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ABSTRACT

Graph neural networks (GNNs) have been successfully applied in many struc-
tured data domains, with applications ranging from molecular property predic-
tion to the analysis of social networks. Motivated by the broad applicability of
GNNs, we propose the family of so-called RankGNNs, a combination of neu-
ral Learning to Rank (LtR) methods and GNNs. RankGNNs are trained with
a set of pair-wise preferences between graphs, suggesting that one of them
is preferred over the other. One practical application of this problem is drug
screening, where an expert wants to find the most promising molecules in a
large collection of drug candidates. We empirically demonstrate that our pro-
posed pair-wise RankGNN approach either significantly outperforms or at least
matches the ranking performance of the naive point-wise baseline approach, in
which the LtR problem is solved via GNN-based graph regression.

Keywords Graph-structured data - Graph neural networks - Preference
learning - Learning to rank

1 Introduction

Bringing a set of objects o1, ...,0y into a particular order is an important problem with many
applications, ranging from task planning to recommender systems. In such domains, the crite-
rion defining the underlying order relation > typically depends on properties (features) of the
objects (for example the price and quality of a product). If the sorting criterion (and hence the
relation >) is not explicitly given, one may think of inferring it from exemplary data, often pro-
vided in the form of a set of pair-wise orderings o; > o; (e.g., representing that the user prefers
product o; over product o;). This gives rise to a machine learning task often referred to as LtR.
Thus, the goal is to learn a general ordering strategy (preference model) from sample data of
the above kind, which can then be used to sort any new (previously unseen) set of objects.
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While existing state-of-the-art LtR approaches assume that objects o; are represented by feature
vectors x; € R", in this paper, we will consider the LtR problem for another quite natural and
practically important representation, namely the domain of finite graphs. Methods for learning
to rank objects represented in the form of graphs can, for example, be used in applications such
as drug screening, where the ranked objects are the molecular structures of drug candidates.

To support the ranking of structured objects such as graphs, existing LtR methods need to be
adapted. Previously, Agarwal [1]] has considered the problem of ranking the vertices within a
given graph. However, to the best of our knowledge, the graph-wise LtR problem has so far
only been described in the context of specific domains, such as drug discovery, where manually
chosen graph feature representations were used [2]]. Motivated by the success of GNNs in graph
representation learning, we propose a simple architecture that combines GNNs with neural LtR
approaches. The proposed approach allows for training ranking functions in an end-to-end
fashion and can be applied to arbitrary graphs without the need to manually choose a domain-
specific graph feature representation.

Our neural graph ranking architecture will be introduced in Before, the LtR and GNN
models that are used in this architecture are described in [Section 2| and [Section 3] respectively.
In[Section 5| we evaluate our approach on a selection of graph benchmark datasets.

2 Object Ranking

LtR approaches are often categorized as point-wise, pair-wise, and list-wise methods. We begin
with a short overview of these families. Afterwards, a more in-depth introduction is given to a
selection of neural pair-wise approaches that we shall built upon in [Section 4

2.1 Overview of LtR Approaches

Point-wise methods assume the existence of a (latent) utility function representing the sought
preference relation =, i.e., that an ordinal or numeric utility score u; € R can be assigned to
each object 0; € O such that

YVo;,0; €0 : uy > u; &0, = 0;.

Based on training data in the form of exemplary (and possibly noisy) ratings, i.e., object/utility
pairs {(z;,u;)}, C X x R, where x; € X is the feature representation of o;, the LtR problem
can be solved by fitting a model f, : X — R using standard ordinal or numeric regression
methods. Given a new set of objects {0}}}L, to be ranked, these objects are then sorted in

decreasing order of their estimated utilities f,(o}). Note that point-wise methods are restricted
to linear orders but cannot represent more general relations, such as partial orders.

Pair-wise methods proceed from training data in the form of a set of ordered object pairs
S = {og4; = obi}ijil, i.e., relative training information in the form of pair-wise comparisons
rather than absolute assessments. Based on such training samples S, the goal is to learn the
underlying preference relation . The resulting model f- : O x O — {0, 1} is a binary classifier,
which is supposed to return f-(0;,0;) = 1 iff 0; > o,.
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One of the first pair-wise preference methods was the Ranking SVM [3] —essentially a stan-
dard support vector machine (SVM) trained on the differences between vector representations
of object preference pairs. Later, Burges et al. [4]] proposed the RankNet architecture, which
is also trained using feature vector differences but uses a multilayer perceptron (MLP) instead
of an SVM. Since then, multiple extensions of those approaches have been developed [5]. One
commonality between all of them is their training optimization target, namely to minimize the
number of predicted inversions, i.e., the number of pairs o; = o; with f.-(0;,0;) = 0. An impor-
tant difference between existing pair-wise approaches concerns the properties they guarantee
for the learned preference relation; three properties commonly considered are

o reflexivity (Vz : = = z),
* antisymmetry (Vz,y: = %/ y = y = ), and
e transitivity (Vo,y,z: (= yAy = z2) =z = 2).

The set of desirable properties depends on the domain. While some approaches guarantee that
the learned relation fulfills all three properties [6]], others, for example, explicitly allow for
non-transitivity [7].

Assuming a suitable pair-wise ranking model f.- was selected and trained, one then typically
wants to produce a ranking for some set of objects {0} }} . To this end, a ranking (rank aggrega-

tion) procedure is applied to the preferences predicted for all pairs (o}, 0’;). A simple example of

0>
such a procedure is to sort objects o; by their Borda count¢; = ., f~ (Joi, 0j), i.e., by counting
how often each object o; is preferred over another object. Alternatively, the classifier f- can also
be used directly as the comparator function in a sorting algorithm; this reduces the number of
comparisons from O(M?) to O(M log M). While the latter approach is much more efficient, it
implicitly assumes that f. is transitive. The rankings produced by an intransitive sorting com-
parator are generally unstable, because they depend on the order in which the sorting algorithm

compares the objects [8]]. This might not be desirable in some domains.

List-wise methods generalize the pair-wise setting. Instead of determining the ordering of
object pairs, they directly operate on complete rankings (lists) of objects, training a model based
on a list-wise ranking loss function. One of the first list-wise losses was proposed by Cao et al.
[O]. Given a set S of objects, their ListNet approach uses a probability distribution over all
possible rankings of S and is trained by minimizing the cross-entropy between the model’s
current ranking distribution and some target distribution. Compared to pair-wise approaches,
list-wise methods exhibit a higher expressivity, which can be useful to capture effects such as
context-dependence of preferences [[10]. In general, however, if this level of expressiveness
is not required, recent results by Koppel et al. [6] suggest that the list-wise approaches have
no general advantage over the (typically simpler) pair-wise methods. To tackle the graph LtR
problem in we will therefore focus on the pair-wise approach.

2.2 Neural Pair-wise Ranking Models

As already stated, we propose a combination of existing LtR methods and GNNs to solve graph
ranking problems. Due to the large number of existing LtR approaches, we will however not
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evaluate all possible combinations with GNNSs, but instead focus on the following two represen-
tatives:

1. DirectRanker [6]: A recently proposed generalization of the already mentioned pair-
wise RankNet architecture [4]. It guarantees the reflexivity, antisymmetry, and transi-
tivity of the learned preference relation and achieves state-of-the-art performance on
multiple common LtR benchmarks.

2. CmpNN [7]: Unlike DirectRanker, this pair-wise architecture does not enforce tran-
sitivity. The authors suggest that this can, for example, be useful to model certain
non-transitive voting criteria.

Formally, the DirectRanker architecture is defined as
fgp‘(o,;, 0j) =0 (wT(h(z,;) - h(xj))) s @D)]
where z;,z; € R" are feature vectors representing the compared objects o;,0;, the function
h : R" — R? being a standard MLP, w € R? a learned weight vector and an activation function
o : R — R such that o(—z) = —o(x) and sign(z) = sign(o(z)) for all z € R. One could, for
example, use o = tanh and interpret negative outputs of f2®(0;,0;) as o; = o; and positive
outputs as o; = o;. This model can be trained in an end-to-end fashion using gradient descent
with the standard binary cross-entropy loss. Note that fPR can be rewritten as o(f2R(xz;) —
DR(2:)), with fPR(z) = w h(x). DirectRanker therefore effectively learns an object utility

u
function fPR and predicts o; = o; iff fOR(z;) > fPR(z;). Thus, the learned preference relation
fPR directly inherits the reflexivity, antisymmetry and transitivity of the > relation. The main
difference between DirectRanker and a point-wise regression model is that DirectRanker learns
/PR indirectly from a set of object preference pairs. Consequently, DirectRanker is not penalized
if it learns some order-preserving transformation of fPR. We will come back to this point in

[Section 5.3

Let us now look at the so-called Comparative Neural Network (CmpNN) architecture, which
generalizes the DirectRanker approach. The main difference between both is that CmpNN does
not implicitly assign a score f,(z;) to each object o;. This allows it to learn non-transitive

preferences. CmpNNs are defined as follows:

gmp(% Oj) = U(Zt — Zj), with )

Zy = T(w] 21 +wyg 2o + V), 21 =7(Wyia; + Waxz; +b),

2g = T(wy 21 +wy 2o + V), 20 = T(Waz; + Wiz +b).
Here, wy,wy; € R% and Wi, W, € R¥*™ are shared weight matrices, b, b’ bias terms, and o, 7
activation functions. Intuitively, z- € R and z< € R can be interpreted as weighted votes
towards the predictions o, = o; and o; > o;, respectively. A CmpNN will simply choose the
alternative with the largest weight. The key idea behind the definitions in is that the pairs
z-, 2= and z1, zp will swap values when swapping the compared objects o;,0;. Consequently,
fEmP must be reflexive and antisymmetric [see[7]]. If we set W; = w; = 0, the voting weights
z;, z< € R reduce to the predictions of a standard MLP A with the input o, and o;, respectively,
i.e., z- = h(z;) and z< = h(z;). In this case, the CmpNN effectively becomes a DirectRanker
model. By choosing non-zero weights for W; and w;, the model can however also learn non-
transitive dependencies between objects. In fact, Rigutini et al. have shown that CmpNNs are
able to approximate almost all useful pair-wise preference relations [[7, Thm. 1].
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3 Graph Neural Networks

Over the recent years, GNNs have been successfully employed for a variety of graph ML tasks,
with applications ranging from graph classification and regression to edge prediction and graph
synthesis. Early GNN architectures were motivated by spectral graph theory and the idea of
learning eigenvalue filters of graph Laplacians [11] [12]. Those spectral GNNs take a graph
G = (V, F) with vertex feature vectors z; € R™ as input and iteratively transform those vertex
features by applying a filtered version of the Laplacian L of GG. Formally, the filtered Laplacian
is defined as L = U " g(A)U, where L = U T AU is an eigendecomposition of L and g is a learned
eigenvalue filter function that can amplify or attenuate the eigenvectors U. Intuitively, spectral
GNNs learn which structural features of a graph are important and iteratively aggregate the
feature vectors of the vertices that are part of a common important structural graph feature.
Each of those aggregations is mathematically equivalent to a convolution operation. This is why
they are referred to as (graph) convolution layers.

One important disadvantage of spectral convolutions is their computational complexity, making
them especially unsuitable for large graphs. To overcome this limitation, [Kipf and Welling| pro-
posed the so-called graph convolutional network (GCN) architecture [13[], which restricts the
eigenvalue filters g to be linear. As a consequence of this simplification, only adjacent vertices
need to be aggregated in each convolution. Formally, the simplified GCN convolution can be
expressed as follows:

v; €T (vy)

Here, x;, 2, € R? are the feature vectors of v; € V before and after applying the convolution,
I'(v;) is the set of neighbors of v;, W € R%*" is a learned linear operator representing the
filter g, o some activation function, and 7;;,7;; € [0,1] normalization terms that will not be
discussed here. After applying a series of such convolutions to the vertices of a graph, the
resulting convolved vertex features can be used directly to solve vertex-level prediction tasks,
e.g. vertex classification. To solve graph-level problems, such as graph classification or graph
ranking, the vertex features must be combined into a single graph vector representation. This is
typically achieved via a pooling layer, which could, for example, simply compute the component-
wise mean or sum of all vertex features. More advanced graph pooling approaches use sorting
or attention mechanisms in order to focus on the most informative vertices [14} [15].

Xu et al. [[16] show that restricting the spectral filter g to be linear not only reduces the compu-
tational complexity but also the discriminative power of the GCN architecture. More precisely,
they prove that any GNN using a vertex neighborhood aggregation scheme such as can at
most distinguish those graphs that are distinguishable via the so-called 1-dimensional Weisfeiler-
Lehman (WL) graph isomorphism test [17]. GCNs do, in fact, have a strictly lower discriminative
power than 1-WL, i.e., there are 1-WL distinguishable graphs, which will always be mapped to
the same graph feature vector by a GCN model. In addition to this bound, Xu et al. [16] also
propose the graph isomorphism network (GIN) architecture, which is able to distinguish all 1-
WL distinguishable graphs. Recently, multiple approaches going beyond the 1-WL bound have
been proposed. The so-called 2-WL-GNN architecture, for example, is directly based on the 2-
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dimensional (Folklore) WL test [18]. Other current approaches use higher-order substructure
counts [[19] or so-called k-order invariant networks [20].

4 Neural Graph Ranking

To tackle the graph LtR problem, we propose the family of RankGNN models. A RankGNN is
a combination of a GNN and one of the existing neural LtR methods. The GNN component is
used to embed graphs into a feature space. The embedded graphs can then be used directly
as the input for a comparator network, such as DirectRanker [6] or CmpNN [7]. Formally, a
RankGNN is obtained by simply using a GNN to produce the feature vectors x;,z; in and
for a given pair of graphs G;,G;. Since all components of such a combined model are
differentiable, the proposed RankGNN architecture can be trained in an end-to-end fashion.
Despite the simplicity of this approach, there are a few details to consider when implementing
it; these will be discussed in the following sections.

4.1 Efficient Batching for RankGNNs

In the existing neural LtR approaches for objects o; that are represented by features z; € R",
efficient batch training is possible by encoding a batch of & relations {o,, > obi}f:1 with two

matrices
Ial CEbl
. : k . : k
A.—(;)ERxn, B = . € RF*n
Tay, Loy

1
Y:<§> e RF
1

as the target prediction of the model. However, this approach is suboptimal in the graph LtR
setting. Given the relations {Gy = G1,G1 = Gs}, the graph G; would for example have to be
encoded twice. When dealing with datasets that consist of possibly large graphs, such redundant
encodings quickly become infeasible due to the additional memory and runtime requirements
incurred by the GNN having to embed the same graph multiple times. To prevent this redun-
dancy, each graph occurring on the left or the right side of a relation should instead only be
encoded once as part of a single graph batch. This graph batch can be fed directly into a GNN to
produce a matrix Z of graph feature embeddings. The individual graph relation pairs G; = G;
can then be simply represented as pairs of indices (7, j) pointing to the corresponding feature
vectors in the embedding matrix Z. Using those pointers, the graph vector representations for
each pair can be looked up in Z. illustrates this idea.

and using

4.2 Sorting Graphs with RankGNNs

After training a RankGNN model using a set of graph relation pairs, the model can be used to
compare arbitrary graph pairs. Following the approach of Képpel et al. [6] and Rigutini et al.
[[71, a set of graphs can then be ordered by using the RankGNN as the comparator function in
a standard sorting algorithm. We propose a simple parallelized quicksort-based scheme to sort
graphs. When implementing a RankGNN model on a parallel compute device, such as a GPU,
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Figure 1: General architecture of the proposed family of RankGNNs. Here the common sparse
adjacency representation for message-passing GNNs is shown; different types of graph batch
encodings can of course also be used.

there is a constant time overhead for each call to the model. To reduce the total cost of this call
overhead, we suggest that all pivot comparison queries in one layer of the recursive quicksort call
tree should be evaluated by the RankGNN in parallel. Using this parallel comparison approach,
only one model invocation is required for each layer of the call tree, i.e., the asymptotic model
call overhead for sorting n graphs is in O(logn). Additionally, a more efficient approach is
available for DirectRanker-based models. There, the implicitly learned utility function fPR can
be computed directly for a set of graphs. A standard sorting algorithm can then be applied
without any further calls to the model, which reduces the call overhead to O(1).

5 Evaluation

To evaluate the family of RankGNNs described in[Section 4] we choose six different combinations
of GNNs and comparator networks. The evaluated graph embedding modules are GCN [13],
GIN [16]], and 2-WL-GNN [18]. Those three GNN methods are combined with the previously
described DirectRanker [[6] and the CmpNN [7] comparator. Because there are currently no
common graph ranking benchmark datasets, we instead convert a selection of graph regres-
sion benchmarks into ranking problems by interpreting the numeric regression targets as utility
values, which are used to determine the target orderings. The following five graph regression
datasets are used:

1. TRIANGLES: This is a synthetic dataset that we created. It consists of 778 randomly
sampled graphs, each of which contains 3 to 85 unlabeled vertices. The regression target
is to learn how many triangles, i.e. 3-cliques, a given graph contains. The triangle counts
in the sampled graphs vary between 0 and 9. The sampled graphs are partitioned into
80%/10%/10% training/validation/test splits.
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2. OGB-molesol, -mollipo and -molfreesolv: These three datasets are provided as part
of the Open Graph Benchmark (OGB) project [21]. They contain 1128, 4200, and 642
molecular structure graphs, respectively. The regression task is to predict the solubility
of a molecule in different substances. We use the dataset splits that are provided by
OGB.

3. ZINC: This dataset contains the molecular structures of 250k commercially available
chemicals from the ZINC database [22]. The regression task is to predict the so-called
octanol-water partition coeffients. We use the preprocessed and presplit graphs from
the TUDataset collection [123].

To train the proposed pair-wise graph ranking network architecture, a subset of graph pairs from
the training split is sampled uniformly at random. The size of a training sample is M = aN,
where N is the number of graphs in the training split of a dataset and o € R is a constant factor.
We use a sampling factor of o = 20 for all datasets except ZINC, where we use o = 3 due to the
large number of graphs in the training split (Nzive = 220011, whereas e.g. Nogg-moliipo = 3360).
This sampling strategy guarantees that each training graph occurs in at least one sampled pair
with a probability of at least 1 — e~2%; thus, for both o = 20 and even a = 3, all graphs are
considered with high probability (> 99.75%).

In addition to the six pair-wise RankGNN model variants, we also evaluate the ranking per-
formance of standard point-wise GNN graph regression models, which are trained directly on
graph utility values. We use two different target graph utilities: The original regression target
y; € R for each training graph G;, and the normalized graph rank 7; € [0, 1], i.e. the normalized
ordinal index of each training graph G; when sorted by y;.

5.1 Experimental Setup

We evaluate the performance of the different RankGNN variants via Kendall’s 75 rank correlation
coefficient. Given two graph rankings r; : G — N, r5 : G — N, this coefficient is defined as

C—-D
VO+D+T)(C+D+Ty)

where C' is the number of concordant pairs

HGi, G} i # jAT(Gi) <7m1(Gj) Ara(Gi) <ra(Gj)}y

B ‘=

D is the number of discordant pairs
{{Gi, Gi} i # J Ari(Gi) <ri(Gy) Ara(Gi) > 12(Gj)}

and T} , are the numbers of tied graph pairs, which have the same rank in r; and r,, respectively.
Kendall’s 75 rank coefficient ranges between —1 and +1, where 75 = +1 indicates that the two
compared rankings are perfectly aligned, whereas 75 = —1 means that one rankings is the
reversal of the other.

Another commonly used metric in the LtR literature is the normalized discounted cummulative
gain (NDCG), which penalizes rank differences at the beginning of a ranking more than differ-
ences at the end. This is motivated by the idea that typically only the top-k items in a ranking
are of interest.We do not employ the NDCG metric because this motivation does not hold for
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the used target graph rankings. Since the target rankings are derived from regression targets,
such as the water solubility of a molecule, both, the beginning and the end of a ranking are of
interest and should therefore be weighted equally.

To train the evaluated point- and pair-wise models, we use the standard Adam optimizer [24].
The mean squared error (MSE) loss is used for the point-wise regression models, while the pair-
wise variants of those GNNs are optimized via binary cross-entropy. All models were tuned via
a simple hyperparameter grid search over the following configurations:

1. Layer widths: {32,64}. The width of both, the convolutional layers, as well as the
fully-connected MLP layers that are applied after graph pooling.

2. Number of graph convolutions: {3,5}. A fixed number of two hidden layers was used
for the MLP that is applied after the pooling layer.

3. Pooling layers: {mean,sum, softmax}. Here, “mean” and “sum” refer to the standard
arithmetic mean and sum operators, as described by Xu et al. [16], while “softmax”
refers to the weighted mean operator described by Damke et al. [18]].

4. Learning rates: {1072,1073,107%}.

We used standard sigmoid activations for all models and trained each hyperparameter configura-
tion for up to 2000 epochs with early stopping if the validation loss did not improve by at least
10~* for 100 epochs. The configuration with the highest 75 coefficient on the validation split
was chosen for each model/dataset pair. To account for differences caused by random weight
initialization, the training was repeated three times; 10 repeats were used for the TRIANGLES
dataset due to its small size and fast training times. Note that, depending on the type of GNN,
the pair-wise models can have between 3% and 10% more trainable weights than their point-wise
counterparts, due to the added comparator network. All models were implemented in Tensorflow
and trained using a single Nvidia GTX 1080Ti GPU. The code is available on GitHu

5.2 Discussion of Results

shows the ranking performance of the evaluated point- and pair-wise approaches on
the test splits of the previously described benchmark datasets. Each group of rows corresponds
to one of the three evaluated GNN variants. The first two rows in each group show the results
for the point-wise models that are trained directly on the original regression targets and on
the normalized ranks, respectively. The last two rows in each group hold the results for the
pair-wise DirectRanker- and CmpNN-based models. Generally speaking, the pair-wise approaches
either significantly outperform or at least match the performance of the point-wise regression
models. The most significant performance delta between the point- and pair-wise approaches
can be observed on the ZINC and OGB-mollipo datasets. Only on the OGB-molesol dataset, the
point-wise models achieve a slightly higher average 75 value than the pair-wise models, which
is however not significant when considering the standard deviations. Overall, we find that the
pair-wise rank loss that directly penalizes inversions is much better suited for the evaluated graph
ranking problems than the point-wise MSE loss.

"https://github.com/Cortys/rankgnn
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Table 1: Mean Kendall’s 75 coefficients with standard deviations for the rankings produced by
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point- and pair-wise models on unseen test graphs.

TRIANGLES OGB-molesol -mollipo -molfreesolv ZINC
Utility regr. 0.273 £0.004 0.706 £ 0.001 0.232 4+ 0.002 0.0154+0.242 0.547 +0.414
% Rank regr. 0.172+£0.040 0.702£0.012 0.224 £0.006 0.446 £0.038 0.823 £ 0.005
O DirectRanker 0.234 +0.002 0.714 +0.003 0.327 +0.006 0.483 +0.011 0.879 + 0.002
CmpNN 0.195 £ 0.007 0.6324+0.076 0.381 +0.008 0.351 £ 0.055 0.819 &£ 0.002
Utility regr. 0.469 £ 0.056 0.729 +£0.006 0.353 =0.052 0.243 £0.125 0.790 £ 0.003
> Rank regr. 0.481£0.014 0.7174+0.011 0.310+0.017 0.495+0.021 0.827 £0.011
O DirectRanker 0.502 +0.028 0.7124+0.007 0.429 +0.026 0.439 £+ 0.065 0.894 + 0.012
CmpNN 0.520 £0.070 0.710 £0.007 0.506 +=0.013 0.518 +0.018 0.891 &+ 0.006
Utility regr. 0.997 £0.006 0.747 £0.007 0.318 £0.017 0.379+0.207 0.803 £ 0.006
2 Rank regr. 0.972£0.017 0.7204£0.019 0.332+0.083 0.524 +0.020 0.810 £ 0.003
& DirectRanker 1.000 4+ 0.000 0.7454+0.009 0.505 +0.012 0.525+0.010 0.894 4 0.008
CmpNN 1.000 £ 0.000 0.718 £0.020 0.503 £0.010 0.527 +0.064 0.873 &+ 0.002

Comparing the two evaluated variants of point-wise regression models, we find that the ones
trained on normalized graph ranks generally either have a similar or significantly better ranking
performance than the regression models with the original targets. We will come back to this

difference in

Looking at the results for the synthetic TRIANGLES dataset, we find that only the higher-order
2-WL-GNN is able to reliably rank graphs by their triangle counts. This is plausible, because
architectures bounded by the 1-WL test, such as GCN and GIN, are unable to detect cycles in
graphs [25]. While both the point- and the pair-wise 2-WL-GNN models achieve perfect or
near-perfect 75 scores on this task, the pair-wise approaches did perform more consistently,
without a single inversion on the test graphs over 10 iterations of retraining.

Since the target graph rankings for all evaluated datasets are derived from regression values, all
models have to learn a transitive preference relation. Consequently, the ability of CmpNN-based
RankGNNs to learn non-transitive preferences is, in theory, not required to achieve optimal
ranking performance. If the sample size of training graph pairs is too small, such that it contains
few transitivity-indicating subsets, e.g. {G1 = G2, G2 = G3,G1 = G}, the higher expressiveness
of CmpNNs could even lead to overfitting and therefore worse generalization performance
compared to DirectRanker. Nonetheless, with the used sampling factor of o = 20 (and o = 3
for ZINC), each graph is, in expectation, sampled 40 times (6 for ZINC). This appears to be
sufficient to prevent overfitting. In fact, the CmpNN-based RankGNNs perform very similarly to
their DirectRanker-based counterparts. However, since DirectRanker-based models allow for a
more efficient sorting implementation than CmpNN-based ones (cf. [Section 4.2)), we suggest the
use of DirectRanker for problems where transitivity can be assumed.

10
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Figure 2: Normalized learned utility values of the point-wise GNN regression model trained
on the original utilities (in blue), the point-wise model trained on normalized ranks (in gray)
and the pair-wise DirectRanker model (in red). For each dataset, we plot the predicted utilities
of the GNN architecture that achieved the best point-wise ranking performance in [Table 1] i.e.
2-WL-GNN for OGB-molesol and -molfreesolv and GIN for OGB-mollipo. Each point along the
horizontal axes corresponds to a graph in the training split of a dataset. The graphs are sorted
in ascending order by the ground truth utility values (shown in black) from which the target
rankings are derived.

5.3 Analysis of the Implicit Utilities of DirectRanker GNNs

As described in a DirectRanker model ng : O x O — {0,1} implicitly learns a utility
function fPR : O — R from the set of pairs it sees during training. We will now take a closer look
at this implicitly learned utility function fPR and compare it to the explicitly learned utilities £
and f™% of the point-wise GNN regression models. :Fiéure 2| shows the values of all three, fOF
(in red), fU9" (in blue) and f™"* (in gray), normalized to the unit interval. Any monotonically
increasing curve corresponds to a perfect ranking (75 = +1), while a monotonically decreasing
curve would signify an inverse ranking (7 = —1).

As expected, the blue utility curves of the point-wise approaches align with the black target
utility curves, while the gray curve more closely follows the 45° diagonal line on which the
normalized graph ranks would lie. However, this alignment does not necessarily imply good
ranking performance. For example, on the OGB-molfreesolv dataset, the blue utility curve of the
point-wise 2-WL-GNN model fits the black target curve fairly well for the graphs in the middle of
the ranking. However, near the low and the high graph ranks, the target curve abruptly falls/rises
to its minimum and maximum values; the point-wise regression model that is trained on the
original utilities ignores those outliers. By instead training a point-wise model on the normalized
ranks, outliers in the original utility values are effectively smoothed out, as can be seen in the gray
OGB-molfreesolv utility curve. Looking at[Table 1] we find that this corresponds to a significantly
higher mean 75 coefficient and a lower variance on the OGB-molfreesolv dataset. The pair-wise
DirectRanker-based approach solves the problem of outliers in a more general fashion. It uses a
loss function that does not penalize for learning a monotonous, rank-preserving transformation
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of the target utility curve. This allows it to effectively “stretch” the target utilities into a linearly
growing curve with fewer abrupt changes, which results in a similar performance to that of the
regression model trained on normalized ranks.

The target utilities of the OGB-molesol dataset are distributed more smoothly, without any
outliers. There the advantage of approaches that work well with outliers (e.g. pair-wise models)
over the ones that do not is less pronounced. Lastly, looking at the OGB-mollipo dataset, we also
do not find outliers in the target utility curve. However, there the pair-wise RankGNN models
perform significantly better than the point-wise approaches. The reason for this performance
difference is not yet fully understood.

6 Conclusion

In this paper, we addressed the problem of learning to rank graph-structured data and proposed
RankGNNs, a combination of neural pair-wise ranking models and GNNs. When compared with
the naive approach of using a point-wise GNN regression model for ranking, we found that
RankGNNs achieve a significantly higher or at least similar ranking performance on a variety of
synthetic and real-world graph datasets. We therefore conclude that RankGNNSs are a promising
approach for solving graph ranking problems.

There are various directions for future research. First, due to the lack of graph ranking benchmark
datasets, we had to use graph regression datasets in our evaluation instead. For a more thorough
analysis of the practical applicability of graph ranking models, a collection of real-world graph
ranking benchmarks should be created. One potential benchmark domain could, for example, be
the drug screening problem we described in the introduction, where the training data consists of
drug candidate pairs ranked by a human expert.

Second, list-wise graph ranking approaches could be evaluated in addition to the point- and
pair-wise models considered in this paper. Such list-wise models can be useful to learn a human’s
individual preferences for structured objects, such as task schedules or organizational hierarchies,
represented as directed acyclic graphs or trees, respectively. A list-wise ranking approach [e.g.
10] would be able to consider context-dependent preferences in such scenarios [26]. Yet another
interesting idea, motivated by the behavior we observed for the point- and pair-wise 2-WL-GNN-
based models on the OGB-molfreesolv dataset (cf. [Figure 2)), is a hybrid approach that combines
regression and ranking, that is, point-wise and pair-wise learning [27].

Third, although graph neural networks are quite popular these days, the problem of graph ranking
could also be tackled by well-established kernel-based methods. In the past, there has been a lot
of work on graph kernels [28], making graph-structured data amenable to kernel-based learning
methods. In principle, one may hence think of combining graph kernels with learning-to-rank
methods such as RankSVM. However, our first experiences with an approach of that kind suggest
that kernel-based approaches are computationally complex and do not scale sufficiently well,
even for point-wise implementations— for larger data sets, the running time as well as the
memory requirements are extremely high (which is also the reason why we excluded them
from the experiments). Although they can be reduced using suitable approximation techniques,
complexity clearly remains an issue. Besides, the ranking performance turned out to be rather
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poor. For pair-wise approaches, not only the complexity further increases, but the problem also
becomes conceptually non-trivial. This is because the simple reduction of ranking to classification,
on which RankSVM is based, no longer works (this reduction takes differences between feature
vectors, an operation that cannot be applied to graphs). Instead, a (preference) kernel function
on pairs of pairs of objects, i.e. on quadruples, has to be used [29]. Nevertheless, this does
of course not exclude the existence of more efficient (approximate) algorithms operating on
kernel-representation for graphs.
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