A Credal Self-Supervised Learning: Supplementary Material

A.1 Algorithmic Description of CSSL

Algorithm [T] provides the pseudo-code of the batch-wise loss calculation in CSSL.

Algorithm 1 CSSL with adaptive precisiation «

Require: Batch of labeled instances with degenerate ground truth distributions B; = {(z;,p;)}2., €
(X x )Z, unlabeled batch ratio 11, batch B, = {a;}? of unlabeled instances, unlabeled loss
weight A, model p : X — P()), strong and weak augmentation functions Ag, A, : X — X,
class prior p € P(Y), averaged model predictions p € P())
ﬁl = % Z(z,p)GBl H(paﬁ(Aw (m)))
Initialize pseudo-labeled batch I/ = ()
for all x € B, do
Derive pseudo label g from p(.A,,(x)), p and p acc. to Eq. (6)
Determine reference class y := argmax,, <y q(y’)
a=1-4q(¥)/Xyeya)
Construct target set )y as in Eq. (2)
U=UuuU{(z,Qy)}
end for
L, = ﬂ% Z(@Q;)ez,{ L (ngﬁ(AS(w)))
return £; + A\, L,
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A.2 Algorithmic Description of LSMatch

In Algorithm 2] we provide details on the label smoothing variant of FixMatch as investigated in the
experiments, which we call LSMatch.

Algorithm 2 LSMatch with adaptive distribution mass o

Require: Batch of labeled instances with degenerate ground truth distributions B; = {(z;, p;)}2., €
(X x y)B, unlabeled batch ratio 4, batch B, = {x; f:Bl of unlabeled instances, unlabeled loss
weight A, model p : X — P()), strong and weak augmentation functions As, A, : X — X,
class prior p € P(Y), averaged model predictions p € P())
1 A

ﬁl = B Z(az7p)el§’l H(p)p(A’LU (w)))
Initialize pseudo-labeled batch U/ = ()
for all x € B, do

Derive pseudo label ¢ from p(A,,()), p and p acc. to Eq. (6)

Determine reference class y := argmax,, .y, q(y')

a=1-qy)/ > eya¥y)
Construct smoothed target ¢’ with ¢’ (y)
U=UU{(xz,q)}
end for
Ly =15 Ywqyeu (@ p(As(@)))
return L£; + \, L,

=1 - 5 and ¢/ () = 37 for y' # y
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A.3 Evaluation Details
A.3.1 Experimental Settings

As discussed in the paper, we follow the experimental setup as described in [6]]. For a fair comparison,
we keep the hyperparameters the same as used within the experiments for FixMatch, which we
provide in Table [I] Note that the parameter 7 does not apply to CSSL nor LSMatch, as these
approaches do not rely on any confidence thresholding.



Table 1: Hyperparameters as being used within the experiments for CSSL, FixMatch, LSMatch and
all other method derivates (if not stated otherwise).

Symbol Description Used value(s)

Au Unlabeled loss weight 1

I Multiplicity of unlab. over lab. insts. 7

B Labeled batch size 64

n Initial learning rate 0.03

I} SGD momentum 0.9

Nesterov  Indicator for Nesterov SGD variant True

wd Weight decay 0.001 (CIFAR-100), 0.0005 (other data sets)
T Confidence threshold 0.95

K Training steps 220

For CTAugment (and later RandAugment as considered in Section[A.4.2), we use the same operations
and parameter ranges as in reported in [6] for comparability reasons. In case of CTAugment, we
keep the bin weight threshold at 0.8 and use an exponential decay of 0.99 for the weight updates.
In the latter case, we also follow a purely random sampling, that slightly differs from the original
formulation in [2]. We refer to [11 6] for a more comprehensive overview over the methods and their
parameters.

A.3.2 Technical Infrastructure

To put our approach into practice, we re-used the original FixMatch code baseE] provided by the
authors for the already available baselines, models, augmentation strategies and the evaluation, and
extended it by our implementations. To this end, we leverage TensorFlowE] as a recent deep learning
framework, whereas the image augmentation functions are provided by Pillowﬂ To execute the
runs, we used several Nvidia Titan RTX, Nvidia Tesla V100, Nvidia RTX 2080 Ti and Nvidia GTX
1080 Ti accelerators in modern cluster environments. The code related to our work is available at
https://github.com/julilien/CSSL.

A.3.3 Efficiency Experiments: Learning Curves

Figure [T] shows the learning curves of the runs considered in the efficiency study in Section 4.3
(averaged over 5 seeds). As can be seen, both CSSL and LSMatch improve the learning efficiency in
label-scarce settings by not relying on any form of confidence thresholding. Although LSMatch turns
out to converge slightly faster when observing 40 labels from SVHN, the eventual generalization
performance of CSSL is clearly superior. For higher amounts of labels, the results are almost
indistinguishable.

A.4 Additional Experiments
A.4.1 Simple Synthetic Example

To illustrate the disambiguation principle underlying the idea of credal self-supervised learning, we
consider a synthetic (semi-supervised) binary classification problem in a one-dimensional feature
space. To this end, we sample 25 labeled and 500 unlabeled instances uniformly from the unit interval.
As ground-truth, we define the true probability of the positive class by a sigmoidal shaped function.

Provided this data, we train a simple multi-layer perceptron with a single hidden layer consisting of
100 neurons activated by a sigmoid function. As output layer, we use a softmax-activated dense layer
with two neurons. To make use of the unlabeled data, we employ self-training with either hard, soft
or credal labels for 100 iterations each. In all three cases, we do not apply any form of distribution
alignment or confidence thresholding. We use SGD as optimizer with a learning rate of 0.5 (no

!"The code is publicly available athttps: //github. com/google-research/fixmatchunder the Apache-
2.0 License.

"https://www.tensorflow.org/, Apache-2.0 License

*https://python-pillow.org/, HPND License


https://github.com/julilien/CSSL
https://github.com/google-research/fixmatch
https://www.tensorflow.org/
https://python-pillow.org/

CIFAR-100@40 (avg. over 5 seeds) SVHN@40 (avg. over 5 seeds)

100 100
90 === 90 -—-—-—--—;I;T.;T—‘—T—:.Zfi—_:ifz—:—
804 e . =,7_-,-==::==’——-—- 30 T
z 701 > 70
£ 60 S 60
8 501 FixMatch (7 = 0.0) S 5 FixMatch (7 = 0.0)
% 10l FixMatch (- = 0.8) S 0 FixMatch (r = 0.8)
[ 301 FixMatch (7 = 0.95) e 30 FixMatch (7 = 0.95)
20 - LSMatch 20 - LSMatch
10 CSSL 10 CSSL
0 0 - - -
2 4 6 8 0.0 0.5 1.0 1.5 2.0 2.5
Iterations x 100 Iterations x 100
(a) CIFAR-10: 40 labels (b) SVHN: 40 labels
100 CIFAR-10@4000 (avg. over 5 seeds) SVHN®@1000 (avg. over 5 seeds)
100
( — e —
f“ 90 F P
80 801fi /
g 70 3 o4l /
& . e |/
5 60 i 5 604{i,/ i
8 50 ~~ FixMatch (7 = 0.0) 8 ol ---= FixMatch (7 = 0.0)
; 404 ———- FixMatch (7 = 0.8) fm 10 '.'I: -=-= FixMatch (7 = 0.8)
= 304 ---- FixMatch (7 = 0.95) - 3041 ---- FixMatch (7 = 0.95)
I
204 —— LSMatch 204} —-—- LSMatch
10{ —— CssL 101" — cssL
0 0
0 2 4 6 8 0.0 0.5 1.0 1.5 2.0 2.5
Iterations x 108 Iterations x10°
(c) CIFAR-10: 4000 labels (d) SVHN: 1000 labels

Figure 1: Averaged learning curves for different dataset configurations.

momentum) for all methods. We repeat each model training (on the same data) 5 times with different
seeds.

Fig. 2| shows the labeled and unlabeled data pointsﬂ (red crosses and green circles respectively) and
their ground-truth positive class probability (red dashed line), as well as the soft and hard labeling
baselines (orange and green lines). The model trained with credal self-supervised learning is indicated
by the blue line.

In this setting, self-training of a simple neural network with deterministic labeling leads to a flat
(instead of sigmoidal) function most of the time, because the learner tends to go with the majority
in the labeled training data. With probabilistic labels, the results become a bit better: the learned
functions tend to be increasing but still deviates a lot from the ground-truth sigmoid. Our credal
approach yields the best result, being closer to the sigmoid (albeit not matching it perfectly). These
results are perfectly in agreement with our intuition and motivation of our approach: Self-labeling
examples in an overly “aggressive” (and over-confident) way may lead to self-confirmation and a
bias in the learning process.

A.4.2 Augmentation Ablation Study

In an additional experiment, we perform an ablation study to measure the impact of the augmentation
policy on the generalization performance and the network calibration. Here, we compare CSSL with
RandAugment and CTAugment as strong augmentation policies. We further distinguish between
RandAugment either with or without cutout [3]], which is a technique to randomly mask out parts of
the image. Note that cutout is included in the set of operations we use for CTAugment and was found
to be required for strong generalization performance within the FixMatch framework (cf. [6]). Here,
we report results on CIFAR-10 for 40 and 4000 labels, in both cases trained for 219 steps. We use the
same hyperparameters as enlisted in Tab. [T|and report the averaged results for 3 seeds.

“Note that the unlabeled instances have a probability of 0.5 assigned only for the sake of visualizability, their
class distribution also follows the sigmoidal ground-truth.
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Figure 2: Illustration of CSSL in contrast to conventional probabilistic self-labeling on a simple
data-generating process (averaged over 5 seeds).

As can be seen in Table |2L our evaluation confirms the observation in [6] that cutout is a required
operation to achieve competitive performance. While RandAugment with cutout as augmentation
policy does not show any notable difference compared to CTAugment, employing the former policy
without cutout leads to drastically inferior generalization performance and network calibration.

Table 2: Averaged misclassification rates and standard deviations (3 seeds) for various augmentation
policies used in CSSL on CIFAR-10 (bold font indicates the best performing method and those
within a range of two standard deviations from the best method).

Augmentation 40 labels 4000 labels
Err. ECE Err. ECE
CTAugment 6.92 +0.34 0.035 +0.005 5.11 +0.64  0.028 +0.001

RandAugment (w/o cutout) 28.81 +£19.11  0.131 +0.102  7.42 +£0.76  0.039 +0.001
RandAugment (w/ cutout) 6.74 +£0.18  0.031 £0.002 5.13 +0.66 0.029 4-0.000

A.5 Barely Supervised Experiments

We also consider the scenario of barely supervised learning [6], where a learner is given only a single
labeled instance per class. We train all models with 219 update iterations on CIFAR-10 and SVHN,
using the hyperparameters as described in Section[A-3.1] We report the averaged misclassification
rates on 5 different folds.

As the uncertainty with such few labels is relatively high, we have experimented with a CSSL version
that lower bounds the precisiation degrees «, i.e., it defines a minimal size for the target sets. This
further increases the degree of cautiousness, but, however, can be seen as an unfair advantage over
the other baselines as it adds additional awareness about the highly uncertain nature of the faced
problems. In our experiments, we bound the precisiation degree by o > 0.03, which we determined
empirically as a reasonable choice for the two datasets.

Table E| shows the results. As can be seen, CSSL is able to reduce the error rate compared to
conventional hard pseudo-labels in both cases. Moreover, it reduces the intra-dataset variance, which
reflects a higher stability of the learning process. Bounding the target set sizes by a > 0.03 slightly
improves the performance on CIFAR-10, but does not show any advantage on SVHN. On the contrary,
label smoothing shows an unstable learning behavior in some cases, leading to poor generalization
performances for some folds on both data sets. These cases suggest that LSMatch suffers particularly
from extremely scarce labeling.



Table 3: Averaged misclassification rates and standard deviations (5 seeds) for the barely supervised
experiments with 10 labels (bold font indicates the single best performing method).

Model CIFAR-10 SVHN
FixMatch 31.74 £17.77  30.57 +£23.82
LSMatch 42.14 £25.33  44.29 £27.40
CSSL 26.90 £13.57  9.69 +4.63

CSSL (o« > 0.03)  26.10 £8.02  16.63 +13.21

A.6 Uncertainty-Based Matching

As the set-valued target modeling in CSSL leads to a form of uncertainty-awareness, one may think of
extending classical probabilistic pseudo-labels by additional means measuring the model uncertainty.
To this end, UPS [5] augments classical confidence thresholded pseudo-labeling by an additional
uncertainty sampling technique (e.g., using MC-Dropout [4]), which is employed in the mechanism
to filter out unreliable pseudo-labels. More precisely, it assumes an uncertainty threshold « besides
the confidence threshold 7 to calculate the loss on unlabeled instances by

1 A
Lu=—2 D Dnacp@zrIncu(e) < (.5(2))
(x,q9)EBY

where the sum is taken over all unlabeled instances in B,, with individual pseudo labels ¢ constructed
from p(x), and u(-) is the sampled uncertainty. Note that UPS in its original formulation further uses
negative labels, which we omit here for a more the sake of a fair comparison.

We employ the uncertainty-based filtering technique within the framework of FixMatch to compare it
with our form of uncertainty-awareness. In the following, we call this variant UPSMatch. To induce
reasonable thresholds 7 and «, we empirically optimize the hyperparameters 7 and « in the spaces
{0.7,0.95} and {0.1,0.25,0.5} respectively on a separate validation set. For MC-Dropout, we use
8 sampling iterations (as opposed to 10 in the original approach) due to computational resource
concerns, whereby the drop rate for Dropout is set to 0.3 as also used in [5]. Moreover, we use hard
pseudo-labels as in UPS and FixMatch.

Tab. 4| shows the results for UPSMatch and baselines for 5 different seeds after 22° training steps. On
CIFAR-10, UPSMatch improves over FixMatch for 40 labels in terms of generalization performance
and network calibration. This is reasonable as UPSMatch implements a more cautious learning
behavior by augmenting the pseudo-label selection criterion and reduces the risk of confirmation
biases. Similarly, UPSMatch outperforms FixMatch for 40 labels on SVHN, whereas it provides
both worse generalization performance and better calibration in the other cases. Nevertheless, CSSL
turns out to be superior compared to both selective methodologies. However, let us emphasize that a
more thorough investigation of the interaction between uncertainty-based sampling and consistency
regularization as employed in FixMatch needs to be performed, as well as a more sophisticated
hyperparameter optimization.

Table 4: Averaged misclassification rates and expected calibration errors (ECE, 15 bins) for 5 seeds
(bold font indicates the best performing method and those within a range of two standard deviations
from the best method).

CIFAR-10 SVHN
40 lab. 4000 lab. 40 lab. 1000 lab.
Err. ECE Err. ECE Err. ECE Err. ECE
FixMatch 11.39 +3.35 0.087 £0.051 4.31 £0.15 0.030 £0.002  7.65 £7.65 0.040 +0.044 2.28 £0.19  0.010 +0.002
CSSL 6.50 £0.90  0.032 +0.005 4.43 +0.10 0.023 +0.001  3.67 £2.36  0.022 +0.029 1.99 +0.13  0.007 £0.001

UPSMatch  10.48 +2.11  0.058 +£0.010  4.92 +£0.39  0.027 £0.003  3.81 £1.99  0.025 +0.027 2.71 £0.47  0.008 -£0.001
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