂ P(Q,C, Ĉ) + F̂N(Q,C, Ĉ)
,

mFPR(Q,C, Ĉ) B
F̂P(Q,C, Ĉ)

T̂ N(Q,C, Ĉ) + F̂P(Q,C, Ĉ)
.

A very desirable property of this measure is that it exactly 0.5 in case the learner is guessing.

C Additional Experimental Details

In this section, we will now list all experimental details which were excluded from the main paper for conciseness
reasons. First, we explain the process of nested cross-validation using the hyperparameter optimization in detail. Then
we explain different hyperparameters which were tuned for different models and which parameters were kept fixed.
Lastly, we explain the design generalization experiment.

Empirical Comparison In order to compare all learners fairly, we do nested cross-validation with synchronized
random streams for all the learning models, as shown in Figure 9. The hyperparameters of all models are tuned
using extensive Bayesian optimization. We describe the complete procedure in two parts: first the hyperparameter
optimization and second the out-of-sample evaluation. First, we configure the given the learner M with the default
parameters pd described in the next section. Then we generate 5 sets of trainingDk and test datasetDTk ∀k ∈ [5] and
the process which is used to generate a train-test set for k is described in Table 1.

Hyperparameter Optimization The training set Dk is used to first identify the best hyperparameters using 3-fold
stratified cross-validation, and then to train the final learner for out-of-sample evaluation. The hyperparameter optimizer
picks hyperparameters from the ranges in Table 3 (pi) for the ith iteration. In the inner loop 1 ≤ j ≤ 3, we split the
full training dataset Dk into train set (Dk j 90 % of Dk) and validation dataset (Vk j 10 % of Dk) using the stratified
shuffle split. For the given hyperparameters pi, we train the model on the train set (Dk j) and evaluate on the validation
dataset Vk j using the target loss function. We use the 1 − F1-measure for general subset choice and the 1-categorical
accuracy for singleton choice as the target loss to evaluate the hyperparameter configuration. We calculate the mean
loss `i = mean(l1, l2, l3) for the given hyperparameters pi. The optimization loop is run for 100 iterations to validate
100 sets of hyperparameters, in order to acquire the optimal parameters pb for the given learning model.

Out-of-Sample Evaluation Finally, after optimization, we configure the learners M using the best found hyperpa-
rameters pb and the remaining default parameters pd. Then, we train the model M on the complete training datasetDk
and evaluate on the test dataset DTk using different evaluation measures m defined in Appendix B. To obtain a good
estimate of the mean performance and an estimate for the standard deviation, we repeat this procedure 5 times using
outer cross-validation. For each fold k ∈ [K],K = 5, we get the evaluated value ak and calculate the mean and the
standard deviation of the performance measure m.

Learning Context-Dependent Choice Functions 33

 Test Data

 Shuffle-Split
Data

Data
Generator

Train
with

Evaluate
on

Configure
with

Tunable
Parameters

Hyper Parameter Optimizer

 Loss

Configure
with

Default
Parameters

Best Parameters

Learning
Model

 Train Data

Out of sample
Accuracy

Minimize Loss

Validation
Data

Inner Loop Train
Data

Train
on

Evaluate
on

Measure

Figure 9: Overview of the complete evaluation pipeline.

Table 3: Hyperparameter ranges used by the optimizer to select configurations for the learners.
Architecture Parameters Other Parameters LRScheduler Linear Model Parameters

Learner Set Units Set Layers Joint Units Joint Layers Regularizer Strength Learning Rate Batch Size Epochs Drop edrop Drop dr tol C

FETA-Net NA NA [1, 20] [4, 1024] [10−10, 0.1] [10−5, 0.01] [32, 4096] [50, 250] [0.01, 0.5] NA NA

FATE-Net [4, 1024] [1, 20] [4, 1024] [1, 20] [10−10, 0.1] [10−5, 0.1] [32, 4096] [50, 250] [0.01, 0.5] NA NA

FETA-Linear NA NA NA NA [10−10, 0.1] [10−5, 0.1] [32, 2048] [10, 150] [0.01, 0.5] NA NA

SDA r[4, 64] r[1, 4] w[4, 64] w[1, 4] [10−10, 0.1] [10−5, 0.1] [8, 1024] [50, 250] [0.01, 0.5] NA NA

RankNet NA NA [1, 20] [4, 1024] [10−10, 0.1] [10−5, 0.01] [64, 8192] [50, 250] [0.01, 0.5] NA NA

RankSVM NA NA NA NA NA NA NA NA NA [10−4, 0.5] [1, 12]

Hyperparameters & Inference We will now describe the specific hyperparameters we optimize and which ranges
of values we consider (see Table 3 for an overview). For probabilistic models, we also describe how the inference is
done. For all neural network models, we make use of the following techniques:

• We use either rectified linear units (ReLU) non-linearities in conjunction with batch normalization (BN) [53]
or self-normalizing linear units (SELU) non-linearities [62] for each hidden layer.

• Regularization: L2 penalties are applied and the corresponding regularization strength is tuned.

• Optimizer: stochastic gradient descent (SGD) with Nesterov momentum [79].

• A step-decay function is used for the learning rate annealing schedule. The decay factor is tuned [31].

The step-decay function drops the learning rate by a factor after a certain number epochs [31]. Formally, it is defined
as:

lr = lr0 · d

⌊
e

edrop

⌋
r ,

where lr0 is the initial learning rate, 0 < dr < 1 is the rate with which the learning rate should be reduced, e is the
current epoch and edrop is the number of epochs after which the learning rate is decreased. We set the maximum number
of epochs the neural networks are trained for to 1000.

The hyperparameters of each algorithm were tuned using the package scikit-optimize [49]. Apart from the number
of hidden layers and units, we also tune the learning rate of the stochastic gradient descent optimizer, regularization
strength and batch size (fraction of training examples used for estimating the gradient in one iteration). We also tune
the drop-rate dr and epoch-drop edrop for the step-decay function used by the Stochastic gradient descent optimizer by
the neural networks. For PairwiseSVM, we tune the value of the penalty parameter C of the error term, and another
is tol (tol in scikit-learn) which is the tolerance for the stopping criteria of the optimization algorithm [84]. All of the
different GEV models are implemented in PyMC3 a library for facilitating Markov Chain Monte Carlo estimation of
the posterior distribution [97]. An overview of all the hyperparameters and their admissible ranges is shown in Table 3.

Learning Context-Dependent Choice Functions 34

Training Data with
task set size

Generate test dataset
with task set size

Out of sample
Accuracy

Configure
Model

Train Model
 on

Evaluate on
Test Data

Test Data with
task set size

Best Tuned
Parameters

Default
Parameters

Learning
Model

Figure 10: Design of the generalization experiments.

Table 4: Dataset configurations for generalization experiments. Bracket notation is used to denote the range of values.
Problem Dataset # Features # Train # Test Task set sizes S Task set Size |Q|

Singleton Choice Medoid 5 10 000 100 000 [3, 30] 10
Hypervolume 2 10 000 100 000 [3, 30] 10

Threshold Tuning In order to set the threshold for the subset choice models (4), we tune the threshold for all
models on a small validation set. Obviously, an optimal value for t will depend on the underlying target loss function.
Our main target loss is the (micro-averaged) F1-measure (21), which balances precision and recall of the predictions
[66, 124, 121]. Koyejo et al. [64] show that tuning a threshold on a validation set, yields a consistent classifier, if the
estimated marginal instance probabilities (in our case the choice probabilities) converge in probability to the population-
level probabilities. One important difference to the multi-label classification setting is the absence of a fixed set of
labels. Instead, we have a dynamically changing set of objects. Thus, it only makes sense to consider micro-averaged
performance metrics.

D Design of the Generalization Experiment

The second experimental setup is designed to gauge the generalization capability of the learning models by measuring
the accuracy obtained by a trained model on unseen task set sizes. To this end, we vary the task set sizes from 3 to 30
as shown in Figure 10.

First, we configure the learning model with the best hyperparameters pb obtained from the empirical comparison
experiment for the given dataset and the remaining default parameters pd. Then we generate the training dataset
containing task sets of size K = |Q| and train the configured model on the training dataset DK . Finally, we evaluate
the trained model CM on different test datasetsDk containing the task sets of sizes in S (|Q| = k ∈ S) as described in
Table 4.

E Synthetic Datasets

In this section, we will formally describe the process of generating the datasets for the experimental evaluation. In the
case of synthetic datasets, this entails the complete process by which the objects and queries are generated.

E.1 The Medoid Problem

Recall that we have defined the medoid of a set Q ⊂ Rd as cmedoid(Q) = arg minx∈Q
1
|Q|

∑
y∈Q‖x − y‖, where ‖·‖ is the

standard euclidean norm in Rd. Thus, the medoid of Q may be thought of as the most centrally located object in Q, cf.
the illustration of a choice set Q of size 5 and its medoid in Figure 11a. As it depends on its distance to any other point
from Q, the medoid of Q is sensitive to changes of any points in Q.

For our empirical study, we created a dataset D = {(Q1,C1), . . . , (QN ,CN)} by drawing each Qi independently and
uniformly at random from the set {

Q ⊂ [0, 1]d : |Q| = n and |cmedoid(Q)| = 1
}

Learning Context-Dependent Choice Functions 35

(a) Random points in [0, 1]2 are ranked
according to their distance to the
medoid (here shown in orange

Criteria 1

Cr
ite

ria
 2

Best

(b) Random points in [0, 1]2, on Pareto-
font ranked according to thier contribu-
tions

 3
 4 5

 2 3

 2
 1 3

 4

 2

 {2, 3}

 3 4 5

 2 3

 1 3

 4
 2

 {5, 1}

	Mode

	Unique

(c) Example for unique and mode func-
tion on MNIST digits

Figure 11: Examples for synthetic datasets

and then choose Ci B cmedoid(Qi). Here, the sampling step can be performed via the acceptance-rejection method:
One may repeatedly sample x1, . . . , xn uniformly at random from [0, 1]d until Q = {x1, . . . , xn} has size n and a unique
medoid. Regarding that this condition is already fulfilled with probability 1 after sampling x1, . . . , xn only once, this
method is efficient.

E.2 The Pareto Problem

Above, we introduced the Pareto set cPareto(Q) of a set Q ⊂ Rd as the set of all elements x ∈ Q which are not dominated
by any y ∈ Q \ {x}, wherein x was said to dominate y if ∀i ∈ [d] : xi ≤ yi and ∃i ∈ [d] : xi < yi. Figure 11b shows the
Pareto set of a set Q ⊂ R2.

With the help of Pareto sets we create a synthetic dataset D = {(Q j,C j)}Nj=1 for the subset choice task, where each
sample (Q,C) ∈ D is generated independently of the others in the following way:

1. Sample µ1, . . . ,µn i.i.d. uniformly at random from {x ∈ Rd : ‖x‖ ≤ 1}

2. Draw i.i.d. samples ξ1, . . . , ξn from N(0, Id), the standard Gaussian distribution on Rd, and define xi B µi + ξi
for each i ∈ [n].

3. Choose Q B {x1, . . . , xn} and C B cPareto(Q).

Hypervolume In Section 6.3.3 we have introduced for Q ⊂ Rd the choice set cHypVol(Q) as the set of all x ∈ Q, which
contribute the least among all elements in Q to the hypervolume of Q, cf. Section 6.3.3 for the precise definitions and
also for the connection of the hypervolume of Q to the Pareto front of Q. As this contribution of each point depends on
the position of other points in Q, cHypVol is context-dependent. This is illustrated in Figure 11b, where all five elements
of Q = {A, B,C,D, E} lie on the Pareto front of Q. There, the contribution of point A is largest in Q, but if we remove
the point D from the choice set, it increases the contribution of the point E for the set. So, the singleton choice changes
from A to E, after removing D from Q.

Based on cHypVol we construct a singleton choice dataset D = {(Qi,Ci)}Ni=1 by sampling each Qi uniformly at random
from the set of all Q ⊆ Rd, which fulfill

|Q| = n, ∀x ∈ Q : (‖x‖ = 1 and ∀i ∈ [d] : xi ≤ 0) and |cHypVol(Q)| = 1,

and then defining Ci B cHypVol(Qi) afterwards. Similarly, as in the construction of the Medoid data set, sampling can
be done via the acception-rejection method.

E.3 MNIST Number Problems

In this section, we will describe the process of generating different semisynthetic datasets using the MNIST dataset [65].

Learning Context-Dependent Choice Functions 36

Input Conv2d
Layer A

Conv2d
Layer C

MaxPooling2D
Layer B

MaxPooling2D
Layer D

Dense Layer 1024 units

Dense Layer 128 units

Softm
ax

D1
D2

Fully-Connected sequential network

Figure 12: CNN-For converting MNIST images to high-level features

Feature Extraction Since the dataset consists of 2-D image maps, we first train an off-the-shelf CNN to solve the
digit multi-class classification task to level the playing field and abstract away from the computer vision context. This
architecture of the CNN consists of 2-D Convolutional, 2-D Max-Pooling, and fully-connected dense layers and applied
batch normalization to increase the stability of the network, by subtracting the batch mean and dividing by the batch
standard deviation as shown in Figure 12 [43, 53]. The 2-D convolutional layer is of kernel-size 5 × 5 using rectified
linear units (ReLU) non-linear activation function and l-2 regularization and 2-D max-pooling layer, with filter of size
2 × 2 applied with a stride of 2, which down-samples the input by 2 along the width and height, discarding 50 % of
the activations by applying max operation over 4 numbers in 2 × 2 region [43]. The output of these layers is provided
as input to a fully-connected sequential network with 10 outputs, where each output predicts the probability of the
input image belonging to a particular class using the softmax [43]. We train this network on 10 000 instances, then we
transform the remaining 60 000 digits to a high-level feature representation by passing them through the trained CNN
and recording the 128 outputs of the last hidden layer (D2).

The transformed MNIST dataset DM = {(x1, l1), . . . , (xN , lN)}, is represented as a set of tuples (xi, li), where xi is
the feature vector and li represents the corresponding label, such that |DM | = N = 60000, xi ∈ R128, li ∈ L =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and DM(xi) = li holds for all i ∈ [N]. For constructing the choice datasets, we sample
instances (xi, li) ∈ DM from the transformed dataset uniformly at random, to construct a task set Q = {x1, . . . , xn}.
Based on Q and l = (DM(x1), . . . ,DM(xn)), we then select as choice set C = g(Q, l), where is an appropriately
predefined function g. We consider two variants for g, namely gunique and gmode.

The function gunique outputs the instances corresponding to the numbers which occur only once in the label vector. For
example
gunique(Q, (4, 3, 2, 3, 3, 1, 8, 8, 7, 7)) = {x1, x3, x6}, corresponding to the numbers 4, 2 and 1. For singleton choice
choice, we sample only the task sets, whose corresponding label vector l contains a single unique number, to make
it identifiable, i. e., for example gunique(Q, (4, 3, 3, 2, 2, 1, 1, 1, 5, 5, 5)) = {x1}. The section function is gmode, which
outputs the instances corresponding to the number which occur most frequently in the label vector. For example
gmode(Q, (4, 3, 2, 3, 3, 8, 8, 7, 7, 7)) = {x8, x9, x10}, corresponding to the mode 7 For singleton choice choice, we choose
the instances corresponding to the mode, which are at the least angle from a predefined weight vector w.

Both functions used to generate choices depend on all other objects in the given task set Q, thus making the datasets
highly context-dependent.

Unique In this subsection, we explain the data generation process for the Unique choice dataset using the gunique
function defined above. For generating the dataset, we select a set of instances from DM uniformly at random
to construct the task set Q and the label vector l. Then we choose the objects from Q which corresponds to the
unique digit in the label vector l (an example is shown in Figure 11c). Let us assume we want to generate a dataset
D = {(Qi,Ci)}Ni=1 with N instances.

Learning Context-Dependent Choice Functions 37

1. Sample n data points (xi,1, l1), . . . , (xi,n, ln) fromDM , let li B (l1, . . . , ln) and Qi B {xi,1, . . . , xi,n}

2. For each l ∈ L let kl be the number of times the label l appears in the label vector li for Qi, define k B
{k0, . . . , k9} and write for convenience k(l) B kl in the following. For example for l = (1, 2, 4, 4, 4, 5, 5) we
have k = (0, 1, 1, 0, 3, 2, 0, 0, 0, 0).

3. We create Ci by selecting the objects whose values occur only once in the label vector l:

Ci B
{
xi, j ∈ Qi : k(l j) = 1

}
4. In order to create the corresponding singleton choice or top-1 version of this dataset, we discard Qi in case
|Ci| > 1 and repeat steps 1–4. If |Ci| = 1 instead, we keep the sample (Qi,Ci).

Mode In this subsection, we explain the data generation process for the Mode choice dataset using the gmode function
defined above. For generating the dataset, we select a set of instances fromDM uniformly at random to construct the
task set Q and the label vector l (an example is shown in Figure 11c). Then we choose the objects from Q which
corresponds to the mode value of the label vector l to construct the ground-truth set of chosen objects. For creating
the corresponding singleton choice or top-1 dataset, we choose the object corresponding to the mode value of the label
vector, which is at the least angle to the predefined weight vector w. Let us assume we want to generate a dataset
D = {(Qi,Ci)}Ni=1 with N instances. First, we sample the weight vector w ∈ R128 iid

∼ N(0, I128).

1. Sample n data points (xi,1, l1), . . . , (xi,n, ln) uniformly at random fromDM , abbreviate li B {l1, . . . , ln) and let
Qi B {xi,1, . . . , xi,n}.

2. As for the Unique dataset, write kl for the number of times the label appears l in the label vector li for Qi,
define k B {k0, . . . , k9} and write again k(l) B kl.

3. For the case of subset choice define

Ci =
{
xi, j ∈ Qi : k(li) = maxl∈L(k(l))

}
,

and in case of singleton choice, select Ci to be that set, which contains only the object with the least angle to
vector w, i. e.,

Ci B

{
arg maxx∈Ci

cos−1 x · w
‖x‖‖w‖

}
E.4 Tag Genome Dataset

The GroupLens Research group released many datasets collected from the MovieLens website9 for research in the field
of recommender systems [47]. As of August 2017, the full dataset collected from this website consists of 26 000 000
ratings and 750 000 tags applied to 45 000 movies by 270 000 users [47]. One of the datasets is the Tag Genome
dataset10, which provides real-valued features to characterize the movies [117].

Tags are meta-data in the form of keywords, which help to describe an object (such as movie, music, books). In recent
years tagging has gained popularity due to the growth of social networking websites and web search engines [105]. On
the MovieLens website, users create tags to describe a movie. Other users can then use them to filter movies more
effectively. Users can also gain more information about a movie with the help of tags applied by other users.

The Tag Genome dataset was generated by applying machine learning algorithms on the information provided by users
for a movie in the form of tags, reviews, and ratings [118]. It consists of movies and a set of tags applied to each of
them, and a score between 0 and 1 quantifying the relevance of each tag to the particular movie (as shown in Figure 13).
Currently, this dataset consists of around 12 million relevance scores across 1128 tags applied on 10 993 movies.

Framework According to Vig, Sen, and Riedl [117] the Tag Genome dataset consists of:

1. M: The set of movies
{
m1, . . . ,mNm

}
, where |M| = Nm = 10993.

2. T : The set of tags T =
{
t1, . . . , tNt

}
, where |T | = Nt = 1128.

3. Rrel : M ×T −→ [0, 1]: Relation such that Rrel(mi, t j) denotes the degree to which extent the tag t j ∈ T applies
to the movie mi ∈ M on a scale of 0 to 1; here 0 indicates no relevance and 1 indicates strong relevance to the
movie (as shown in Figure 13).

9https://movielens.org/
10This dataset is available on https://grouplens.org/datasets/movielens/

https://movielens.org/
https://grouplens.org/datasets/movielens/

Learning Context-Dependent Choice Functions 38

0.756 0.856

0.0200.556

0.016 0.236

0.1200.123

0.049 0.356

0.1670.073

0.908 0.456

0.4270.012

....

....

....

....
M

ov
ies

Tags

Figure 13: Structure of the Tag Genome dataset.

4. M f : M −→ [0, 1]Nt : Relation mapping each movie to its feature vector in tag-space (vector of tag relevance
values across all tags), such thatM f (mi) = xi B (Rrel(mi, t1), . . . ,Rrel(mi, tNt)).

5. tag-pop : T −→ N: Function representing the popularity of a tag, measured as the number of users who
applied the tag t j ∈ T .

6. tag-spec : T −→ N: Function representing the movie frequency of tag t j ∈ T , i. e., tag-spec(t j) B∑
mi∈MJRrel(mi, t j) > 0.5K denotes the number of movies for which the relevance of tag t j is greater than

0.5.

7. P: The set of top 20 most popular-tags P ⊂ T based on the popularity tag-pop.

The weighted cosine similarity is a similarity measure defined in [117] to measure the similarity between two movies.
The weight vector w is defined in such a way that more weight is assigned to both the popular tags because this implies
that more users care about these tags and also to more specific tags because they can uniquely identify the similarity.
For example, if two movies have the harry potter tag in common, they are more likely to be similar than the ones that
have the tag fantasy in common [117]. A log-transform is applied to both values to bring them closer to the normal
distribution. The weighted cosine similarity between two movies his defined as:

simws(xi, x j,w) =

∑Nt
k=1 wk xik x jk√

(
∑Nt

k=1 wk x2
ik) ·

√
(
∑Nt

k=1 wk x2
jk)

, (28)

where xi =M f (mi), x j =M f (m j) and wk =
log(tag-pop(tk))
log(tag-spec(tk)) for any tk ∈ T .

To construct the singleton choice semisynthetic dataset, we sample uniformly at random n movie items from M to
create a task set Q, and we choose the medoid r of Q as the reference movie.

We define two tasks based on the reference movie r of the sampled task set Q. The first task is to choose the most
similar movie to the reference movie in task set Q. The second task is to choose the most dissimilar movie with respect
to the reference movie r for a given task set Q. This problem is similar to finding the outliers for a given set of objects
which can be used to solve the problem of anomaly detection [1, 21]. Both tasks used to generate semisynthetic datasets
depend on the similarity between all objects in the given task set Q, thus making the datasets highly context-dependent.

Data Generation Process We explain the data generation process for the Tag Genome Similar Movie and Tag
Genome Dissimilar Movie datasets. Let us assume we want to generate a singleton choice dataset D = {(Qi,Ci)}Ni=1
with N instances. Each task set Qi and its corresponding singleton choices Ci is constructed in the following way:

1. Sample i.i.d. and uniformly at random m1, . . . ,mn from M, let xi,n B M f (m j) for each j ∈ [n] and Qi B
{xi,1, . . . , xi,n}.

2. Compute the reference object (movie) for Qi (medoid):

r B arg maxx∈Qi

1
n

∑n

j=1
simws(x, xi, j,w)

Learning Context-Dependent Choice Functions 39

3. Now we define the corresponding singleton choices C1, . . . ,CN for Tag Genome Similar Movie and Tag
Genome Dissimilar Movie dataset.
(a) The singleton choice set Ci for Qi for Tag Genome Dissimilar Movie is the set consisting of only that

element of Qi, which is most dissimilar to r, i. e., formally

Ci B
{
arg minxi, j∈Q\{r} simws(r, xi, j,w)

}
(b) For the Tag Genome Similar Movie dataset, we select for the task Qi the singleton choice set

Ci B
{
arg maxxi, j∈Q\{r} simws(r, xi, j,w)

}
,

which consists of the one element from Qi, that is most similar to r.

F Real-World Datasets

Some widely used benchmark-datasets available for solving this task are LETOR and SUSHI [89, 58]. In the following
sections, we briefly describe these datasets and the process we use to generate singleton and subset choice datasets.

F.1 LETOR Datasets

LETOR11 is a package of benchmark datasets released by Microsoft Research Asia, which are used to compare and
evaluate different learning algorithms in the field of preference learning [89]. We use the datasets MQ2007 and
MQ2008 released for learning the task of partial ranking to create the subset choice dataset. There are other datasets
MQ2007-list and MQ2008-list released for learning the task of complete ranking12 to create the singleton choice
dataset.

LETOR Supervised Datasets The datasets (MQ2007 and MQ2008) consist of the queries and retrieved documents,
with individual preferences in the form of a relevance for each document with respect to the corresponding query
[89]. The format of both datasets (MQ2007 and MQ2008) is the same, and there are about 1500 queries in MQ2007
and about 500 in MQ2008 with labelled documents. These datasets consist of 46 features extracted from a query and
document constructing an object called query-document and each pair is labelled with a relevance score in {0, 1, 2},
indicating how relevant the document is to the respective query as shown in Figure 14a. A relevance score of 0 means
that the document is not relevant, 1 means relevant and 2 means very relevant to the query. For this dataset, the goal of
the choice problem is to choose all the relevant documents for the given task.

Structure The dataset consists of a universal set of objects x ∈ X. Each instance of these datasets DS ={
(Q̃1, l1), . . . , (Q̃N , lN)

}
, is represented as set of tuples (Q̃i, li), where Q̃i = {x1, . . . , xn} is the task set (xi features

extracted from query-document) and li = (l1, . . . , ln) represents vector of relevance label for the given set of objects,
such that x j ∈ R46, l j ∈ {0, 1, 2} for all j ∈ [n] and 5 ≤ |Q̃i| ≤ 147 for every i ∈ [N].

The size of the universal set of objects in the MQ2007 dataset is 59 570, i. e., |X| = 59570 and the MQ2008 dataset
is 564, i. e., |X| = 12102. These datasets have been partitioned into 5 parts by Qin and Liu [89], such that DS =
DS 1 ∪ DS 2 ∪ DS 3 ∪ DS 4 ∪ DS 5. This partition is used to conduct 5-fold cross-validation, and for each fold, we use
four parts for training and the remaining part for testing as described in Table 5.

Choice Data Conversion The corresponding choice dataset is created by considering the documents in Q̃i as the task
sets Qi and the set of relevant documents Ci B

{
x j ∈ Q̃i : l j ∈ {1, 2}

}
as the corresponding choice set for each instance

(Q̃ j, l j) ∈ DS \ DS i. For training the choice model, we sub-sample 10 objects from each query instance Q̃i to construct
the task sets. Note, that we still evaluate the models on the corresponding test choice dataset, which consists of all
original queries for each fold as described in Table 5.

LETOR Listwise Datasets The format of both listwise datasets is the same as the supervised one. There are about
1700 queries in MQ2007-list and about 800 queries in MQ2008-list with each query-document pair consisting of 46
features. In this dataset, all the documents for each query are labelled with a real-valued relevance score instead of
the multiple level relevance judgments as shown in Figure 14b. The documents on top positions in the ground truth
permutation have larger value of the relevance degree.

11Version 4.0
12These datasets are available on https://www.microsoft.com/en-us/research/project/letor-learning-rank-

information-retrieval/

https://www.microsoft.com/en-us/research/project/letor-learning-rank-informatio n-retrieval/
https://www.microsoft.com/en-us/research/project/letor-learning-rank-informatio n-retrieval/

Learning Context-Dependent Choice Functions 40

1:0.031310	2:0.666667	3:0.500000	45:0.385965	46:0.0000002 qid:10

46-featuresquery-id

#docid	=	GX000-00-0000000	inc	=	1	prob	=	0.0246906

rel-score ∈ {0, 1, 2}

(a) MQ2007/MQ2008 format

1:0.004356	2:0.080000	3:0.036364	45:0.385965	46:0.0000001008 qid:10

		#docid	=	GX057-59-4044939	inc	=	1	prob	=	0.698286

46-featuresquery-idrel-score ∈ ℝ

(b) MQ2007-list/MQ2008-list format

Figure 14: LETOR datasets formats [89]

Table 5: 5-folds of the LETOR dataset and the sub-sampled training task sets of size 5.
Dataset MQ2007 MQ2008

Fold Test Train # Train # Test # Sampled Train # Train # Test # Sampled Train
1 DS 1 DS \ DS 1 1172 283 7111 459 105 1187
2 DS 2 DS \ DS 2 1160 295 7012 452 112 1083
3 DS 3 DS \ DS 3 1163 292 7069 442 122 1122
4 DS 4 DS \ DS 4 1160 295 7047 444 120 1203
5 DS 5 DS \ DS 5 1165 290 7077 459 105 1201

Instances |DS | # Features # Objects |Q| # Instances |DS | # Features # Objects |Q|
1455 46 [6, 147] 564 46 [5, 121]

Structure The dataset consists of a universal set of objects x ∈ X. Each instance of these datasets DL ={
(Q̃1, l1), . . . , (Q̃N , lN)

}
, is represented as a set of tuples (Q̃i, li), where Q̃i = {x1, . . . , xn} is the task set (xi features

extracted from query-document) and li = (l1, . . . , ln) represents a vector of relevance score for the given set of objects,
such that x j ∈ R46, l j ∈ R for all j ∈ [n] and 204 ≤ |Q̃i| ≤ 1831 for every i ∈ [N].

Table 6: 5-folds of the LETOR MQ2007-list and MQ2008-list dataset and the sub-sampled training task sets of size 5.
Dataset MQ2007-list MQ2008-list

Fold Test Train # Train # Test # Sampled Train # Train # Test # Sampled Train
1 DL1 DL \ DL1 1353 339 97 557 627 157 71 600
2 DL2 DL \ DL2 1353 339 98 055 627 157 71 908
3 DL3 DL \ DL3 1353 339 97 580 627 157 72 233
4 DL4 DL \ DL4 1353 339 98 000 627 157 71 868
5 DL5 DL \ DL5 1356 336 98 304 628 156 71 847

Instances # Features # Objects |Q| # Instances # Features # Objects |Q|
Total 1692 46 [257, 1346] 784 46 [204, 1831]

Singleton Choice Data Conversion The corresponding singleton choice datasets are created by considering the
documents in Q̃i as the task sets Qi and the most relevant document Ci =

{
arg maxx j∈Q̃i

l j

}
as the corresponding

singleton choice set for each instance (Q̃ j, l j) ∈ DL \ DLi. For training the SCM we sub-sample 10 objects from each

Learning Context-Dependent Choice Functions 41

Table 7: Properties of the Expedia dataset and the sub-sampled training queries of size 10.
Features Missing Values # Instances # Objects

Learning Problem # Features # All > 90 % > 50 % # Total # Train # Test # Sampled Train |Q|

Choice 45 31 17 28 399 344 79 855 319 489 238 744 [38, 5]
Singleton choice 45 31 17 28 390 270 78 041 312 229 166 940 [38, 5]

query instance Q̃i to construct the task sets. Note that we still evaluate the models on the corresponding singleton
choice test dataset, which consists of all original queries for each fold as described in Table 5.

F.2 Expedia Hotel Dataset

Expedia released a dataset on the Kaggle website as a competition and for research purposes13. The dataset includes
browsing and booking data as well as information on price competitiveness. The data are organized around a set of
search result impressions, the ordered list of hotels that the user sees after they search for a hotel on the Expedia
website. In addition to impressions from the existing algorithm, the dataset contains impressions where the hotels were
randomly sorted, to avoid the position bias of the existing algorithm. The user response is provided as a click on a hotel
and/or a purchase of a hotel room. This dataset consists of 399 344 search queries and 45 features extracted from the
search query and the hotel constructing an object. Each hotel is labelled with a relevance score of 0, 1 or 2, indicating
how relevant the hotel is to the respective query or the user. A relevance score of 0 means that the hotel is not clicked, 1
means it was clicked and 2 means the hotel was booked by the user. This dataset is very similar to the LETOR dataset
as shown in Figure 14. For this dataset, we define the learning target to be the set of relevant hotels (clicked and/or
booked). Since for each query, the number of hotels displayed is different, this dataset consists of different task sizes.

Structure The dataset consists of a universal set of objects x ∈ X. Each instance of the datasets DE ={
(Q̃1, l1), . . . , (Q̃N , lN)

}
, is represented as a set of tuples (Q̃i, li), where Q̃i = {x1, . . . , xn} is the task set (xi features

extracted from hotel) and li = (l1, . . . , ln) represents the vector of relevance label for the given set of objects, such that
x j ∈ [−1,∞]45, l j ∈ {0, 1, 2} for each j ∈ [n] and 5 ≤ |Q̃i| ≤ 38 for all i ∈ [N].

The number of instances N in this dataset is 399 344, i. e., |DE | = 399344 and the size of the universal set of objects
(hotels) is 136 886, i. e., |X| = 136886. There are 31 features which have missing values, and we removed the features
which consist of more than 50 % missing values. For the remaining 3 features which have of missing values, we impute
them with a negative value less than −1. The models are trained on the resulting dataset with 17 features.

Data Conversion Process We create 5 folds by shuffle-splitting the dataset randomly into 80 % test and 20 % train
instances. The choice dataset is created by considering the hotels in Q̃i as the task set Qi and the set of relevant hotels
Ci B {x j ∈ Q̃i : l j ∈ {1, 2}} as the corresponding choice set for each instance (Q̃i, li) ∈ DE . The models are trained
on the sampled training dataset and corresponding test dataset using 5-fold stratified cross-validation as described in
Table 7.

Singleton Choice In order to create the singleton choice dataset, we just consider the samples where the user booked
the hotel, which is the singleton choice for the given query. The singleton choice dataset is created by considering the
hotels in Q̃i as the task set Qi and the set of booked hotels Ci =

{
x j ∈ Q̃i : l j = 2

}
as the corresponding choice set for

each instance (Q̃i, li) ∈ DE .

The models are trained on the sampled training dataset and corresponding test dataset using 5-fold stratified cross-
validation as described in Table 7. Note, the instances where the hotel was not booked at all were discarded and only
the instances where there was booking were considered.

F.3 SUSHI Dataset

SUSHI14 was another dataset released for solving the task of object ranking. This dataset was collected by surveying
5000 individuals, such that each person was provided with two item sets A and B. Set A consist of 10 most famous
sushi and B consists of top 100 sushi famous in Japan. Individuals were asked to provide the preferences in form total

13These datasets are available on https://www.kaggle.com/c/expedia-personalized-sort/data
14This dataset can be downloaded from http://www.kamishima.net/sushi/

https://www.kaggle.com/c/expedia-personalized-sort/data
http://www.kamishima.net/sushi/

Learning Context-Dependent Choice Functions 42

Table 8: Major Group feature description
Major Group

Value Species Value Species Value Species

0 Aomono (blue-skinned fish) 4 Clam or shell 8 Other seafood
1 Akami (red meat fish) 5 Squid or octopus 9 Egg
2 Shiromi (white-meat fish) 6 Shrimp or crab 10 Meat other than fish
3 Tare (something like baste for eel) 7 Roe 11 Vegetables

order for items in set A, and a real numbered score between 0 and 5 for sushi in set B. There were missing rating values
for many items in set B, so they extracted the total order for the top 10 preferred items by each user.

The SUSHI dataset consists of universal set of objects x ∈ X, with size 100, i. e., |X| = 100, with 10 000 set of object Q
of size 10 and each sushi consists of 7 features, i. e., x ∈ R7. The instances of the datasetDS = {(Q1, π1), . . . , (QN , πN)},
are represented as a set of tuples (Qi, πi), where Qi = {x1, . . . , xn} is the set of objects and πi represents the underlying
orderings for the given set of objects Qi, such that N = |DM | = 10000, xi ∈ R7 and |Qi| = 10 holds for all i ∈ [N].

The dataset contains the following features:

1. Style: This is a binary feature, which describes whether the sushi is a Maki or other, where 0 means Maki
sushi and 1 means others.

2. Major Group: This is a binary feature, which describes whether it is listed as a seafood (0) or not (1).
3. Minor group: Described the species group used to prepare the suchi. The group is denoted by the categorical

value between 0 and 11, i.e. it lies in the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. Refer to Table 8 for description
of each group.

4. Oiliness/Heaviness: The amount of oil or fat present in the sushi, expressed as a real number between 0 and 4,
where 0 indicates heavy/oil and 4 oil-free.

5. Demand: The frequency with which the user demands the sushi, expressed as a real number between 0 and 3,
where 3 means most frequently and 0 not at all.

6. Normalized Price: The price of sushi normalized over the given 100 sushis.
7. Supply: The frequency of selling a sushi in the shop, expressed as a real number between 0 and 1, where 0

indicates not at all and 1 frequently.

Singleton Choice Data Conversion For using the SUSHI dataset for singleton choice setting, we re-utilize the set of
object Q inDS and choose the most preferred object as the singleton choice. We created the singleton choice dataset
DS DC = {(Q1,C1), . . . , (QN ,CN} with N = |DS | instances, such that |Qk | = 10 and Ck B

{
xπi(1)

}
for all k ∈ [N]. The

singleton choice models are evaluated using 5-folds by train-test shuffle-split with 80 % train and 20 % test instances.

G Detailed Experimental Results

The following Tables 9 to 11 contain all experimental results as discussed in Section 6.4 in numeric form for additional
evaluation measures.

Learning Context-Dependent Choice Functions 43

Table 9: Results for the general subset choice models (mean and standard deviation of different measures, measured
across 5 outer cross-validation folds). Best entry for each measure marked in bold.

Dataset Choice Model F1-measure Subset 0/1 Accuracy Informedness AUC-ROC

Pareto-front-2D

FETA-Net 0.942 ± 0.008 0.680 ± 0.028 0.956 ± 0.012 0.999 ± 0.000
FATE-Net 0.912 ± 0.009 0.506 ± 0.037 0.911 ± 0.006 0.996 ± 0.001
FETA-Linear 0.673 ± 0.001 0.064 ± 0.007 0.694 ± 0.015 0.955 ± 0.000
SDA 0.805 ± 0.014 0.223 ± 0.031 0.806 ± 0.014 0.984 ± 0.002
RankNet 0.612 ± 0.007 0.060 ± 0.010 0.672 ± 0.014 0.971 ± 0.006
PairwiseSVM 0.588 ± 0.001 0.044 ± 0.003 0.646 ± 0.007 0.956 ± 0.000
GenLinearModel 0.585 ± 0.008 0.044 ± 0.005 0.633 ± 0.013 0.952 ± 0.007
AllPositive 0.232 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.000

Pareto-front-5D

FETA-Net 0.826 ± 0.005 0.001 ± 0.000 0.406 ± 0.032 0.854 ± 0.014
FATE-Net 0.904 ± 0.004 0.115 ± 0.209 0.743 ± 0.094 0.958 ± 0.021
FETA-Linear 0.823 ± 0.039 0.002 ± 0.002 0.379 ± 0.257 0.808 ± 0.140
SDA 0.887 ± 0.002 0.013 ± 0.001 0.656 ± 0.012 0.935 ± 0.002
RankNet 0.859 ± 0.000 0.006 ± 0.000 0.581 ± 0.006 0.923 ± 0.000
PairwiseSVM 0.839 ± 0.000 0.002 ± 0.000 0.491 ± 0.021 0.895 ± 0.000
GenLinearModel 0.826 ± 0.029 0.002 ± 0.001 0.402 ± 0.225 0.738 ± 0.351
AllPositive 0.775 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.000

MNIST-Unique

FETA-Net 0.963 ± 0.003 0.814 ± 0.020 0.945 ± 0.005 0.992 ± 0.001
FATE-Net 0.973 ± 0.004 0.848 ± 0.021 0.960 ± 0.006 0.995 ± 0.001
FETA-Linear 0.562 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.517 ± 0.001
SDA 0.942 ± 0.001 0.702 ± 0.006 0.915 ± 0.002 0.984 ± 0.000
RankNet 0.562 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.504 ± 0.001
PairwiseSVM 0.562 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.511 ± 0.006
GenLinearModel 0.562 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.508 ± 0.004
AllPositive 0.562 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.000

MNIST-Mode

FETA-Net 0.809 ± 0.005 0.311 ± 0.032 0.695 ± 0.009 0.981 ± 0.006
FATE-Net 0.976 ± 0.001 0.883 ± 0.010 0.961 ± 0.002 0.992 ± 0.001
FETA-Linear 0.597 ± 0.001 0.003 ± 0.000 0.003 ± 0.002 0.516 ± 0.001
SDA 0.863 ± 0.002 0.357 ± 0.009 0.807 ± 0.002 0.973 ± 0.001
RankNet 0.597 ± 0.000 0.003 ± 0.000 0.000 ± 0.000 0.503 ± 0.002
PairwiseSVM 0.597 ± 0.000 0.003 ± 0.000 0.000 ± 0.000 0.509 ± 0.006
GenLinearModel 0.597 ± 0.000 0.003 ± 0.000 0.000 ± 0.000 0.497 ± 0.004
AllPositive 0.597 ± 0.000 0.003 ± 0.000 0.000 ± 0.000 0.500 ± 0.000

LETORMQ2007

FETA-Net 0.477 ± 0.004 0.007 ± 0.002 0.235 ± 0.009 0.729 ± 0.011
FATE-Net 0.470 ± 0.002 0.000 ± 0.000 0.232 ± 0.002 0.704 ± 0.002
FETA-Linear 0.452 ± 0.022 0.001 ± 0.002 0.231 ± 0.035 0.694 ± 0.006
SDA 0.441 ± 0.015 0.001 ± 0.002 0.195 ± 0.022 0.666 ± 0.003
RankNet 0.427 ± 0.010 0.001 ± 0.012 0.029 ± 0.007 0.610 ± 0.015
PairwiseSVM 0.453 ± 0.021 0.000 ± 0.000 0.220 ± 0.026 0.696 ± 0.007
GenLinearModel 0.427 ± 0.021 0.001 ± 0.002 0.058 ± 0.029 0.614 ± 0.009
AllPositive 0.421 ± 0.021 0.001 ± 0.002 0.000 ± 0.000 0.500 ± 0.000

LETORMQ2008

FETA-Net 0.537 ± 0.001 0.044 ± 0.001 0.440 ± 0.003 0.842 ± 0.004
FATE-Net 0.540 ± 0.005 0.041 ± 0.002 0.431 ± 0.002 0.837 ± 0.006
FETA-Linear 0.529 ± 0.006 0.026 ± 0.009 0.421 ± 0.012 0.803 ± 0.009
SDA 0.425 ± 0.041 0.018 ± 0.011 0.287 ± 0.038 0.727 ± 0.023
RankNet 0.461 ± 0.002 0.017 ± 0.004 0.323 ± 0.002 0.758 ± 0.004
PairwiseSVM 0.526 ± 0.022 0.042 ± 0.022 0.428 ± 0.016 0.786 ± 0.018
GenLinearModel 0.493 ± 0.028 0.014 ± 0.010 0.311 ± 0.061 0.739 ± 0.019
AllPositive 0.424 ± 0.021 0.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.000

Expedia

FETA-Net 0.186 ± 0.001 0.009 ± 0.002 0.322 ± 0.003 0.688 ± 0.001
FATE-Net 0.198 ± 0.006 0.018 ± 0.002 0.346 ± 0.010 0.707 ± 0.007
FETA-Linear 0.179 ± 0.007 0.020 ± 0.002 0.324 ± 0.006 0.696 ± 0.007
SDA 0.201 ± 0.005 0.013 ± 0.003 0.352 ± 0.012 0.708 ± 0.008
RankNet 0.167 ± 0.017 0.003 ± 0.001 0.278 ± 0.034 0.716 ± 0.006
PairwiseSVM 0.129 ± 0.017 0.004 ± 0.002 0.165 ± 0.097 0.680 ± 0.050
GenLinearModel 0.107 ± 0.001 0.000 ± 0.000 0.004 ± 0.007 0.503 ± 0.102
AllPositive 0.106 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.000

Learning Context-Dependent Choice Functions 44

Table 10: Mean and standard deviation of the accuracies on the singleton choice data (measured across 5 outer
cross-validation folds). Best entry for each measure marked in bold.

Dataset SCM Accuracy Top-3 Top-5

Medoid

FETA-Net 0.846 ± 0.010 0.994 ± 0.001 1.000 ± 0.000
FATE-Net 0.881 ± 0.007 0.996 ± 0.001 1.000 ± 0.000
FETA-Linear 0.356 ± 0.026 0.715 ± 0.007 0.883 ± 0.011
SDA 0.839 ± 0.004 0.987 ± 0.001 0.998 ± 0.000
RankNet 0.531 ± 0.008 0.873 ± 0.006 0.970 ± 0.004
PairwiseSVM 0.021 ± 0.001 0.194 ± 0.009 0.501 ± 0.002
MNL 0.020 ± 0.001 0.191 ± 0.005 0.500 ± 0.001
NL 0.049 ± 0.014 0.216 ± 0.006 0.463 ± 0.027
GNL 0.020 ± 0.000 0.195 ± 0.004 0.500 ± 0.001
ML 0.003 ± 0.000 0.055 ± 0.012 0.249 ± 0.032

Hypervolume

FETA-Net 0.769 ± 0.022 0.933 ± 0.007 0.980 ± 0.001
FATE-Net 0.730 ± 0.018 0.920 ± 0.013 0.968 ± 0.006
FETA-Linear 0.236 ± 0.042 0.404 ± 0.042 0.560 ± 0.028
SDA 0.233 ± 0.019 0.417 ± 0.029 0.589 ± 0.036
RankNet 0.203 ± 0.004 0.369 ± 0.006 0.562 ± 0.004
PairwiseSVM 0.186 ± 0.001 0.340 ± 0.002 0.550 ± 0.002
MNL 0.201 ± 0.008 0.360 ± 0.010 0.559 ± 0.004
NL 0.291 ± 0.003 0.511 ± 0.007 0.651 ± 0.006
GNL 0.293 ± 0.018 0.471 ± 0.021 0.663 ± 0.014
ML 0.189 ± 0.014 0.451 ± 0.019 0.621 ± 0.014

MNIST-Unique

FETA-Net 0.972 ± 0.002 0.995 ± 0.001 0.998 ± 0.000
FATE-Net 0.954 ± 0.009 0.993 ± 0.001 0.998 ± 0.001
FETA-Linear 0.127 ± 0.006 0.320 ± 0.003 0.505 ± 0.010
SDA 0.858 ± 0.029 0.935 ± 0.026 0.955 ± 0.018
RankNet 0.134 ± 0.008 0.307 ± 0.002 0.495 ± 0.002
PairwiseSVM 0.124 ± 0.010 0.319 ± 0.008 0.502 ± 0.007
MNL 0.170 ± 0.006 0.325 ± 0.009 0.495 ± 0.002
NL 0.207 ± 0.016 0.354 ± 0.004 0.502 ± 0.006
GNL 0.651 ± 0.006 0.763 ± 0.003 0.841 ± 0.001
ML 0.490 ± 0.003 0.718 ± 0.005 0.784 ± 0.002

MNIST-Mode

FETA-Net 0.908 ± 0.004 0.961 ± 0.003 0.978 ± 0.004
FATE-Net 0.669 ± 0.005 0.907 ± 0.004 0.943 ± 0.003
FETA-Linear 0.290 ± 0.006 0.674 ± 0.010 0.877 ± 0.007
SDA 0.513 ± 0.047 0.806 ± 0.041 0.901 ± 0.061
RankNet 0.284 ± 0.002 0.668 ± 0.003 0.876 ± 0.003
PairwiseSVM 0.289 ± 0.007 0.675 ± 0.011 0.881 ± 0.007
MNL 0.285 ± 0.006 0.652 ± 0.011 0.853 ± 0.010
NL 0.282 ± 0.007 0.646 ± 0.012 0.848 ± 0.010
GNL 0.274 ± 0.003 0.641 ± 0.008 0.849 ± 0.006
ML 0.216 ± 0.010 0.536 ± 0.020 0.765 ± 0.022

Tag Genome Similar Movie

FETA-Net 0.184 ± 0.001 0.481 ± 0.002 0.699 ± 0.002
FATE-Net 0.185 ± 0.003 0.482 ± 0.006 0.699 ± 0.004
FETA-Linear 0.138 ± 0.009 0.391 ± 0.023 0.613 ± 0.030
SDA 0.099 ± 0.022 0.306 ± 0.050 0.511 ± 0.058
RankNet 0.174 ± 0.003 0.477 ± 0.002 0.708 ± 0.003
PairwiseSVM 0.145 ± 0.011 0.405 ± 0.019 0.626 ± 0.018
MNL 0.179 ± 0.002 0.472 ± 0.003 0.694 ± 0.004
NL 0.178 ± 0.004 0.467 ± 0.006 0.689 ± 0.007
GNL 0.179 ± 0.002 0.472 ± 0.003 0.694 ± 0.003
ML 0.117 ± 0.001 0.353 ± 0.009 0.575 ± 0.013

Learning Context-Dependent Choice Functions 45

Table 11: Mean and standard deviation of the accuracies on the singleton choice data (measured across 5 outer
cross-validation folds). Best entry for each measure marked in bold.

Dataset SCM Accuracy Top-3 Top-5

Tag Genome Dissimilar Movie

FETA-Net 0.512 ± 0.004 0.835 ± 0.004 0.942 ± 0.002
FATE-Net 0.510 ± 0.001 0.830 ± 0.002 0.938 ± 0.002
FETA-Linear 0.440 ± 0.002 0.759 ± 0.002 0.889 ± 0.001
SDA 0.451 ± 0.047 0.694 ± 0.072 0.789 ± 0.054
RankNet 0.435 ± 0.002 0.779 ± 0.001 0.914 ± 0.001
PairwiseSVM 0.369 ± 0.016 0.712 ± 0.012 0.871 ± 0.008
MNL 0.447 ± 0.002 0.692 ± 0.005 0.795 ± 0.005
NL 0.438 ± 0.006 0.671 ± 0.015 0.775 ± 0.018
GNL 0.443 ± 0.004 0.681 ± 0.010 0.784 ± 0.011
ML 0.417 ± 0.003 0.763 ± 0.001 0.895 ± 0.005

LETORMQ2007-list

FETA-Net 0.334 ± 0.007 0.577 ± 0.012 0.705 ± 0.006
FATE-Net 0.288 ± 0.002 0.508 ± 0.006 0.639 ± 0.004
FETA-Linear 0.293 ± 0.018 0.551 ± 0.007 0.697 ± 0.007
SDA 0.047 ± 0.013 0.137 ± 0.007 0.211 ± 0.014
RankNet 0.287 ± 0.033 0.513 ± 0.050 0.627 ± 0.037
PairwiseSVM 0.302 ± 0.008 0.541 ± 0.031 0.654 ± 0.039
MNL 0.282 ± 0.006 0.503 ± 0.029 0.622 ± 0.038
NL 0.285 ± 0.018 0.499 ± 0.030 0.608 ± 0.043
GNL 0.287 ± 0.020 0.509 ± 0.029 0.625 ± 0.037
ML 0.282 ± 0.005 0.503 ± 0.038 0.628 ± 0.037

LETORMQ2008-list

FETA-Net 0.266 ± 0.015 0.396 ± 0.019 0.504 ± 0.017
FATE-Net 0.281 ± 0.012 0.369 ± 0.015 0.544 ± 0.012
FETA-Linear 0.197 ± 0.007 0.392 ± 0.027 0.506 ± 0.032
SDA 0.028 ± 0.007 0.078 ± 0.032 0.124 ± 0.034
RankNet 0.225 ± 0.026 0.399 ± 0.020 0.501 ± 0.023
PairwiseSVM 0.203 ± 0.014 0.376 ± 0.032 0.497 ± 0.021
MNL 0.217 ± 0.025 0.362 ± 0.020 0.500 ± 0.027
NL 0.212 ± 0.024 0.355 ± 0.030 0.472 ± 0.030
GNL 0.222 ± 0.020 0.366 ± 0.034 0.494 ± 0.026
ML 0.213 ± 0.015 0.367 ± 0.019 0.501 ± 0.025

Expedia

FETA-Net 0.215 ± 0.006 0.451 ± 0.016 0.587 ± 0.008
FATE-Net 0.203 ± 0.006 0.434 ± 0.003 0.576 ± 0.003
FETA-Linear 0.176 ± 0.003 0.394 ± 0.002 0.543 ± 0.003
SDA 0.115 ± 0.008 0.288 ± 0.014 0.431 ± 0.015
RankNet 0.210 ± 0.001 0.445 ± 0.001 0.590 ± 0.001
PairwiseSVM 0.179 ± 0.000 0.405 ± 0.001 0.550 ± 0.000
MNL 0.199 ± 0.004 0.423 ± 0.005 0.565 ± 0.004
NL 0.171 ± 0.006 0.388 ± 0.008 0.534 ± 0.008
GNL 0.168 ± 0.006 0.385 ± 0.010 0.531 ± 0.009
ML 0.181 ± 0.010 0.406 ± 0.010 0.551 ± 0.007

SUSHI

FETA-Net 0.295 ± 0.003 0.552 ± 0.003 0.766 ± 0.003
FATE-Net 0.322 ± 0.003 0.589 ± 0.005 0.817 ± 0.005
FETA-Linear 0.273 ± 0.006 0.500 ± 0.014 0.680 ± 0.012
SDA 0.270 ± 0.015 0.498 ± 0.043 0.689 ± 0.043
RankNet 0.272 ± 0.007 0.559 ± 0.035 0.721 ± 0.016
PairwiseSVM 0.258 ± 0.004 0.480 ± 0.022 0.679 ± 0.013
MNL 0.271 ± 0.004 0.502 ± 0.003 0.677 ± 0.010
NL 0.253 ± 0.006 0.533 ± 0.019 0.730 ± 0.025
GNL 0.259 ± 0.007 0.562 ± 0.023 0.735 ± 0.016
ML 0.281 ± 0.004 0.575 ± 0.013 0.777 ± 0.007

	1 Introduction
	2 Related Literature
	3 A Probabilistic Model of Choice
	4 Learning Context-Dependent Choice Functions
	4.1 First Evaluate Then Aggregate
	4.2 First Aggregate Then Evaluate
	4.3 Linear Sub-Utility Functions

	5 Implementation Using Neural Networks
	5.1 FETA-Net Architecture
	5.2 FATE-Net Architecture

	6 Empirical Evaluation
	6.1 Setup
	6.2 Loss Functions
	6.2.1 Target Loss Functions
	6.2.2 Surrogate Losses

	6.3 Datasets
	6.3.1 The Medoid Problem
	6.3.2 The Pareto-Front Problem
	6.3.3 Hypervolume
	6.3.4 MNIST Number Problems
	6.3.5 MovieLens Tag Genome
	6.3.6 LETOR
	6.3.7 Expedia
	6.3.8 SUSHI

	6.4 Results and Discussion
	6.4.1 Singleton Choice
	6.4.2 Subset Choice
	6.4.3 Generalization Across Task Sizes

	7 Conclusion and Future Work
	A Notation
	B Evaluation Measures
	B.1 Singleton Choice
	B.2 Subset Choice

	C Additional Experimental Details
	D Design of the Generalization Experiment
	E Synthetic Datasets
	E.1 The Medoid Problem
	E.2 The Pareto Problem
	E.3 MNIST Number Problems
	E.4 Tag Genome Dataset

	F Real-World Datasets
	F.1 LETOR Datasets
	F.2 Expedia Hotel Dataset
	F.3 SUSHI Dataset

	G Detailed Experimental Results

