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Abstract. In multi-label classification, where a single example may be
associated with several class labels at the same time, the ability to
model dependencies between labels is considered crucial to effectively
optimize non-decomposable evaluation measures, such as the Subset 0/1
loss. The gradient boosting framework provides a well-studied foundation
for learning models that are specifically tailored to such a loss function
and recent research attests the ability to achieve high predictive accuracy
in the multi-label setting. The utilization of second-order derivatives, as
used by many recent boosting approaches, helps to guide the minimiza-
tion of non-decomposable losses, due to the information about pairs of
labels it incorporates into the optimization process. On the downside,
this comes with high computational costs, even if the number of labels
is small. In this work, we address the computational bottleneck of such
approach — the need to solve a system of linear equations — by integrat-
ing a novel approximation technique into the boosting procedure. Based
on the derivatives computed during training, we dynamically group the
labels into a predefined number of bins to impose an upper bound on the
dimensionality of the linear system. Our experiments, using an existing
rule-based algorithm, suggest that this may boost the speed of training,
without any significant loss in predictive performance.

Keywords: Multi-label classification · Gradient boosting · Rule learning

1 Introduction

Due to its diverse applications, e.g., the annotation of text documents or images,
multi-label classification (MLC) has become an established topic of research in
the machine learning community (see, e.g., [24] or [8] for an overview). Unlike in
traditional classification settings, like binary or multi-class classification, when
dealing with multi-label data, a single example may correspond to several class
labels at the same time. As the labels that are assigned by a predictive model
may partially match the true labeling, rather than being correct or incorrect as a
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whole, the quality of such predictions can be assessed in various ways. Due to this
ambiguity, several meaningful evaluation measures with different characteristics
have been proposed in the past (see, e.g., [22]). Usually, a single model cannot
provide optimal predictions in terms of all of these measures. Moreover, empirical
and theoretical results suggest that many measures benefit from the ability to
model dependencies between the labels, if such patterns exist in the data [6]. As
this is often the case in real-world scenarios, research on MLC is heavily driven
by the motivation to capture correlations in the label space.

To account for the different properties of commonly used multi-label mea-
sures, the ability to tailor the training of predictive models to a certain target
measure is a desirable property of MLC approaches. Methods based on gradient
boosting, which guide the construction of an ensemble of weak learners towards
the minimization of a given loss function, appear to be appealing with regard to
this requirement. In fact, several boosting-based approaches for MLC have been
proposed in the literature. Though many of these methods are restricted to the
use of label-wise decomposable loss functions (e.g., [25], [18] or [10]), including
methods that focus on ranking losses (e.g., [11], [5] or [17]), gradient boosting
has also been used to minimize non-decomposable losses (e.g., [15] or [1]).

To be able to take dependencies between labels into account, problem trans-
formation methods, such as Label Powerset [22], RAKEL [23] or (Probabilis-
tic) Classifier Chains [4,16], transform the original learning task into several
sub-problems that can be solved by the means of binary classification algo-
rithms. Compared to binary relevance, where each label is considered in isola-
tion, these approaches come with high computational demands. To compensate
for this, methods like HOMER [21], Compressed Sensing [26], Canonical Cor-
relation Analysis [19], Principal Label Space Transformation [20] or Label Em-
beddings [13,9,2] aim to reduce the complexity of the label space to be dealt
with by multi-label classifiers. Notwithstanding that such a reduction in com-
plexity is indispensable in cases where thousands or even millions of labels must
be handled, it often remains unclear what measure such methods aim to opti-
mize. In this work, we explicitly focus on the minimization of non-decomposable
loss functions in cases where the original problem is tractable. We therefore aim
at real-world problems with up to a few hundred labels, where such metrics,
especially the Subset 0/1 loss, are considered as important quality measures.

As our contribution, we propose a novel method to be integrated into the gra-
dient boosting framework. Based on the derivatives that guide the optimization
process, it maps the labels to a predefined number of bins. If the loss function
is non-decomposable, this reduction in dimensionality limits the computational
efforts needed to evaluate potential weak learners. Unlike the reduction methods
mentioned above, our approach dynamically adjusts to different regions in input
space for which a learner may predict. Due to the exploitation of the derivatives,
the impact of the approximation is kept at a minimum. We investigate the effects
on training time and predictive performance using BOOMER [15], a boosting
algorithm for learning multi-label rules. In general, the proposed method is not
limited to rules and can easily be extended to gradient boosted decision trees.
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2 Preliminaries

In this section, we briefly recapitulate the multi-label classification setting and
introduce the notation used in this work. We also discuss the methodology used
to tackle multi-label problems by utilizing the gradient boosting framework.

2.1 Multi-label Classification

We deal with multi-label classification as a supervised learning problem, where
a model is fit to labeled training data D = {(x1,y1) , . . . , (xN ,yN )} ⊂ X × Y.
Each example in such data set is characterized by a vector x = (x1, . . . , xL) ∈ X
that assigns constant values to numerical or nominal attributes A1, . . . , AL. In
addition, an example may be associated with an arbitrary number of labels out
of a predefined label set L = {λ1, . . . , λK}. The information, whether individual
labels are relevant (1) or irrelevant (−1) to a training example, is specified in
the form of a binary label vector y = (y1, . . . , yK) ∈ Y. The goal is to learn
a model f : X → Y that maps any given example to a predicted label vector
ŷ = (ŷ1, . . . , ŷK) ∈ Y. It should generalize beyond the given training examples
such that it can be used to obtain predictions for unseen data.

Ideally, the training process can be tailored to a certain loss function such
that the predictions minimize the expected risk with respect to that particular
loss. In multi-label classification several meaningful loss functions with different
characteristics exist. In the literature, one does usually distinguish between label-
wise decomposable loss functions, such as the Hamming loss (see, e.g., [22] for
a definition of this particular loss function), and non-decomposable losses. The
latter are considered to be particularly difficult to minimize, as it is necessary
to take interactions between the labels into account [6]. Among this kind of loss
functions is the Subset 0/1 loss, which we focus on in this work. Given true and
predicted label vectors, it is defined as

`Subs. (yn, ŷn) := Jyn 6= ŷnK, (1)

where JxK evaluates to 1 or 0, if the predicate x is true or false, respectively. As a
wrong prediction for a single label is penalized as much as predicting incorrectly
for several labels, the minimization of the Subset 0/1 loss is very challenging.
Due to its interesting properties and its prominent role in the literature, we
consider it as an important representative of non-decomposable loss functions.

2.2 Multivariate Gradient Boosting

We build on a recently proposed extension to the popular gradient boosting
framework that enables to minimize decomposable, as well as non-decomposable,
loss functions in a multi-label setting [15]. Said approach aims at learning en-
sembles FT = {f1, . . . , fT } that consist of several weak learners. In multi-label
classification, each ensemble member can be considered as a predictive function
that returns a vector of real-valued confidence scores

p̂t
n = ft (xn) =

(
p̂tn1, . . . , p̂

t
nK

)
∈ RK (2)
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for any given example. Each confidence score p̂nk expresses a preference to-
wards predicting the corresponding label λk as relevant or irrelevant, depending
on whether the score is positive or negative. To compute an ensemble’s over-
all prediction, the vectors that are provided by its members are aggregated by
calculating the element-wise sum

p̂n = FT (xn) = p̂1
n + · · ·+ p̂T

n ∈ RK , (3)

which can be discretized in a second step to obtain a binary label vector.
An advantage of gradient boosting is the capability to tailor the training

process to a certain (surrogate) loss function. Given a loss `, an ensemble should
be trained such that the global objective

R (FT ) =

N∑

n=1

` (yn, p̂n) +

T∑

t=1

Ω (ft) (4)

is minimized. The use of a suitable regularization term Ω may help to avoid
overfitting and to converge towards a global optimum, if the loss function is not
convex.

Gradient boosting is based on constructing an ensemble of additive functions
following an iterative procedure, where new ensemble members are added step
by step. To direct the step-wise training process towards a model that optimizes
the global objective in the limit, (4) is rewritten based on the derivatives of the
loss function. Like many recent boosting-based approaches (e.g., [3], [12] or [25]),
we rely on the second-order Taylor approximation. Given a loss function that is
twice differentiable, this results in the stagewise objective function

R̃ (ft) =

N∑

n=1

(
gnp̂

t
n +

1

2
p̂t
nHnp̂

t
n

)
+Ω (ft) , (5)

which should be minimized by the ensemble member that is added at the t-th
training iteration. The gradient vector gn = (gni)1≤i≤K consist of the first-order
partial derivatives of ` with respect to predictions of the current model for an
example xn and labels λ1, . . . , λK . Accordingly, the second-order partial deriva-
tives form the Hessian matrix Hn = (hnij)1≤i,j≤K . The individual gradients and
Hessians are formally defined as

gni =
∂`

∂p̂ni
(yn, Ft−1 (xn)) and hnij =

∂`

∂p̂ni∂p̂nj
(yn, Ft−1 (xn)) . (6)

The confidence scores that are predicted by an ensemble member ft for indi-
vidual labels must be chosen such that the stagewise objective in (5) is min-
imized. To derive a formula for calculating the predicted scores, the partial
derivative of (5) with respect to the prediction for individual labels must be
equated to zero. In case of a decomposable loss function, this results in a closed
form solution that enables to compute the prediction for each label indepen-
dently. In the general case, i.e., when the loss function is non-decomposable and
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the prediction should not be restricted to a single label, one obtains a system of
K linear equations

(H +R) p̂ = −g. (7)

Whereas the elements of the Hessian matrix H and the gradient vector g can
be considered as coefficients and ordinates, the vector p̂ consists of the unknowns
to be determined. The matrix R is used to take the regularization into account.
In this work, we use the L2 regularization term

ΩL2 (ft) =
1

2
ω
∥∥p̂t
∥∥2
2
, (8)

where ‖x‖2 is the Euclidean norm and ω ≥ 0 controls the weight of the regu-
larization. In this particular case, the regularization matrix R = diag (ω) is a
diagonal matrix with the value ω on the diagonal.

As the target function to be minimized, we use the logistic loss function

`ex.w.-log (yn, p̂n) := log

(
1 +

K∑

k=1

exp (−ynkp̂nk)

)
, (9)

which has previously been used with the BOOMER algorithm as a surrogate for
the Subset 0/1 loss and was originally proposed by Amit et al. [1].

2.3 Ensembles of Multi-label Rules

We rely on multi-label rules as the individual building blocks of ensembles that
are trained according to the methodology in Section 2.2. In accordance with (2),
each rule can be considered as a function

f (x) = b (x) p̂ (10)

that predicts a vector of confidence scores for a given example.
The body of a rule b : X → {0, 1} is a conjunction of one or several conditions

that compare a given example’s value for a particular attribute Al to a constant
using a relational operator like ≤ and >, if the attribute is numerical, or =
and 6=, if it is nominal. If an example satisfies all conditions in the body, i.e.,
if b (x) = 1, it is covered by the respective rule. In such case, the scores that
are contained in the rule’s head p̂ ∈ RK are returned. It assigns a positive or
negative confidence score to each label, depending on whether the respective
label is expected to be mostly relevant or irrelevant to the examples that belong
to the region of the input space X that is covered by the rule. If an example is
not covered, i.e., if b (x) = 0, a null vector is returned. In such case, the rule
does not have any effect on the overall prediction, as can be seen in (3).

If individual elements in a rule’s head are set to zero, the rule does not provide
a prediction for the corresponding labels. The experimental results reported by
Rapp et al. [15] suggest that single-label rules, which only provide a non-zero
prediction for a single label, tend to work well for minimizing decomposable
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loss functions. Compared to multi-label rules, which jointly predict for several
labels, the induction of such rules is computationally less demanding, as a closed
form solution for determining the predicted scores exists. However, the ability
of multi-label rules to express local correlations between several labels, which
hold for the examples they cover, has been shown to be crucial when it comes
to non-decomposable losses.

To construct a rule that minimizes (5), we conduct a top-down greedy search,
as it is commonly used in inductive rule learning (see, e.g., [7] for an overview
on the topic). Initially, the search starts with an empty body that does not
contain any conditions and therefore is satisfied by all examples. By adding
new conditions to the body, the rule is successively specialized, resulting in less
examples being covered in the process. For each candidate rule that results from
adding a condition, the confidence scores to be predicted for the covered examples
are calculated by solving (7). By substituting the calculated scores into (5), an
estimate of the rule’s quality is obtained. Among all possible refinements, the
one that results in the greatest improvement in terms of quality is chosen. The
search stops as soon as the rule cannot be improved by adding a condition.

Rules are closely related to the more commonly used decision trees, as each
tree can be viewed as a set of non-overlapping rules. At each training iteration,
a rule-based boosting algorithm focuses on a single region of the input space
for which the model can be improved the most. In contrast, gradient boosted
decision trees do always provide predictions for the entire input space. Due to
their conceptual similarities, the ideas presented in this paper are not exclusive
to rules, but can also be applied to decision trees.

3 Gradient-based Label Binning

In this section, we present Gradient-based Label Binning (GBLB), a novel method
that aims at reducing the computational costs of the multivariate boosting algo-
rithm discussed in Section 2.2. Although the method can be used with any loss
function, it is intended for use cases where a non-decomposable loss should be
minimized. This is, because it explicitly addresses the computational bottleneck
of such training procedure — the need to solve the linear system in (7) — which
reduces to an operation with linear complexity in the decomposable case.

3.1 Complexity Analysis

The objective function in (5), each training iteration aims to minimize, depends
on gradient vectors and Hessian matrices that correspond to individual training
examples. Given K labels, the former consist of K elements, whereas the lat-
ter are symmetric matrices with K (K + 1) / 2 non-zero elements, one for each
label, as well as for each pair of labels. The induction of a new rule, using a
search algorithm as described in Section 2.3, requires to sum up the gradient
vectors and Hessian matrices of the covered examples to form the linear system
in (7). Instead of computing the sums for each candidate rule individually, the
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Algorithm 1: Candidate evaluation without (left) / with GBLB (right)

input : Gradient vector g, Hessian matrix H, L2 regularization weight ω
output: Predictions ŷ, quality score s, mapping m (if GBLB is used)

1 Regularization matrix R = diag (ω)

2 ŷ = dsysv (−g, H +R) . cf. (7)
3 s = ddot (ŷ, g) +

(0.5 · ddot (ŷ,dspmv (ŷ, H))) . cf. (5)
4 return ŷ, s

Mapping m = map to bins (g, H, ω)
g, H,R = aggregate (m, g, H, ω)

|
same as left

|
return ŷ, s,m

candidates are processed in a predetermined order, such that each one covers
one or several additional examples compared to its predecessor (see, e.g., [14]
for an early description of this idea). As a result, an update of the sums with
complexity O

(
K2
)

must be performed for each example and attribute that is
considered for making up new candidates.

Alg. 1 shows the steps that are necessary to compute the confidence scores
to be predicted by an individual candidate rule, as well as a score that assesses
its quality, if the loss function is non-decomposable. The modifications that are
necessary to implement GBLB are shown to the right of the original lines of code.
Originally, the given gradient vector and Hessian matrix, which result from sum-
mation over the covered examples, are used as a basis to solve the linear system
in (7) using the Lapack routine dsysv (cf. Alg. 1, line 2). The computation of
a corresponding quality score by substituting the calculated scores into (5), in-
volves invocations of the Blas operations ddot for vector-vector multiplication,
as well as dspmv for vector-matrix multiplication (cf. Alg. 1, line 3). Whereas
the operation ddot comes with linear costs, the dspmv and dsysv routines
have quadratic and cubic complexity, i.e., O

(
K2
)

and O
(
K3
)
, respectively4. As

Alg. 1 must be executed for each candidate rule, it is the computationally most
expensive operation that takes part in a multivariate boosting algorithm aimed
at the minimization of a non-decomposable loss function.

GBLB addresses the computational complexity of Alg. 1 by mapping the
available labels to a predefined number of bins B and aggregating the elements of
the gradient vector and Hessian matrix accordingly. If B � K, this significantly
reduces their dimensionality and hence limits the costs of the Blas and Lapack
routines. As a result, given that the overhead introduced by the mapping and
aggregation functions is small, we expect an overall reduction in training time.

In this work, we do not address the computational costs of summing up the
gradients that correspond to individual examples. However, the proposed method
has been designed such that it can be combined with methods that are dedicated
to this aspect. Albeit restricting themselves to decomposable losses, Si et al. [18]
have proposed a promising method that ensures that many gradients evaluate to
zero. This approach, which was partly adopted by Zhang and Jung [25], restricts

4 Information on the complexity of the Blas and Lapack routines used in this work
can be found at http://www.netlib.org/lapack/lawnspdf/lawn41.pdf.

http://www.netlib.org/lapack/lawnspdf/lawn41.pdf


8 Rapp et al.

the labels that must be considered to those with non-zero gradients. However, to
maintain sparsity among the gradients, strict requirements must be fulfilled by
the loss function. Among many others, the logistic loss function in (9) does not
meet these requirements. The approach that is investigated in this work does
not impose any restrictions on the loss function.

3.2 Mapping Labels to Bins

GBLB evolves around the idea of assigning the available labels λ1, . . . , λK to a
predefined number of bins B1, . . . ,BB whenever a potential ensemble member is
evaluated during training (cf. map to bins in Alg. 1). To obtain the index of
the bin, a particular label λk should be assigned to, we use a mapping function
m : R→ N+ that depends on a given criterion ck ∈ R. In this work, we use the
criterion

ck = − gk
hkk + ω

, (11)

which takes the gradient and Hessian for the respective label, as well as the
L2 regularization weight, into account. It corresponds to the optimal prediction
when considering the label in isolation, i.e., when assuming that the predictions
for other labels will be zero. As the criterion can be obtained for each label
individually, the computational overhead is kept at a minimum.

Based on the assignments that are provided by a mapping function m, we
denote the set of label indices that belong to the b-th bin as

Bb = {k ∈ {1, . . . ,K} | m (ck) = b} . (12)

Labels should be assigned to the same bin if the corresponding confidence
scores, which will be presumably be predicted by an ensemble member, are close
to each other. If the optimal scores to be predicted for certain labels are very
different in absolute size or even differ in their sign, the respective labels should
be mapped to different bins. Based on this premise, we limit the number of
distinct scores, an ensemble member may predict, by enforcing the restriction

p̂i = p̂j ,∀i, j ∈ Bb. (13)

It requires that a single score is predicted for all labels that have been assigned
to the same bin. Given that the mentioned prerequisites are met, we expect the
difference between the scores that are predicted for a bin and those that are
optimal with respect to its individual labels to be reasonably small.

3.3 Equal-width Label Binning

Principally, different approaches to implement the mapping function m are con-
ceivable. We use equal-width binning, as this well-known method provides two
advantages: First, unlike other methods, such as equal-frequency binning, it does
not involve sorting and can therefore be applied in linear time. Second, the
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boundaries of the bins are chosen such that the absolute difference between the
smallest and largest value in a bin, referred to as the width, is the same for
all bins. As argued in Section 3.2, this is a desirable property in our particular
use case. Furthermore, we want to prevent labels, for which the predicted score
should be negative, from being assigned to the same bin as labels, for which the
prediction should be positive. Otherwise, the predictions would be suboptimal
for some of these labels. We therefore strictly separate between negative and
positive bins. Given B	 negative and B⊕ positive bins, the width calculates as

w	 =
max	−min	

B	
and w⊕ =

max⊕−min⊕
B⊕

, (14)

for the positive and negative bins, respectively. By max	 and max⊕ we denote
the largest value in {c1, . . . , cK} with negative and positive sign, respectively.
Accordingly, min	 and min⊕ correspond to the smallest value with the respective
sign. Labels for which ck = 0, i.e., labels with zero gradients, can be ignored. As
no improvement in terms of the loss function can be expected, we explicitly set
the prediction to zero in such case.

Once the width of the negative and positive bins has been determined, the
mapping from individual labels to one of the B = B	+B⊕ bins can be obtained
via the function

meq.-width (ck) =





min
(
b ck−min	

w	
c+ 1, B	

)
, if ck < 0

min
(
b ck−min⊕

w⊕
c+ 1, B⊕

)
+B	, if ck > 0.

(15)

3.4 Aggregation of Gradients and Hessians

By exploiting the restriction introduced in (13), the gradients and Hessians that
correspond to labels in the same bin can be aggregated to obtain a gradient vector
and a Hessian matrix with reduced dimensions (cf. aggregate in Alg. 1). To
derive a formal description of this aggregation, we first rewrite the objective
function (5) in terms of sums instead of using vector and matrix multiplications.
This results in the formula

R̃ (ft) =

N∑

n=1

K∑

i=1


g

n
i p̂i +

1

2
p̂i


h

n
iip̂i +

K∑

j=1,
j 6=i

hnij p̂j





+Ω (ft) . (16)

Based on the constraint given in (13) and due to the distribution property
of the multiplication, the equality

K∑

i=1

xip̂i =

B∑

j=1


p̂j

∑

i∈Bj

xi


 , (17)

where xi is any term dependent on i, holds. It can be used to rewrite (16) in
terms of sums over the bins, instead of sums over the individual labels. For
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λ1 0.3

λ2 0.1

λ3 1.8

λ4 0.5

λ5 1.5

λ1 λ2 λ3 λ4 λ5

0.1 0.1 0.2 0.1 0.1

0.2 0.3 0.4 0.2

0.1 0.2 0.3

0.3 0.1

0.2

λ1 λ2 λ3 λ4 λ5

1.0

1.0

1.0

1.0

1.0

−→ B1 0.9

B2 3.3

B1 B2

0.6 1.1

0.3

B1 B2

3.0

2.0

g H R g̃ H̃ R̃

Fig. 1. Illustration of how a gradient vector, a Hessian matrix and a regularization
matrix for five labels λ1, . . . , λ5 are aggregated with respect to two bins B1 = {1, 2, 4}
and B2 = {3, 5} when using L2 regularization with ω = 1. Elements with the same
color are added up for aggregation.

brevity, we denote the sum of the gradients, as well as the sum of the elements
on the diagonal of the Hessian matrix, that correspond to the labels in bin Bb as

g̃b =
∑

i∈Bb

gi and h̃bb =
∑

i∈Bb

hii. (18)

To abbreviate the sum of Hessians that correspond to a pair of labels that
have been assigned to different bins Bb and Bq, we use the short-hand notation

h̃bq =
∑

i∈Bb

∑

j∈Bq

hij . (19)

By exploiting (17) and using the abbreviations introduced above, the objec-
tive function in (16) can be rewritten as

R̃ (ft) =

N∑

n=1

B∑

b=1


p̂bg̃

n
b +

1

2
p̂b


p̂bh̃

n
b +

B∑

q=1,
q 6=b

p̂qh̃
n
bq





+Ω (ft) , (20)

which can afterwards be turned into the original notation based on vector and
matrix multiplications. The resulting formula

R̃ (ft) =

N∑

n=1

(
g̃np̂

t
n +

1

2
p̂t
nH̃np̂

t
n

)
+Ω (ft) (21)

has the same structure as originally shown in (5). However, the gradient vector

g and the Hessian matrix H have been replaced by g̃ and H̃, respectively. Con-
sequently, when calculating the scores to be predicted by an ensemble member
by solving (7), the coefficients and ordinates that take part in the linear system
do not correspond to individual labels, but result from the sums in (18) and
(19). As a result, number of linear equations has been reduced from the number
of labels K to the number of non-empty bins, which is at most B.
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Table 1. Average training times (in seconds) per cross validation fold on different
data sets (the number of labels is given in parentheses). The small numbers specify the
speedup that results from using GBLB with the number of bins set to 32, 16, 8 and 4%
of the labels, or using two bins. Variants that are equivalent to two bins are omitted.

No GBLB
GBLB 32% 16% 8% 4% 2 bins

Eurlex-sm (201) 46947 54985 0.85 44872 1.05 38222 1.23 33658 1.39 21703 2.16

EukaryotePseAAC (22) 16033 3593 4.46 2492 6.43 2195 7.30 — 1534 10.45

Reuters-K500 (103) 12093 6930 1.75 4197 2.88 3353 3.61 2803 4.31 2743 4.41

Bibtex (159) 2507 2599 0.96 2765 0.91 2649 0.95 2456 1.02 2125 1.18

Yeast (14) 2338 998 2.34 761 3.07 525 4.45 — 521 4.49

Birds (19) 2027 701 2.89 505 4.01 337 6.01 — 336 6.03

Yahoo-Social (39) 1193 261 4.57 217 5.50 192 6.21 139 8.58 175 6.82

Yahoo-Computers (33) 874 172 5.08 134 6.52 126 6.94 101 8.65 123 7.11

Yahoo-Science (40) 735 200 3.67 160 4.59 135 5.44 106 6.93 136 5.40

Yahoo-Reference (33) 571 174 3.28 141 4.05 129 4.43 110 5.19 137 4.17

Slashdot (20) 518 154 3.36 117 4.43 86 6.02 — 119 4.35

EukaryoteGO (22) 191 79 2.42 74 2.58 60 3.18 — 64 2.98

Enron (53) 181 69 2.62 52 3.48 48 3.77 47 3.85 44 4.11

Medical (45) 170 60 2.83 57 2.98 55 3.09 50 3.40 51 3.33

Langlog (75) 132 126 1.05 112 1.18 105 1.26 101 1.31 102 1.29

Avg. Speedup 2.81 3.58 4.61 4.86 4.00

An example that illustrates the aggregation of a gradient vector and a Hes-
sian matrix is given in Fig. 1. It also takes into account how the regularization
matrix R is affected. When dealing with bins instead of individual labels, the L2

regularization term in (8) becomes

ΩL2 (ft) =
1

2
ω

B∑

b=1

(
|Bb| p̂2b

)
, (22)

where |Bb| denotes the number of labels that belong to a particular bin. As a

consequence, the regularization matrix becomes R̃ = diag (ω |B1| , . . . , ω |BB |).

4 Evaluation

To investigate in isolation the effects GBLB has on predictive performance and
training time, we chose a single configuration of the BOOMER algorithm as the
basis for our experiments. We used 10-fold cross validation to train models that
are aimed at the minimization of the Subset 0/1 loss on commonly used bench-
mark data sets5. Each model consists of 5.000 rules that have been learned on
varying subsets of the training examples, drawn with replacement. The refine-
ment of rules has been restricted to random subsets of the available attributes.

5 All data sets are available at https://www.uco.es/kdis/mllresources

https://www.uco.es/kdis/mllresources
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Table 2. Predictive performance of different approaches in terms of the Subset 0/1
loss and the Hamming loss (smaller values are better).

Label- No GBLB
wise GBLB 32% 16% 8% 4% 2 bins

S
u
b
se

t
0
/
1

lo
ss

Eurlex-sm 61.63 69.53 45.07 45.03 45.30 45.08 47.32
EukaryotePseAAC 85.09 65.43 65.37 65.28 65.68 — 65.52
Reuters-K500 71.37 71.07 53.70 53.22 53.07 52.90 53.40
Bibtex 85.99 81.31 77.28 77.44 77.55 77.32 78.95
Yeast 84.94 76.54 76.91 76.42 76.87 — 76.21
Birds 45.29 45.30 45.14 45.45 45.60 — 46.53
Yahoo-Social 50.65 64.30 34.49 34.40 34.84 35.47 35.37
Yahoo-Computers 58.04 46.26 46.65 47.09 46.94 47.70 47.42
Yahoo-Science 74.00 85.80 50.89 51.20 52.07 52.79 52.04
Yahoo-Reference 58.19 74.14 39.82 40.16 40.73 40.51 40.48
Slashdot 63.88 46.62 46.64 46.64 47.73 — 47.22
EukaryoteGO 30.63 28.35 28.39 28.24 28.10 — 28.55
Enron 88.19 83.14 83.32 83.32 83.38 82.91 82.97
Medical 28.25 28.82 23.13 22.62 23.08 23.23 22.77
Langlog 79.59 78.84 79.11 79.25 78.63 79.45 79.45

H
a
m

m
in

g
lo

ss

Eurlex-sm 0.55 0.91 0.40 0.39 0.40 0.40 0.42
EukaryotePseAAC 5.02 5.65 5.64 5.63 5.67 — 5.66
Reuters-K500 1.11 1.71 1.11 1.09 1.09 1.09 1.10
Bibtex 1.25 1.45 1.27 1.27 1.27 1.28 1.31
Yeast 19.75 19.01 18.87 19.08 19.01 — 18.80
Birds 3.91 3.79 3.80 3.79 3.73 — 3.87
Yahoo-Social 1.90 3.81 1.79 1.80 1.83 1.87 1.87
Yahoo-Computers 3.10 2.97 3.00 3.02 3.03 3.08 3.06
Yahoo-Science 2.83 5.85 2.74 2.75 2.81 2.84 2.79
Yahoo-Reference 2.30 4.95 2.28 2.30 2.34 2.33 2.32
Slashdot 4.02 4.24 4.24 4.25 4.37 — 4.30
EukaryoteGO 1.89 1.95 1.95 1.94 1.92 — 1.98
Enron 4.53 4.72 4.77 4.77 4.72 4.72 4.73
Medical 0.84 1.05 0.80 0.77 0.79 0.81 0.79
Langlog 1.52 1.52 1.50 1.51 1.50 1.52 1.52

As the learning rate and the L2 regularization weight, we used the default val-
ues 0.3 and 1.0, respectively. Besides the original algorithm proposed in [15], we
tested an implementation that makes use of GBLB6. For a broad analysis, we
set the maximum number of bins to 32, 16, 8, and 4% of the available labels.
In addition, we investigated an extreme setting with two bins, where all labels
with positive and negative criteria are assigned to the same bin, respectively.

Table 1 shows the average time per cross validation fold that is needed by
the considered approaches for training. Compared to the baseline that does not
use GBLB, the training time can always be reduced by utilizing GBLB with a
suitable number of bins. Using fewer bins tends to speed up the training process,

6 An implementation is available at https://www.github.com/mrapp-ke/Boomer

https://www.github.com/mrapp-ke/Boomer
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Fig. 2. Relative difference in training time and Subset 0/1 loss (both calculated as the
baseline’s value divided by the value of the respective approach) per cross validation
fold that results from using GBLB with the number of bins set to 4% of the labels.

although approaches that use the fewest bins are not always the fastest ones. On
average, limiting the number of bins to 4% of the labels results in the greatest
speedup (by factor 5). However, the possible speedup depends on the data set
at hand. E.g., on the data set “EukaryotePseAac” the average training time is
reduced by factor 10, whereas no significant speedup is achieved for “Bibtex”.

To be useful in practice, the speedup that results from GBLB should not
come with a significant deterioration in terms of the target loss. We therefore
report the predictive performance of the considered approaches in Table 2. Be-
sides the Subset 0/1 loss, which we aim to minimize in this work, we also in-
clude the Hamming loss as a commonly used representative of decomposable
loss functions. When focusing on the Subset 0/1 loss, we observe that the
baseline algorithm without GBLB exhibits subpar performance on some data
sets, namely “Eurlex-sm”, “Reuters-K500”, “Bibtex”, “Yahoo-Social”, “Yahoo-
Science”, “Yahoo-Reference” and “Medical”. This becomes especially evident
when compared to an instantiation of the algorithm that targets the Hamming
loss via minimization of a label-wise decomposable logistic loss function (cf. [15],
Eq. 6). In said cases, the latter approach performs better even though it is
not tailored to the Subset 0/1 loss. Although the baseline performance could
most probably be improved by tuning the regularization weight, we decided
against parameter tuning, as it exposes an interesting property of GBLB. On
the mentioned data sets, approaches that use GBLB appear to be less prone to
converge towards local minima. Regardless of the number of bins, they clearly
outperform the baseline. According to the Friedman test, these differences are
significant with α = 0.01. The Nemenyi post-hoc test yields critical distances
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Fig. 3. Average proportion of training time per cross validation fold that is used for the
evaluation of candidate rules without GBLB and when using GBLB with the number
of bins set to 4% of the labels.

for each of the GBLB-based approaches, when compared to the baseline. On the
remaining data sets, where the baseline without GBLB already performs well,
the use of GBLB produces competitive results. In these cases, the Friedman test
confirms the null hypothesis with α = 0.1. An overview of how the training time
and the predictive performance in terms of the Subset 0/1 loss is affected, when
restricting the number of bins to 4% of the labels, is given in Fig. 2.

To better understand the differences in speedups that may be achieved by
using GBLB, a detailed analysis is given in the following for four data sets with
varying characteristics. In Fig. 3, we depict the training time that is needed by
the baseline approach, as well as by a GBLB-based approach with the number
of bins set to 4% of the labels. Besides the total training time, we also show the
amount of time spent on the evaluation of candidate rules (cf. Alg. 1), which
is the algorithmic aspect addressed by GBLB. For all given scenarios, it can be
seen that the time needed for candidate evaluation could successfully be reduced.
Nevertheless, the effects on the overall training time vastly differ. On the data
sets “Bibtex” and ‘Eurlex-sm”, the time spent on parts of the algorithm other
than the candidate evaluation increased when using GBLB, which is a result of
more specific rules being learned. On the one hand, this required more candidates
to be evaluated and therefore hindered the overall speedup. On the other hand,
the resulting rules clearly outperformed the baseline according to Table 2. On
the data set “Bibtex”, even without GBLB, the candidate evaluation was not
the most expensive aspect of training. Due to its binary attributes, the number
of potential candidates is small compared to the large number of examples. As
a result, most of the computation time is spent on summing up the gradients
and Hessians of individual examples (cf. Section 3.1). The impact of speeding up
the candidate evaluation is therefore limited. On the data sets “Medical” and
“EukaryotePseAAC”, where the candidate evaluation was the most expensive
aspect to begin with, a significant reduction of training time could be achieved
by making that particular operation more efficient. The time spent on other
parts of the algorithm remained mostly unaffected in these cases. As mentioned
earlier, this includes the summation of gradients and Hessians, which becomes



Gradient-based Label Binning in Multi-label Classification 15

the most time consuming operation when using GBLB. Addressing this aspect
holds the greatest potential for further performance improvements.

5 Conclusion

In this work we presented a novel approximation technique for use in multivariate
boosting algorithms. Based on the derivatives that guide the training process,
it dynamically assigns the available labels to a predefined number of bins. Our
experiments, based on an existing rule learning algorithm, confirm that this
reduction in dimensionality successfully reduces the training time that is needed
for minimizing non-decomposable loss functions, such as the Subset 0/1 loss.
According to our results, this speedup does not come with any significant loss in
predictive performance. In several cases the proposed method even outperforms
the baseline by a large extend due to its ability to overcome local minima without
the necessity for extensive parameter tuning.

Despite our promising results, the use of non-decomposable loss functions
in the boosting framework remains computationally challenging. Based on the
analysis in this paper, we plan to extend our methodology with the ability to
exploit sparsity in the label space. When combined with additional measures,
the proposed method could become an integral part of more efficient algorithms
that are capable of natively minimizing non-decomposable loss functions.
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dence and loss minimization in multi-label classification. Machine Learning 88(1-
2), 5–45 (2012)



16 Rapp et al.
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