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LIST OF SYMBOLS

N set of natural numbers (without 0), i.e., N = {1, 2, 3, . . . }
N0 set of natural numbers including zero, i.e., N0 = {0, 1, 2, 3, . . . }
[m] the set {1, 2, . . . ,m}
[m]2 the set of all subsets of size 2 of [m]
(m)2 the set {(i, j) ∈ [m]× [m] | i < j}
〈m〉2 the set {(i, j) ∈ [m]× [m] | i 6= j}
1A indicator function on the set A
Ber(p) Bernoulli distribution with success probability p ∈ [0, 1]
A an algorithm
A[i] the algorithm A with input i
D(A) the return value/ decision of algorithm A
TA termination time of A
n0,w0 initialization parameters (assumed to be n0 = w0 = (0)1≤i,j≤m)
Q relation (qi,j)1≤i,j≤m ∈ Qm, where qi,j = P(i � j) is the (unknown) ground truth pairwise winning

probability that i wins when compared to j
Qm set of reciprocal relations on [m]
Qm(CW) set of all those Q ∈ Qm, which have a CW.
Qm(i∗) set of all those Q ∈ Qm, which have i∗ as CW.
Qm(¬X) Qm \ Qm(X); here, X ∈ {CW, i∗}.
Qhm set of all Q = (qi,j)1≤i,j≤m ∈ Qm with |qi,j − 1/2| > h for all i 6= j ∈ [m]

Qhm(X) Qhm ∩Qm(X); here, X ∈ {CW,¬CW, i∗,¬i∗}
Pm,h,α,β short for: testification for the CW onQhm for α and β
X

[t]
i,j the outcome of the comparison between i and j at time t, ∼ Ber(qi,j)

(wt)i,j the number of wins of arm i against arm j until time t
(nt)i,j the number of comparisons of arm i with arm j until time t
(q̂t)i,j (wt)i,j/(nt)i,j

α, β desired errors of type I and II, resp.; in the symmetric case α = β we write γ ..= α = β
G a digraph
Gm set of digraphs G on [m], where for all distinct i, j ∈ [m] either i → j or j → i in G
Gm set of tournaments on [m]

Gm(CW) set of tournaments on [m], which have a Condorcet winner
Gm(i∗) set of tournaments on [m], which have i∗ as Condorcet winner
Gm(¬X) Gm \ Gm(X); here, X ∈ {CW, i∗}
CW(G) the CW of a tournament G ∈ Gm(CW); only defined for G ∈ Gm(CW)

Gm(X) the set {G ∈ Gm | every extension G′ of G fulfills G′ ∈ Gm(X)}; here, X ∈ {CW,¬CW, i∗,¬i∗}
Gm(∆i∗),Gm(♦) the sets Gm(¬CW) ∪

⋃
j∈[m]:j 6=i∗ Gm(j) and

⋃
i∈[m] Gm(i), respectively.

ABin a deterministic sequential testing algorithm (DSTA)
Am set of DSTAs for the testification problem; AVerify_i_as_CW

m and ACheck_CW
m are defined accordingly

TABin
G termination time of the DSTA ABin ∈ Am when started on G
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TABin worst-case termination time of ABin; for testification (without the ∃CW-assumption) we have TABin =
maxG∈Gm TABin

G , for other cases cf. Section E
Gi↔j digraph defined via EGi↔j = (EG \ {(i, j)}) ∪ {(j, i)}
iABin
G (t), jABin

G (t) distinct items compared by ABin at time t when started on G
{i, j}G {i, j}G = (i, j) if i G−→ j, otherwise = (j, i) (Here: G ∈ Gm, i, j ∈ [m] distinct)
GABin
G (t) “picture”, which A has of G at time t. Formally, GAG(t) ∈ Gm is defined via EGA

G
(t) =⋃

t′≤t−1{{i
A
G(t′), jAG (t′)}G}

ABin(G) output of the DSTA ABin when started on G
Π set of all sampling strategies
Π∞ set of π ∈ Π, which ensure limt→∞(nt)i,j =∞ a.s. ∀(i, j) ∈ (m)2

Ch,γ′(n) the value 1
2n

⌈
ln((1−γ′)/γ′)/ln((1/2+h)/(1/2−h))

⌉
∆(m)2 the set of all v = (vi,j)1≤i<j≤m with mini<j vi,j ≥ 0 and

∑
i<j vi,j = 1

dKL(p, q) the KL-divergence between two independent random variablesX ∼ Ber(p) and Y ∼ Ber(q), i.e., dKL(p, q) =
p ln(p/q) + (1− p) ln((1− p)/(1− q))

Dh
m(Q) if Q ∈ Qm(X), X ∈ {¬CW, 1, . . . ,m} :Dh

m(Q) = supv∈∆(m)2
infQ′∈Qh

m(¬X)

∑
(i,j)∈(m)2

vi,jdKL(qi,j , q
′
i,j)

D̃h
m(Q) if Q ∈ Qm(X), X ∈ {¬CW,CW}: D̃h

m(Q) = supv∈∆(m)2
infQ′∈Qh

m(¬X)

∑
(i,j)∈(m)2

vi,jdKL(qi,j , q
′
i,j)

A GRAPH-THEORETICAL PREREQUISITES

We suppose here and throughout the whole paper w.l.o.g. that m ≥ 3 is fulfilled. For G ∈ Gm and

1 3, 4 2

disjoint V1, V2 ⊆ [m] we use in illustrations a double arrow V1�V2 to
indicate that G contains all the edges i1 → i2 with i1 ∈ V1, i2 ∈ V2.
For example, the graph G = ([m], EG) ∈ Gm with the set of edges
EG = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)} may be illustrated as in the
figure to the right.

In addition to Gm(i∗), Gm(CW) and Gm(¬CW) let us also define for any i∗ ∈ [m] the set

Gm(¬i∗) ..= Gm \ Gm(i∗) = Gm(¬CW) ∪
⋃

j∈[m]\{i∗}
Gm(j)

and with this
Gm(¬i∗) ..= {G ∈ Gm | each extension G′ of G fulfills G′ ∈ Gm(¬i∗)},

The following proposition completely characterizes the set Gm(CW), whereas Gm(¬CW), Gm(i∗) and Gm(¬i∗) are
completely characterized by Proposition A.3 and Lemma A.4.

Proposition A.1. For G ∈ Gm we have G ∈ Gm(CW) iff there exists some i0, i1 ∈ [m] such that G contains at least one of
the subgraphs

i0 [m] \ {i0} or i0 [m] \ {i0, i1} i1

In other words, G ∈ Gm(CW) is fulfilled iff at least one of the following holds:

(a) There exists i0 ∈ [m] such that i0
G−→ j holds for every j ∈ [m] \ {i0}.

(b) There exist distinct i0, i1 ∈ [m] with i0
G−→ j and i1

G−→ j for every j ∈ [m] \ {i0, i1}.

In particular, |EG| ≥ m− 1 holds for every G ∈ Gm(CW).

In order to prove Proposition A.1, we at first need some prerequisites. Given some G ∈ Gm and distinct i, j ∈ [m] we define
Gi↔j ∈ Gm to be the tournament in which the edge between i and j is reversed (in comparison to G) and all the other edges
are the same, i.e., if (i, j) ∈ EG then

EGi↔j
= (EG \ {(i, j)}) ∪ {(j, i)}.

Note in particular that Gi↔j is not the graph G with nodes i and j interchanged.



Lemma A.2. If G ∈ Gm(CW), i0 ..= CW(G) and i1 ∈ [m] \ {i0} are such that G′ ..= Gi0↔i1 ∈ Gm(CW), then
i1 = CW(G′) holds.

Proof of Lemma A.2. For every j ∈ [m] \ {i0, i1} we can infer from i0 = CW(G) that i0
G−→ j and thus also i0

G′−→ j

hold. Together with i1
G′−→ i0 this shows CW(G′) 6∈ [m] \ {i1}, and thus further CW(G′) = i1.

With this, we are able to prove Proposition A.1.

Proof of Proposition A.1. To show “⇒ ” indirectly, assume that there was some G ∈ Gm(CW) such that neither (a) nor
(b) holds. Choose an arbitrary extension G0 ∈ Gm of G and note that G ∈ Gm(CW) implies that i0 ..= CW(G0) is
well-defined. As (a) does not hold, there exists some i1 ∈ [m] \ {i0} with ¬(i0

G−→ i1). Moreover, the definition of i0
ensures1 ¬(i1

G−→ i0). Consequently, G1
..= (G0)i0↔i1 ∈ Gm is also an extension of G, and by assumption on G we have

G1 ∈ Gm(CW). Thus, we can infer i1 = CW(G1) from Lemma A.2. Since (b) does not hold, there exist b ∈ {0, 1} and

k ∈ [m] \ {i0, i1} such that ¬(ib
G−→ k) holds. From ib

Gb−→ k we can infer ¬(k
G−→ ib). As we have seen that G does

neither contain any edge between ib and k nor between i1−b and ib and G1−b is an extension of G, also the graph

G′ ..=

(G1−b)i1−b↔ib = Gb, if k
G1−b−→ ib,(

(G1−b)i1−b↔ib
)
ib↔k

, if ib
G1−b−→ k,

is an extension of G. Due to G ∈ Gm(CW) we obtain G′ ∈ Gm(CW), whence Lemma A.2 guarantees CW(G′) ∈
{ib, i1−b, k}. This is a contradiction, since G′ contains by its definition the edges i1−b → k, k → ib and ib → i1−b.

It remains to show “⇐”. For this, suppose G ∈ Gm to be such that (a) or (b) holds and let G′ ∈ Gm be an arbitrary

extension of G. In case (a) holds, we obtain for each j ∈ [m] \ {i0} due to i0
G−→ j that i0

G′−→ j is fulfilled. Thus, we
can infer CW(G′) = i0 and in particular G′ ∈ Gm(CW). In case (b) holds, G′ contains all the edges i0 → j, i1 → j,

j ∈ [m]\{i0, i1}. Moreover, for one b ∈ {0, 1}we have ib
G′−→ i1−b and we obtain ib = CW(G′), i.e.,G′ ∈ Gm(CW).

Proposition A.3. For G ∈ Gm we have the equivalence

G ∈ Gm(¬CW) ⇔ ∀ i ∈ [m]∃ j ∈ [m] \ {i} : j
G−→ i.

In particular, |EG| ≥ m holds for every G ∈ Gm(¬CW).

Proof of Proposition A.3. Let G ∈ Gm be fixed. To see “⇐” suppose that there is for all i ∈ [m] some j = j(i) ∈ [m] \ {i}
with j G−→ i and let G′ be an arbitrary extension of G. Then, for any i ∈ [m], j(i) G′−→ i shows that i can not be the
Condorcet winner of G′. We infer G′ ∈ Gm(¬CW), and arbitrariness of G′ lets us conclude G ∈ Gm(¬CW).

To show “⇒” we prove its contraposition. Thus, let us suppose there exists some i ∈ [m] such that ¬(j
G−→ i) holds for

every j ∈ [m] \ {i}. Then, we can choose an extension G′ of G with i G′−→ j for every j ∈ [m] \ {i}. Thus, G′ ∈ Gm(CW)
holds with i = CW(G′), which implies G 6∈ Gm(¬CW).

Lemma A.4. If G ∈ Gm and i∗ ∈ [m], then

G ∈ Gm(i∗)⇔ ∀j ∈ [m] \ {i∗} : i∗
G−→ j and G ∈ Gm(¬i∗)⇔ ∃j ∈ [m] : j

G−→ i∗.

In particular, |EG| ≥ m− 1 holds for every G ∈ Gm(i∗), and |EG| ≥ 1 holds for every G ∈ Gm(¬i∗).

Proof. Let G ∈ Gm be fixed. For showing “⇒” indirectly suppose there was some j ∈ [m] \ {i∗} with ¬(i∗
G−→ j).

Then, there exists an extension G′ ∈ Gm of G with j G′−→ i∗, which is trivially not in Gm(i∗). Thus, we would obtain that
G 6∈ Gm(i∗), which is a contradiction.

1In fact, assuming i1 → i0 in G would also imply i1 → i0 in G0, which is according to i0 = CW(G0) not possible.



In order to see “⇐” suppose on the contrary G 6∈ Gm(i∗). Then, there exists some extension G′ ∈ Gm of G with

G′ 6∈ Gm(i∗). Now, i∗ 6= CW(G′) implies the existence of some j ∈ [m] with j G
′

→ i∗, and as G′ is an extension of G this
shows ¬(i∗

G−→ j).

The following Lemma will be crucial for the proofs of Theorems 5.2 and F.3. It allows us to project graphs in Gm(CW),
Gm(¬CW), Gm(i∗), Gm(¬i∗) as well as in

Gm(∆i∗) ..= Gm(¬CW) ∪
⋃

j∈[m]:j 6=i∗
Gm(j) and Gm(♦) ..=

⋃
i∈[m]

Gm(i)

to characteristic subgraphs, respectively. Note here that Gm(∆i∗) 6= Gm(¬i∗), as for instance the graph ([m], {(2, 1)}) is
contained in Gm(¬1) but not in Gm(∆1). According to Proposition A.1, Gm(CW) ) Gm(♦), so that these notions are not
redundant.

Lemma A.5. Let i∗ ∈ [m]. There exist mappings lCW, l¬CW, li∗ , l¬i∗ , l∆i∗ , l♦ : Gm → Gm with the following properties:

(a) ElCW(G), El¬CW(G), Eli∗ (G), El¬i∗ (G), El∆i∗ (G), El♦(G) ⊆ EG for every G ∈ Gm,

(b) |ElCW(G)| ∈ {0,m − 1, 2m − 4}, |El¬CW(G)| ∈ {0,m}, |Eli∗ (G)| ∈ {0,m − 1}, |El¬i∗ (G)| ∈ {0, 1}, |El∆i∗ (G)| ∈
{0,m− 1,m} and |El♦(G)| ∈ {0,m− 1} for every G ∈ Gm,

(c) for every G ∈ Gm we have the equivalences

G ∈ Gm(CW)⇔ lCW(G) ∈ Gm(CW), G ∈ Gm(¬CW)⇔ l¬CW(G) ∈ Gm(¬CW),

G ∈ Gm(i∗)⇔ li∗(G) ∈ Gm(i∗), G ∈ Gm(¬i∗)⇔ l¬i∗(G) ∈ Gm(¬i∗),
G ∈ Gm(∆i∗)⇔ l∆i∗(G) ∈ Gm(∆i∗), G ∈ Gm(♦)⇔ l♦(G) ∈ Gm(♦).

Proof. To define lCW suppose G ∈ Gm to be fixed for the moment. In case G 6∈ Gm(CW) we may simply define
lCW(G) ..= ([m], ∅), and in case G ∈ Gm(CW) there exist according to Proposition A.1 two distinct i0, i1 ∈ [m] such that
at least one of

E[i0] ..= {(i0, j) : j ∈ [m] \ {i0}}

and
E[i0; i1] ..= {(i0, j) : j ∈ [m] \ {i0, i1}} ∪ {(i1, j) : j ∈ [m] \ {i0, i1}}

is a subset of EG, i.e., we may define

lCW(G) ..=

{
([m], E[i0]), if E[i0] ⊂ EG,
([m], E[i0; i1]), otherwise.

It is straightforward to check that lCW fulfills all the desired properties.

The existence of l¬CW, li∗ and l¬i∗ follow from Proposition A.3 and Lemma A.4.

For defining l∆i∗ let G ∈ Gm be given. In case G 6∈ Gm(∆i∗) we define l∆i∗(G) ..= ([m], ∅). In the remaining case
G ∈ Gm(∆i∗) we choose

l∆i∗(G) ..=

{
lj(G), if ∃j ∈ [m] \ {i∗} with G ∈ Gm(j),

l¬CW(G), otherwise.

Note that this is due to Gm(j) ∩ Gm(j′) = ∅ for j 6= j′ well-defined. Then, l∆i∗ has all the properties stated above.

Finally, we define l♦ via

l♦(G) ..=

{
lj(G), if ∃j ∈ [m] with G ∈ Gm(j),

([m], ∅), otherwise.



B PROBABILISTIC PREREQUISITES

In this section, we discuss the sample complexity of testing whether the bias p of an unfair coin is greater or smaller than
1/2. To formalize this, suppose p ∈ [0, 1] to be fixed but unknown to us and let {Xn}n∈N be a sequence of iid samples
Xn ∼ Ber(p), n ∈ N, which are w.l.o.g. defined on the same probability space (Ω,F ,P). Here, we write Pp(A) for the
probability of an event A which is an element of the σ-algebra generated by (Xn)n∈N for Xn iid with distribution Ber(p).
Moreover, we write Ep for the expectation w.r.t. Pp. We are interested in deciding

H0 : p > 1/2 versus H1 : p < 1/2. (1)

The following result justifies the choice of Ch,γ(n) as 1
2n

⌈
ln((1−γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
in Algorithms 1, 5 and 6.

Lemma B.1. Suppose 0 < γ < γ0 < 1/2 and 0 < h < h0 < 1/2 to be fixed.

(i) Let A be the algorithm, which samples X1, X2, . . . until the first time n, where 1
n

∑n
k=1Xk 6∈ [1/2± Ch,γ(n)] and

decides for 0 in case 1
n

∑n
k=1Xk > 1/2 +Ch,γ(n) and for 1 in case 1

n

∑n
k=1Xk < 1/2−Ch,γ(n). Then, A decides

(1) with error probability at most γ for any p ∈ [0, 1/2− h] ∪ [1/2 + h, 1], i.e., we have

∀p ≥ 1/2 + h : Pp(D(A) = 0) ≥ 1− γ and ∀p ≤ 1/2− h : Pp(D(A) = 1) ≥ 1− γ.

Moreover, the termination time TA of A fulfills

sup
p∈[0,1/2−h]∪[1/2+h,1]

Ep[TA] = E1/2±h[TA] = (2h)−1

⌈
ln((1− γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
(1− 2γ), (2)

which is in O(h−2 ln(γ−1)) as max{h−1, γ−1} → ∞.

(ii) The algorithm A from (i) is w.r.t. E1/2+h[TA] and E1/2−h[TA] optimal among all algorithms, which decide (1) with
error probability at most γ for any p ∈ {1/2± h}. In other words: If A′ is an algorithm, which fulfills

P1/2+h(D(A′) = 0) ≥ 1− γ and P1/2−h(D(A′) = 1) ≥ 1− γ,

then it fulfills
E1/2±h[TA

′
] ≥ E1/2±h[TA] ≥ c(h0, γ0)h−2 ln(γ−1)

for some appropriate positive constant c(h0, γ0), which does not depend on γ or h.

Proof. (i) The test A from (i) is the sequential probability ratio test (SPRT) for the problem at hand and has its
origins in [Wald, 1945]. Statement (i) can be inferred from p.10–15 in [Siegmund, 1985]. To see this, define
c :=

⌈
ln((1−γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
, write Sn :=

∑n
k=1(2Xk − 1) and note that A is exactly the test which samples until

Sn ≤ −c or Sn ≥ c and decides for 0 in the first and for 1 in the second case. Now, equation (2.28) on p.15 in
[Siegmund, 1985] shows that

P1−p (STA ≤ −c) = Pp (STA ≥ c) = (1 + (1−p)c/pc))
−1

for every p 6= 1/2. Since c is chosen such that the right-hand side is ≤ γ if p = 1/2− h, A is able to decide (1) with
error ≤ γ for p ∈ {1/2 ± h}. As p 7→ 1/(1 + (1 − p)c/pc) is monotonically increasing on [1/2, 1], A decides (1)
with error probability at most γ also for every p ∈ [0, 1/2− h) ∪ (1/2 + h, 1]. Moreover, equation (2.29) on p.15 in
[Siegmund, 1985] shows that for each h′ ∈ (0, 1/2)

E1/2±h′ [T
A] = (2h′)−1c

∣∣∣1− 2 (1 + ((1/2+h′)c/(1/2−h′)c))
−1
∣∣∣ , (3)

which is continuous and decreasing in h′ for h′ ∈ (0, 1/2). Consequently, (2) holds by the choice of c. Using that
x
x+1 < ln(1 + x) < x holds for each x > −1 we see that ln((1/2+h)/(1/2−h)) ∈ Θ(h) as h → 0, and thus the
right-hand side of (2) is in O(h−2 ln(γ−1)) as min{h, γ} → 0.



(ii) For the optimality of A stated in (ii) as a solution for deciding (1) with error ≤ γ for p ∈ {1/2 ± h} confer pages
19–22 in [Siegmund, 1985] or [Ferguson, 1967, Theorem 2, pp. 365] or the original proof in [Wald and Wolfowitz,
1948].
In order to conclude the lemma, we need to show a lower bound for the right-hand side of (2) of the form
c(h0, γ0)h−2 ln(γ−1) for some appropriate constant c(h0, γ0), which does not depend on γ or h. The function
f : (0, 1) → R, γ 7→ ln((1−γ)/γ)·(1−2γ)

ln(1/γ) fulfills f(1/2) = 0 and

f ′(γ) =
(1− 2γ) ln(γ−1)− (γ − 1) ln(γ−1 − 1)(2γ + 2γ ln(γ−1)− 1))

(γ − 1)γ ln2(γ−1)
< 0

for every γ ∈ (0, 1/2). Consequently, there exists some c′(γ0) > 0 with ln((1− γ)/γ)(1− 2γ) ≥ c′(γ0) ln(1/γ) for
each γ ∈ (0, γ0). Moreover, as ln(1 + x) < x for x > −1, we obtain for h ∈ (0, h0) the inequality

ln

(
1/2 + h

1/2− h

)
= ln

(
1 +

4h

1− 2h

)
<

4h

1− 2h
<

4h

1− 2h0
.

Combining these estimates, we obtain with c(h0, γ0) := c′(γ0)(1−2h0)
8 that

(2h)−1

⌈
ln((1− γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
(1− 2γ) ≥ c(h0, γ0)h−2 ln(γ−1).

As the SPRT is optimal (w.r.t. expected runtime) this shows that any such algorithm A′ as in (ii) fulfills

E1/2±h[TA
′
] ≥ c(h0, γ0)h−2 ln(γ−1).

C SELECT-THEN-VERIFY

In this section, we provide the details for A-THEN-VERIFY presented in the beginning of Section 5, with a special emphasis
on the case where A is the algorithm SELECT in [Mohajer et al., 2017]. At first sight, our framework may resemble
the EXPLORE-VERIFY FRAMEWORK in [Karnin, 2016], but in contrast to ours the latter can only be used to find the
CW provided it exists and does not to solve the CW testification task. For the sake of convenience, we focus again on
the symmetric case α = β =: γ, write Õ for O, which hides ln(m)-factors, and use notation, which is introduced in the
beginning of Section F.

Algorithm 1 A-THEN-VERIFY

Input: m,h, γ
1: i← A(m,h, γ/2)
2: for j ∈ [m] \ {i} do
3: Conduct a test T for H0 : qi,j > 1/2 + h versus H1 : qi,j < 1/2− h with an error ≤ γ

2(m−1) .
4: if T decides for H1 then return ¬CW

5: return i

Proposition C.1. If A solves Testification{∃CW} on Qhm for γ
2 ,

γ
2 , then Algorithm 1 solves Pm,h,γ,γ .

Proof sketch. Suppose A to be a fixed solution of Testification{∃CW} on Qhm for γ2 ,
γ
2 and write for convenience A′ for

the corresponding version of Algorithm 1 with parameters m,h, γ. Due to a union bound, for any Q ∈ Qhm, the probability
that the sign of any qi,j − 1/2, j 6= i, is estimated incorrectly in Steps 2–4 of Algorithm 1 is at most γ.

Suppose at first Q ∈ Qhm(CW). If A′ makes an error, then the output of A in step 1 is incorrect or a mistake is made in
steps 2–7. Since both of these happen happen with error prob. ≤ γ/2, the overall error of A′ is at most γ. Now, suppose
Q ∈ Qhm(¬CW). If an error occurs, the candidate i of A from Step 1 is falsely verified to fulfill minj 6=i qi,j > 1/2 in lines
2–4, whence

PQ(D(A′) ∈ [m]) =
∑

i∈[m]
PQ

(
an error is made in steps 2–4

∣∣D(A) = i
)
PQ(D(A) = i) ≤ γ/2.



There are numerous possible choices for the test T in Step 3 of Algorithm 1. In the following, we choose T as the
corresponding Sequential Probability Ratio Test for the hypothesis test, which is according to Lemma B.1 the optimal choice
w.r.t. the worst-case expected sample complexity.

The problem of identifying the Condorcet winner is also referred to as the best-arm-identification problem in the dueling
bandits literature [Karnin, 2016, Bengs et al., 2021]. As many solutions to this problem have stronger requirements than the
mere existence of the Condorcet winner, they can not be used without further adaptations as a candidate for A in Proposition
C.1. For example, SEEBS from [Ren et al., 2020] formally requires strong stochastic transitivity (SST) as well as the
stochastic triangle inequality (STI)2 to hold; thus, SEEBS is proven to correctly identify the CW with error ≤ γ only for
any Q in a proper subset Qhm(SST ∧ STI) ( Qhm(CW). As a consequence, the error of SEEBS-THEN-VERIFY could
only be guaranteed to be ≤ γ whenever Q ∈ Qhm(SST ∧ STI) ∪Qhm(¬CW) ( Qhm. In other words, we can not infer that
SEEBS-THEN-VERIFY solves Pm,h,γ,γ .

Mohajer et al. [2017] present a solution SELECT for the best-arm-identification problem and suppose for its theoretical
analysis so-called weak stochastic transitivity2 to hold. Fortunately, it can be shown that this assumption is not necessary
and instead the mere existence of a CW suffices, whence SELECT-THEN-VERIFY is a solution to Pm,h,γ,γ . SELECT
conducts a knockout-tournament between all m arms, in which two competing arms i, j are dueled for a fixed number of
times N and i wins this comparison if it wins at least N/2 of the duels. Choosing

N :=
(1 + ε) ln(2) log2(log2(m))

2h2
with ε := − ln(γ/2)

ln(log2(m))
,

it can be shown that SELECT is a solution to Testification{∃CW} on Qhm for γ
2 ,

γ
2 with constant sample complexity

d(m− 1)Ne. With the help of Proposition C.1 and Lemma B.1 we can infer that SELECT-THEN-VERIFY solves Pm,h,γ,γ
with a worst-case expected sample complexity on Qhm of order Õ(mh−2 ln(γ−1)) as max{m,h−1, γ−1} → ∞, which is
with regard to Theorem 4.1 (up to logarithmic terms) asymptotically optimal.

Of course, there may be other candidates forA in Algorithm 1, e.g., as already indicated, a solutionA to Testification{∃CW}
may be inferred from [Karnin, 2016]. For the sake of convenience and simplicity, we have restricted ourselves to SELECT
at this point, because the algorithm itself and its theoretical guarantees fit into our setting – e.g., it is implicitly assumed that
Q ∈ Qhm– and thus makes the discussed optimality (up to logarithmic terms) of SELECT-THEN-VERIFY rather easy to see.
Even though a theoretical comparison of our solution to SELECT-THEN-VERIFY on arbitrary instances appears infeasible,
we are able to show the following result.

Lemma C.2. Let m ∈ N, γ ∈ (0, 1/2) be arbitrary. For sufficiently small h > 0 and h̃ ∈ (h, 1/2) we have: Whenever
ANTS from Corollary 5.4 and A′ :=SELECT-THEN-VERIFY are started with parameters m,h, γ, then

EQ

[
TA

NTS
]
≤ EQ[TA

′
]

2

holds for any Q ∈ Qh̃m ( Qhm.

Proof. At first, let us recall the corresponding lower and upper bounds for ANTS and A′, which we will use. For any
m ∈ N, γ ∈ (0, 1), h ∈ (0, 1/2), h̃ ∈ (h, 1/2) and Q ∈ Qm \Qh̃m the instance-wise upper bound from Theorem H.1 (with
ABin chosen as in Corollary 5.4) yields

EQ

[
TA

NTS
]
≤ c(h, γ′)(2m− blog2mc − 2)

2h̃

∣∣∣∣1− 2
(

1 +
(

(1/2+h̃)/(1/2−h̃)
)c(h,γ′))−1

∣∣∣∣ =: g(h̃)

for any Q ∈ Qh̃m, where γ′ := γ/m and

c(h, γ′) :=

⌈
ln((1− γ′)/γ′)

ln(1/2 + h)/(1/2− h))

⌉
.

2A relation Q ∈ Qm is called weakly stochastic transitive (WST) if (qi,j ≥ 1/2 and qj,k ≥ 1/2) ⇒ qi,k ≥ 1/2 holds for every
distinct i, j, k ∈ [m] and it is said to be strongly stochastic transitive if the implication (qi,j ≥ 1/2 and qj,k ≥ 1/2) ⇒ qi,k ≥
max{qi,j , qj,k} is fulfilled for every distinct i, j, k ∈ [m]. Moreover, a relation Q ∈ Qm, which is WST (or SST), is said to satisfy the
stochastic triangle inequality if (qi,j ≥ 1/2 and qj,k ≥ 1/2) ⇒ qi,k ≤ qi,j + qj,k − 1/2 holds for any distinct i, j, k ∈ [m].



Moreover, the “SELECT-part” of SELECT-THEN-VERIFY (started with m, γ, h) requires for any Q ∈ Qm exactly

(m− 1)(1 + ε(m, γ)) ln(2) log2(log2m)

2h2
with ε(m, γ) := − ln(γ/2)

ln(log2m)

samples. Note that this is trivially a lower bound for EQ[TA
′
].

Now, let m ∈ N and γ ∈ (0, 1/2) be fixed. Define γ′ := γ/m and choose h ∈ (0, 1/2) with

h <
(m− 1)(1 + ε(m, γ)) ln(2) log2(log2m)

2 ln((1− γ′)/γ′)(2m− blog2mc − 2)
.

Then, c(h, γ′) is fixed. As ln((1/2 + ĥ)/(1/2 − ĥ)) > 4ĥ holds for any ĥ ∈ (0, 1/2), we have c(h, γ′) < ln((1−γ′)/γ′)
4h .

Regarding that 1
2ĥ
→ 1 and

(
1/2+ĥ

1/2−ĥ

)c(h,γ′)
→ ∞ as ĥ → 1/2, we obtain

g(ĥ) −→ c(h, γ′)(2m− blog2(m)c − 2) ≤ ln((1− γ′)/γ′)(2m− dlog2me − 2)

4h

Consequently, we have for sufficiently large h̃ ∈ (h, 1/2) and any Q ∈ Qh̃m

EQ[TA
NTS

] ≤ g(h̃) ≤ ln((1− γ′)/γ′)(2m− dlog2me − 2)

2h

≤ (m− 1)(1 + ε(m, γ)) ln(2) log2(log2m)

4h2
≤ EQ[TA

′
]

2
,

where the third inequality holds due to the choice of h.

D PROOF OF THEOREM 5.2

We continue with the proof of Theorem 5.2, which states that Algorithm 1 indeed solves the testification problem for the
CW on Qhm for α and β, provided π is a sampling strategy in Π∞. Note that the correction terms 1/m and 1/(m − 1)
associated for the type I/II error probabilities α/β are chosen in an optimal way with regard to a Bonferroni correction due
to Proposition A.3 and Lemma A.4, respectively.

Proof of Theorem 5.2. For convenience we abbreviate T ..= TA and use the notations ni,j(t) ..= (nt)i,j , wi,j(t) ..= (wt)i,j
and q̂i,j(t) ..= (q̂t)i,j . Let Q ∈ Qhm be fixed for the moment. With regard to the definition of A, there exists an independent

family {x[qi,j ]
n }n∈N0,1≤i<j≤m of random variables x[qi,j ]

n ∼ Ber(qi,j) such that wi,j(t)
d
=
∑ni,j(t)
n=1 x

[qi,j ]
n and q̂i,j(t)

d
=

1
ni,j(t)

∑ni,j(t)
n=1 x

[qi,j ]
n hold for every t ∈ N0

3. Recall that γ′ = min{ αm ,
β

m−1}. We split the remaining proof into four parts.

Part 1: Almost sure finiteness of T
By the strong law of large numbers and the assumption π ∈ Π∞, we have ni,j(t) → ∞ and q̂i,j(t) → qi,j ∈ [0, 1

2 − h) ∪
( 1

2 + h, 1] almost surely as t → ∞ for each (i, j) ∈ (m)2. Together with Ch,γ′(n) → 0 as n → ∞ we obtain that

T ′ := min{t ∈ N | q̂i,j(t) 6∈ [1/2± Ch,γ′(ni,j(t))] for all distinct i, j ∈ [m]}

is almost surely finite. Regarding the definitions of A and T ′ we see that ĜT ′ is almost surely an element of Gm =⋃
i∗∈[m] Gm(i∗) ∪ Gm(¬CW), i.e., ĜT ′ is with probability 1 either in Gm(¬CW) ( Gm(¬CW) or in Gm(i∗) ( Gm(i∗)

for some i∗ ∈ [m]. Consequently, we obtain

T = min
{
t ∈ N : Ĝt ∈ Gm(¬CW) or Ĝt ∈ Gm(i∗) for some i∗ ∈ [m]

}
≤ T ′ <∞ a.s.,

which completes the proof of Part 1.

3 d= denotes equality in distribution



Before showing the guarantees on the type I and II error we fix some further notation: For Q ∈ Qm, E ⊆ [m]× [m] and
{i, j} ∈ [m]2 we say that {i, j} is assigned incorrectly in E w.r.t. Q if

(i, j) ∈ E and qi,j < 1/2 or (j, i) ∈ E and qi,j > 1/2

holds, where we may omit the term “w.r.t. Q” in case Q is clear from the context.

Part 2: Showing PQ({i, j} is assigned incorrectly in ÊT ) ≤ γ′ in case |qi,j − 1/2| > h

Let (i, j) ∈ (m)2 be fixed and define the stopping time

T(i,j)
..= min{t ∈ N : t ≤ T and |q̂i,j(t)− 1/2| > Ch,γ′(ni,j(t))} ∈ N ∪ {∞}.

A look at lines 8 and 10 of Algorithm 1 reveals Êt−1 ⊆ Êt for all t ≤ T and moreover

(i, j) ∈ ÊT ⇔
(
T(i,j) <∞ and q̂i,j(T(i,j))− 1/2 > Ch,γ′(ni,j(T(i,j)))

)
.

Consequently, Lemma B.1 assures in the case qi,j < 1/2− h that

PQ

(
{i, j} is assigned incorrectly in ÊT

)
= PQ((i, j) ∈ ÊT )

≤ PQ

(
1

ni,j(T(i,j))

∑ni,j(T(i,j))

n=1
x[qi,j ]
n − 1/2 > Ch,γ′(ni,j(T(i,j)))

)
≤ γ′,

and in case qj,i < 1/2− h we similarly obtain

PQ({i, j} is assigned incorrectly in ÊT ) = PQ((j, i) ∈ ÊT ) ≤ γ′

due to symmetry. This shows the assertion of Part 2.

In the following let l∆i∗ , i∗ ∈ [m] and l♦ be defined as in Lemma A.5.

Part 3: Bounding the type I error

Suppose i∗ ∈ [m] and Q ∈ Qhm(i∗). Part (c) of Lemma A.5 yields the identity

PQ(D(A) 6= i∗) = PQ(D(A) = ¬CW or D(A) = j for some j ∈ [m] \ {i∗})
= PQ(ĜT ∈ Gm(∆i∗)) = PQ(l∆i∗(ĜT ) ∈ Gm(∆i∗)). (4)

For the sake of convenience, we write G for the set {{i, j} | (i, j) ∈ EG or (j, i) ∈ EG} for G ∈ Gm. By Part 2 we have

PQ

(
{i, j} is ass. inc. in El∆i∗ (ĜT )

∣∣∣ l∆i∗(ĜT ) = G
)
≤

{
0, if {i, j} 6∈ G,
γ′, if {i, j} ∈ G,

for any G ∈ Gm with PQ(l∆i∗(ĜT ) = G) > 0. If no {i, j} ∈ l∆i∗(ĜT ) was assigned incorrectly in El∆i∗ (ĜT ), then

l∆i∗(ĜT ) ∈ Gm(∆i∗) (i.e., in particular i∗ 6= CW(l∆i∗(ĜT ))) would imply CW(Q) 6= i∗. Consequently, Q ∈ Qhm(i∗)

lets us infer that l∆i∗(ĜT ) ∈ Gm(∆i∗) is only possible if there exists some {i, j} ∈ l∆i∗(ĜT ), which is assigned incorrectly
in El∆i∗ (ĜT ). Regarding that |G| = |EG|, we thus get

PQ

(
l∆i∗(ĜT ) ∈ Gm(∆i∗) and l∆i∗(ĜT ) = G

)
≤ PQ

(
∃{i, j} ∈ G, which is ass. inc. in El∆i∗ (ĜT ) and l∆i∗(ĜT ) = G

)
≤
∑
{i,j}∈G

PQ

(
{i, j} is ass. inc. in El∆i∗ (ĜT ) and l∆i∗(ĜT ) = G

)
≤ γ′|EG|PQ

(
l∆i∗(ĜT ) = G

)
for every G ∈ Gm. Together with (4) and PQ(|El∆i∗ (ĜT )| ≤ m) = 1, which holds according to (b) of Lemma A.5, we infer

PQ(D(A) 6= i∗) = PQ

(
l∆i∗(ĜT ) ∈ Gm(∆i∗)

)
=
∑

G:G∈Gm
PQ

(
l∆i∗(ĜT ) ∈ Gm(∆i∗) and l∆i∗(ĜT ) = G

)
≤
∑

G:G∈Gm
PQ

(
∃{i, j} ∈ G, which is ass. inc. in El∆i∗ (ĜT ) and l∆i∗(ĜT ) = G

)
≤ γ′

∑
G:G∈Gm

|G|PQ

(
l∆i∗(ĜT ) = G

)
≤ γ′m ≤ α,



where we have used that
∑
G:G∈Gm PQ(l∆i∗(ĜT ) = G) = 1 holds trivially.

Part 4: Bounding the type II error

Now, we consider the case Q ∈ Qhm(¬CW). Similarly as above in Part 3, Lemma A.5 yields

PQ(D(A) 6= ¬CW) = PQ(D(A) ∈ [m]) = PQ(ĜT ∈ Gm(♦)). (5)

Next, using l♦ as defined in Lemma A.5, an analogue argumentation as above shows that l♦(ĜT ) ∈ Gm(♦) is only possible
if there exists some {i, j} ∈ l♦(ĜT ), which is assigned incorrectly in El♦(ĜT ). From this and Part 2 we can infer that

PQ

(
l♦(ĜT ) ∈ Gm(♦) and l♦(ĜT ) = G

)
≤ γ′|EG|PQ

(
l∆i∗(ĜT ) = G

)
(6)

is fulfilled for every G ∈ Gm. According to (b) of Lemma A.5 we have PQ(|El♦(ĜT )| ≤ m− 1) = 1, whence combining
(5) with (6) yields

PQ(D(A) 6= ¬CW) ≤ γ′
∑

G:G∈Gm
|G|PQ

(
l∆i∗(ĜT ) = G

)
≤ γ′(m− 1) ≤ β.

This completes the proof of Part 4 and also the proof of the theorem.

E DSTAS FOR TESTIFICATION, CHECK_CW AND VERIFY_I_AS_CW

Recall that both testification for the CW (which we may conveniently denote by Testification in the follow-
ing) and Verify_i_as_CW can be regarded with and without the ∃CW assumption. Thus, for problem ∈
{Testification, Verify_i_as_CW} we will write problem{} and problem{∃CW} for the corresponding problem without
and with the assumption ∃CW, respectively; when we simply write problem we mean any of these two variants.

Any DSTA ABin for Testification for the CW of tournaments G ∈ Gm (recall Fact 5.1) is w.l.o.g. supposed to do in each
time step t ∈ N both of the following steps in succession:

(i) Query one pair (i, j) ∈ 〈m〉2 and receive as feedback 1 if i G−→ j and 0 if j G−→ i holds.
(ii) Either continue (i.e., skip this step) or terminate. In the latter case return some i ∈ [m] or ¬CW.

Similarly, a DSTA ABin for Check_CW, resp. Verify_i_as_CW(with i∗ ∈ [m] as input), may w.l.o.g. be supposed to do in
each time step at first (i) and then

(ii’) Either continue (i.e., skip this step) or terminate. In the latter case return CW or ¬CW,

resp.

(ii”) Either continue (i.e., skip this step) or terminate. In the latter case return i∗ or ¬i∗.

Let Am (resp. ACheck_CW
m or AVerify_i_as_CW

m ) denote the set of all DSTAs for testification of the CW (resp. for Check_CW
or Verify_i_as_CW). Recall that DSTAs, which tackle Verify_i_as_CW, are given some i∗ ∈ [m] as input; given such
a DSTA ABin, we will write ABin[i∗] for ABin started with i∗, and in case i∗ is fixed or clear from the context we may
simply write ABin instead of ABin[i∗] for convenience. With a slight abuse of notation we will call not only ABin but also
ABin[i∗] a DSTA for Verify_i_as_CW; whenever we simply write a “DSTA for Verify_i_as_CW” it should be clear from
the context to which of these notions we are referring.

Suppose ABin to be a DSTA for Testification, Check_CW or Verify_i_as_CW, in the latter case of which it is supposed to
be started with a fixed i∗ ∈ [m], i.e., ABin = ABin[i∗]. As above, we write TABin

G for the number of queries made by the
DSTA ABin started with G until termination. We write for distinct i, k ∈ [m] that ABin queries {i, k} if it queries (i, k) or
(k, i), i.e., a query {i, k} represents either (i, k) or (k, i). We write (iABin

G (t), jABin

G (t)) for the query of ABin made at time
t when testing G. We say that i beats j (or equivalently, j is beaten by i) at time t (according to the queries of ABin started
with G) if {iABin

G (t), jABin

G (t)} = {i, j} and i G−→ j hold. We write TABin

G for the number of queries made by ABin started
with G until termination. Then, the worst-case runtime of a DSTA ABin, which solves problem, is given as

TABin =


maxG∈Gm

TABin

G , if problem ∈ { Testification{}, Check_CW{}} ,
maxi∗∈[m] maxG∈Gm

T
ABin[i∗]
G , if problem = Verify_i_as_CW{},

maxG∈Gm(CW) T
ABin

G , if problem = Check_CW{∃CW},
maxi∗∈[m] maxG∈Gm(CW) T

ABin[i∗]
G , if problem = Verify_i_as_CW{∃CW}.



As querying an already queried pair {i, j} for a second time does not provide any more information, we may as-
sume w.l.o.g. that each DSTA ABin started on some G ∈ Gm queries each pair at most once, i.e., the queries
{iABin

G (1), jABin

G (1)}, . . . , {iABin

G (TABin

G ), jABin

G (TABin

G )} are pairwise distinct. This implies that TABin

G ≤
(
m
2

)
for any

DSTA ABin and any G ∈ Gm.

In the following, let us write ABin(G) for the output of ABin when started with G.

Recall that a DSTA ABin is testification{}-correct (simply called testification-correct in the main paper) if both ∀G ∈
Gm(CW) : ABin(G) = CW(G) and ∀G ∈ Gm(¬CW) : ABin(G) = ¬CW hold, and that we denoted by A∗m the set of
testification-correct algorithms ABin ∈ Am. Similarly, we may say that a DSTA ABin ∈ ACheck_CW

m is check{}-correct if it
fulfills

∀G ∈ Gm(CW) : ABin(G) = CW and ∀G ∈ Gm(¬CW) : ABin(G) = ¬CW

and ABin ∈ AVerify_i_as_CW
m is called verify{}-correct if

∀i∗ ∈ [m]∀G ∈ Gm(i∗) : ABin[i∗](G) = i∗ and

∀i∗ ∈ [m]∀G ∈ Gm \ Gm(i∗) : ABin[i∗](G) = ¬i∗.

Moreover, a DSTA ABin in Am resp. AVerify_i_as_CW
m is called testification{∃CW}-correct resp. verification{∃CW}-correct

if it fulfills

∀G ∈ Gm(CW) : ABin(G) = CW(G) and ∀G ∈ Gm(¬CW) : ABin(G) = ¬CW

resp.

∀i∗ ∈ [m]∀G ∈ Gm(i∗) : ABin[i∗](G) = i∗ and

∀i∗ ∈ [m]∀G ∈ Gm(CW) \ Gm(i∗) : ABin[i∗](G) = ¬i∗.

For G ∈ Gm with (i, j) ∈ EG or (j, i) ∈ EG we define for convenience

{i, j}G ..=

{
(i, j), if (i, j) ∈ EG,
(j, i), if (j, i) ∈ EG.

As every DSTA ABin is deterministic (i.e., their decisions in (i) and (ii) are not random), we have the following: For
every G,G′ ∈ Gm we have then (iABin

G (1), jABin

G (1)) = (iABin

G′ (1), jABin

G′ (1)). Moreover, if t0 ≤ TABin

G is such that
{iABin

G (t), jABin

G (t)}G = {iABin

G (t), jABin

G (t)}G′ holds for all t ≤ t0, then (iABin

G (t + 1), jABin

G (t + 1)) = (iABin

G′ (t +

1), jABin

G′ (t+ 1)) is fulfilled.

Moreover, we define GABin

G (t) to be the “picture” which algorithm ABin, started with G, has of G at time t. More precisely,
GABin

G (t) = ([m], E
G
ABin
G (t)

) is given via

E
G
ABin
G (t)

=
⋃

t′≤t−1

{
{iABin

G (t′), jABin

G (t′)}G
}
.

In particular, GABin

G (t) is a subgraph of G in the sense that E
G
ABin
G (t)

⊆ EG.

The following lemma is crucial for exploiting DSTAs in the noisy tournament sampling setting. It gives necessary conditions
on the observations, which have to be made by any correct DSTA until termination.

Lemma E.1. (i) LetABin be a DSTA and G ∈ Gm. IfABin is testification{}-, check- or verify{}-correct (and given input
i∗ ∈ [m] in the latter case), then GABin

G (TABin

G ) is an element of

Gm(¬CW) ∪
⋃

i∗∈[m]
Gm(i∗), Gm(CW) ∪ Gm(¬CW), or Gm(i∗) ∪ Gm(¬i∗),

respectively.

(ii) Let ABin be a DSTA and G ∈ Gm(CW). If ABin is testification{∃CW}- or verify{∃CW}-correct (and given input
i∗ ∈ [m] in the latter case), then GABin

G (TABin

G ) is an element of⋃
i∗∈[m]

Gm(i∗) or Gm(i∗) ∪ Gm(¬i∗),

respectively.



Proof of Lemma E.1. (i) Suppose ABin to be testification{}-correct, let G ∈ Gm be fixed and assume GABin

G (TABin

G ) 6∈
Gm(CW) ∪

⋃
i∗∈[m] Gm(i∗). Then, there exist two extensions G0, G1 ∈ Gm of G with Gb ∈ Gm(Xb), b ∈ {0, 1},

whereinX0 andX1 are distinct elements of {¬CW, 1, . . . ,m}. As bothG0 andG1 are extensions of GABin

G (TABin

G ), we
have TABin

G = TABin

Gb
, GABin

G (TABin

G ) = GABin

Gb
(TABin

Gb
) and in particular ABin(Gb) = ABin(G) for every b ∈ {0, 1},

i.e., ABin either classifies G0 or G1 incorrectly. This contradicts the assumption that ABin is testification{}-correct,
and the first statement follows. The results for check- and verify{}-correct algorithms can be shown similarly.

(ii) Now, suppose ABin to be testification{∃CW}-correct, let G ∈ Gm(CW) and assume GABin

G (TABin

G ) 6∈⋃
i∗∈[m] Gm(i∗). Similarly as in (ii) there exist two extensions G0, G1 ∈ Gm of G with Gb ∈ Gm(Xb), b ∈ {0, 1},

where X0 and X1 are distinct elements of {1, . . . ,m}. As above, we infer that A classifies either G0 or G1 incorrectly,
in contradiction to testification{∃CW}-correctness of ABin. This shows the first statement, while the second one can
be seen analogously.

Next, let us provide the upper and lower bounds for the worst-case runtimes of correct DSTAs for Testification, Check_CW
and Verify_i_as_CW as stated in Table 1.

• Verify_i_as_CW{} and Verify_i_as_CW{∃CW}: It is easy to check that Algorithm 2 is a correct solution to
Verify_i_as_CW{} and makes exactly m−1 queries. It is also a solution to the less difficult task Verify_i_as_CW{∃CW},
i.e., solving Verify_i_as_CW{∃CW} is also feasible with worst-case running time m− 1.

To see that m − 1 queries are not only sufficient but also necessary for Verify_i_as_CW{∃CW}, suppose ABin to be a
verify{∃CW}-correct DSTA. Let i ∈ [m] and G ∈ Gm(CW) with CW(G) = i. Assuming ABin[i] does not query {i, j}
for some j ∈ [m] \ {i} before termination would imply that there exist extensions G0, G1 ∈ Gm of GABin

G (T
ABin[i]
G ) such

that i = CW(G0) and i 6= CW(G1) hold. Hence, ABin[i] would classify either G0 or G1 incorrectly, a contradiction. This
shows, that ABin[i] has to make all the m− 1 queries {i, j}, j 6= i. As the problem Verify_i_as_CW{} is more complex4

than Verify_i_as_CW{∃CW}, this shows also that solving Verify_i_as_CW{} requires a worst-case running time of
m− 1.

Algorithm 2 An optimal DSTA for Verify_i_as_CW{} (and also for Verify_i_as_CW{∃CW})
Input: i ∈ [m]
Initialization: W ← [m] \ {i}

. W = set of nodes j ∈ [m], which have not yet been compared to i
1: while |W | ≥ 1 do
2: Choose an arbitrary j ∈W
3: (i′, j′)← {i, j}G . Query {i, j}
4: if (i, j′) = (j, i) then return ¬i . i can not be the CW
5: else W ←W \ {j} . j has been compared to i
6: return i

• Testification{}:

Proposition E.2. Algorithm 3, which we denote by A∗Bin, is testification{}-correct and fulfills TA
∗
Bin = 2m− blogmc − 2.

Moreover, if a DSTA ABin is testification{}-correct or check-correct, then TABin ≥ 2m− blogmc − 2.

Proof. Confer Theorem 2.1 in [Procaccia, 2008] and Lemma 3.2 in [Balasubramanian et al., 1997].

4Note that every solution ABin for Verify_i_as_CW{} is also a solution to Verify_i_as_CW{∃CW}.



Algorithm 3 An optimal DSTA for Testification{}[Procaccia, 2008]
Initialization: Construct an almost complete binary tree T of height D ..= dlogme with m leaves, which are labeled by
1, . . . ,m. Here, almost complete means that there are exactly 2d nodes on each level d ≤ D − 1.

1: while height(T ) > 0 do
2: Pick two sibling leave nodes i, j ∈ [m] of T and compare them
3: if {i, j}G = (i, j) then . j can not be the CW
4: Label the unique parent of i and j with i, then remove its children from T
5: else . i can not be the CW
6: Label the unique parent of i and j with j, then remove its children from T

7: Let i∗ be the label of the only node in T
8: Compare i∗ with all other alternatives, with which it has not been compared yet
9: if i∗ has won all of its duels then return i∗

10: else return ¬CW

• Testification{∃CW}: Suppose ABin to be testification{∃CW}-correct and define an algorithm A′Bin for
Verify_i_as_CW as follows: Given some i ∈ [m], simulateABin and return CW ifABin outputs i, and return ¬i otherwise.
Then, ABin is correct iff A′Bin is correct. As ABin and A′Bin have exactly the same sample complexity – regardless of
the input i to A′Bin, we obtain with regard to the lower bound on the worst-case running time of correct algorithms to
Verify_i_as_CW{∃CW} that TABin = maxG∈Gm(CW) T

ABin

G ≥ maxG∈CW,i∈[m] T
A′Bin[i]
G ≥ m− 1.

To see the upper bound, consider Algorithm 4, which we denote by ABin for the moment. Therein, |S| decreases by 1 in
each iteration of the while loop, whence ABin terminates after exactly m− 1 time steps when started on any G ∈ Gm. In
particular, TABin ≤ m − 1 holds. For G ∈ Gm(CW) this algorithm returns at termination the only remaining element i
of S. The construction of S assures CW(G) 6= j for each j ∈ [m] \ S, i.e., ABin(G) = CW(G) has to be fulfilled. This
shows, that ABin is a testification{∃CW}-correct.

Algorithm 4 An optimal DSTA for Testification{∃CW}
Initialization: S ← [m], i← 1 . S = set of candidates for CW

. i = the current candidate
1: while |S| > 1 do
2: Choose an arbitrary j ∈ S \ {i}
3: (i′, j′)← {i, j}G . Query {i, j}
4: if (i, j′) = (i, j) then S ← S \ {j} . j can not be the CW
5: else S ← S \ {i}, i← j . i is not the CW, j is the new candidate
6: return i . S = {i}

• Check_CW: Let A′Bin be the following DSTA: Started on G ∈ Gm, it simulates Algorithm 3, denoted by ABin, on G
until it terminates and then chooses as output ¬CW if ABin(G) = ¬CW, and CW otherwise. As ABin is testification{}-
correct, A′Bin is check{}-correct. Moreover, A′Bin needs exactly as many samples as ABin, so that we have TA

′
Bin ≤

2m− blogmc − 2.

As Check_CW is easier than Testification{}, Proposition E.2 yields that A′Bin is optimal w.r.t. the worst-case runtime.

F RESULTS FOR CHECK_CW , FIND_CW AND VERIFY_I_AS_CW IN THE
PROBABILISTIC SETTING

As in Section E, for problem ∈ {Testification, Verify_i_as_CW}, we write problem{} and problem{∃CW} for the
corresponding problem without and with the assumption ∃CW, respectively; when we simply write problem we mean any
of these two variants. If A tackles Verify_i_as_CW, we write A[i] for A with input i.

For given error probabilities α, β ∈ (0, 1), we say that an algorithm A solves Check_CW on Qhm if TA is almost surely



finite and the following holds:

infQ∈Qh
m(CW) PQ(D(A) = CW) ≥ 1− α and

infQ∈Qh
m(¬CW) PQ(D(A) = ¬CW) ≥ 1− β.

Similarly, we say A solves Verify_i_as_CW{} on Qhm if, given any i ∈ [m], TA[i] is almost surely finite and the following
holds:

infQ∈Qh
m(CW):CW(Q)=i PQ(D(A[i]) = i) ≥ 1− α and

infQ∈Qh
m:Q∈Qm(¬CW) or CW(Q)6=i PQ(D(A[i]) = ¬i) ≥ 1− β.

(7)

The notions of a solution to Testification{∃CW} resp. Verify_i_as_CW{∃CW} is defined accordingly by considering
relations Q in Qhm(CW) (instead of only Qhm) for the desired theoretical guarantees.

In the following, we will show the following lower and upper bounds for worst-case expected running times on Qhm for
solutions to the problems Testification and Verify_i_as_CW under no assumption. The lower and upper bounds for Testifi-
cation{∃CW}, which is also known as the best-arm-identification problem, have already been shown in [Braverman et al.,
2016]. The upper bound for Verify_i_as_CW{∃CW} is a direct consequence of the upper bound for Verify_i_as_CW{}.

no assumption assumption: ∃CW

Check_CW
O(m ln(m)h−2 ln(γ−1))

Ω(mh−2 ln γ−1) –

Verify_i_as_CW
O(m ln(m)h−2 ln(γ−1))

Ω(mh−2 ln γ−1)

O(m ln(m)h−2 ln(γ−1))

Ω(mh−2 ln γ−1)

Testification
O(m ln(m)h−2 ln(γ−1))

Ω(mh−2 ln γ−1)
Θ̃(mh−2 ln γ−1)

In order to see the upper bound for Check_CW and Verify_i_as_CW{} in the probabilistic setting suppose h ∈ (0, 1/2),
γ0 ∈ (0, 1) and α, β ∈ (0, γ0) to be fixed. Moreover, denote by ANTS the corresponding algorithm from Corollary 5.4
called with parameters h, α and β. Now, let Â1 be the algorithm, which simulates ANTS, terminates as soon as ANTS

terminates, and outputs

D(Â1) =

{
¬CW, if D(ANTS) = ¬CW,

CW, if D(ANTS) = i for some i ∈ [m].

Similarly, define Â2 to be the algorithm, which, given any i ∈ [m], simulates ANTS, terminates as soon as ANTS terminates
and then returns

D(Â2[i]) =

{
i, if D(ANTS) = i,

¬i, otherwise.

SinceANTS solves Testification{} onQhm for α, β, it follows that Â1 resp. Â2 solves Check_CW resp. Verify_i_as_CW{}
on Qhm for α, β. Moreover, both Â1 and Â2 have exactly the same runtime as ANTS. Consequently, we have with regard to
Corollary 5.4

supQ∈Qh
m
EQ[T Â1 ] ∈ O

(
m ln(m)h−2 ln(γ−1)

)
and also

supQ∈Qh
m

maxi∈[m] EQ[T Â2[i]] ∈ O
(
m ln(m)h−2 ln(γ−1)

)
as max{m,h−1, γ−1} → ∞, respectively.

We prepare our instance-wise lower bounds on solutions to Check_CW and Verify_i_as_CW{} with the following Lemma.

Lemma F.1. Let Q ∈ Qm be such that qi,j 6= 1/2 for every distinct i, j in [m]. Then, there exists a permuation σ on [m]
such that qσ(i),σ(i+1) > 1/2 for every i ∈ [m− 1].



Proof. Suppose without loss of generality that qi,j ∈ {0, 1} for every (i, j) ∈ (m)2 and recall the bijection Φ from Fact 5.1.
By the Theorem of Rédei (cf. [Sachs, 1971]), G := ([m], EG) := Φ(Q) contains a Hamiltonian path, i.e., there exists a
permutation σ on [m] such that (σ(i), σ(i+ 1)) ∈ EG for every i ∈ [m− 1]. Regarding the definition of Φ, this proves the
statement.

With this, we can state the following lower bounds for Check_CW and Verify_i_as_CW{}, whose proofs are deferred to
Section G.

Theorem F.2. For any fixed h0, γ0 ∈ (0, 1/2) there exists a constant c = c(h0, γ0) > 0 such that the following holds:

(i) Let h ∈ (0, h0), α, β ∈ (0, γ0) and suppose that A is some (probabilistic) algorithm, which solves
Verify_i_as_CW{∃CW} (or the more complex problem Verify_i_as_CW{}) on Qhm for α and β. Moreover, let
Q ∈ Qhm be fixed, define hi,j = |qi,j − 1/2| for every i, j. Then, for all i ∈ [m] and every Q ∈ Qhm(CW) with
CW(Q) = i, we have

EQ

[
TA[i]

]
≥ c

∑
j∈[m]\{i}

h−2
i,j ln((max{α, β})−1).

In particular, A fulfills for each i ∈ [m] the estimate

supQ∈Qh
m
EQ[TA[i]] ≥

c(m− 1) ln
(
(max{α, β})−1

)
h2

.

(ii) Let h ∈ (0, h0), α, β ∈ (0, γ0) and suppose that A is some (probabilistic) algorithm, which solves Check_CW on
Qhm for α, β. Moreover, let Q ∈ Qhm(CW) be fixed, define hi,j = |qi,j − 1/2| for every i, j and suppose σ to be a
permutation5 on [m] such that qσ(i),σ(j) > 1/2 iff i < j. Then,

EQ

[
TA
]
≥ c

∑m

j=3
h−2
σ(1),σ(j) ln(γ−1) ≥ cminj∈[m]\{CW(Q)}

∑
j′∈[m]\{CW(Q),j}

h−2
CW(Q),j′ ln(γ−1).

In particular, A fulfills

supQ∈Qh
m
EQ[TA] ≥

c(m− 2) ln
(
(max{α, β})−1

)
h2

.

We conclude this section with an enhanced algorithm for Verify_i_as_CW.

Algorithm 5 ANTS
Verify_i_as_CW{} : Noisy tournament sampling for Verify_i_as_CW

Input: α, β, h, π, i∗
Initialization: n0,w0 ← (0)1≤i,j≤m, Ê0 ← ∅, γ′ ← min{α, β

m−1}, Ch,γ′ as in (7)
1: for t ∈ N do
2: Do steps 2–11 of Algorithm 1
3: if Ĝt ∈ Gm(i∗) then return i∗

4: if Ĝt ∈ Gm(¬i∗) then return ¬i∗

Theorem F.3. Let π ∈ Π∞, h ∈ (0, 1/2) and α, β ∈ (0, 1) be fixed. Then, ANTS
Verify_i_as_CW{} (Algorithm 5) called with the

parameters h, α, β, n0 = 0 = w0 and π as the sampling strategy, solves Verify_i_as_CW{} on Qhm for α and β.

Proof. Let us abbreviate A ..= ANTS
Verify_i_as_CW{} and write T ..= TA, and suppose A is given a fixed i∗ ∈ [m] as input.

For the sake of convenience we simply write A for A[i∗] in the following. Let Q ∈ Qhm be arbitrary but fixed. Due to
Gm(i∗) ∪ Gm(¬i∗), we infer similarly as in the proof of Theorem 5.2 that A terminates almost surely. Moreover, using the
notation from the proof of Theorem 5.2 we obtain also

PQ({i, j} is assigned incorrectly in ÊT ) ≤ γ′

for every {i, j} ∈ [m]2 with |qi,j − 1/2| > h.

5For the existence of such a permutation confer Lemma F.1



To bound the type I error, suppose that Q ∈ Qhm(i∗). Then, Lemma A.5 ensures

PQ(D(A) 6= i∗) = PQ(D(A) = ¬i∗) = PQ(l¬i∗(ĜT ) ∈ Gm(¬i∗)). (8)

The same argumentation as in the proof of Theorem 5.2 yields

PQ

(
l¬i∗(ĜT ) ∈ Gm(¬i∗) and l¬i∗(ĜT ) = G

)
≤ γ′|EG|PQ

(
l¬i∗(ĜT ) = G

)
for every G ∈ Gm. Combining this with (8), using

∑
G:G∈Gm PQ

(
l¬i∗(ĜT ) = G

)
≤ 1 and the fact that |El¬i∗ (ĜT )| = 1

holds a.s. (see (b) of Lemma A.5) shows that

PQ(D(A) 6= i∗) =
∑

G:G∈Gm
PQ

(
l¬i∗(ĜT ) ∈ Gm(¬i∗) and l¬i∗(ĜT ) = G

)
≤ γ′.

For showing the guarantee on the type II error, let Q ∈ Qhm \ Qhm(i∗) be fixed. Again, a similar argumentation as in the
proof of Theorem 5.2 yields

PQ(D(A) 6= ¬i∗) = PQ(D(A) = i∗) = PQ(ĜT ∈ Gm(i∗)) = PQ(li∗(ĜT ) ∈ Gm(i∗))

≤ γ′
∑

G:G∈Gm
|G|PQ(li∗(ĜT ) = G) ≤ (m− 1)γ′ ≤ β,

where we have used that |Eli∗ (ĜT )| ≤ m− 1 holds a.s. according to (b) of Lemma A.5.

G PROOFS OF THEOREM 4.1 AND THEOREM F.2

This section is dedicated to prove the lower bounds stated in Theorem 4.1 and Theorem F.2. For this purpose, we reduce
the problem of testing the following hypothesis to the problems of interest. Let J be some finite index set and suppose
we are given independent coins Cj , j ∈ J , with unknown head probabilities pj , j ∈ J , respectively. For fixed (unknown)
p = (pj)j∈J , throwing coin Cj at time t results in the feedback Y [pj ]

t ∼ Ber(pj), and we suppose the feedback is
independent over time and coins, i.e., {Y [pj ]

t }j∈J,t∈N is independent. Let us define the hypothesis

H0;J : ∀j ∈ J : pj ≥
1

2
and H1;J : ∃j ∈ J : pj <

1

2
.

If A is a (sequential probabilistic) testing algorithm for H0;J versus H1;J , we may write D(A) = 0 if A decides for H0;J

(or rather does not reject), and D(A) = 1 otherwise. Moreover, write TA for the stopping time of the algorithm, that is,
the number of samples queried until termination, i.e., the total number of coin tosses until termination. We denote by Pp

the probability distribution on the different possible states of the algorithm, if the true parameter is p, and write Ep for the
expectation with respect to Pp. For the proofs of Theorem 4.1 and Theorem F.2 we will make use of the following lower
bound on the expected termination time Ep[TA] for algorithmsA which test the above mentioned hypothesis6 , if it is known
in advance that |pj − 1

2 | = hj holds for every j ∈ J and some {hj}j∈J ⊆ (0, 1/2). The result stated is a consequence
of Lemma B.1 and thus relies on the optimality of the sequential probability ratio test. For the sake of completeness, we
provide a detailed proof.

Lemma G.1. Let h0, γ0 ∈ (0, 1/2) be fixed, γ ∈ (0, γ0) and J be some arbitrary finite index set. For h ∈ (0, h0) write
Lh ..= {1/2− h, 1/2 + h}. Suppose A to be a (probabilistic) testing algorithm, which, provided the fact p ∈

∏
j∈J Lhj

is
known for some {hj}j∈J ( (0, h0) whereas the concrete value of p is unknown beforehand, is able to test H0;J versus
H1;J with error probability at most γ. In other words, with p′ ..= (1/2 + hj)j∈J we have

Pp′(D(A) = 0) ≥ 1− γ and ∀p ∈
∏

j∈J
Lhj \ {p′} : Pp(D(A) = 1) ≥ 1− γ.

Then, there exist some constant c = c(h0, γ0) > 0, which does not depend on h,γ or m, such that the corresponding
stopping time TA of A fulfills

Ep′ [T
A] ≥ c

∑
j∈J

h−2
j ln(γ−1).

6Here, the expectation Ep[TA] is also taken with regard to the possibly probabilistic behavior of A, i.e., formally we have Ep,A[TA].
Nevertheless, we may simply write Ep[TA] for convenience.



Moreover, for arbitrary j ∈ J , we have with p(j) = (p
(j)
j′ )j′∈J defined via p(j)

j = 1/2− hj and p(j)
j′ = 1/2 + hj′ for all

j′ 6= j that
Ep(j) [TA] ≥ ch−2

j ln(γ−1).

Proof. At first, note that the case |J | = 1 of Lemma G.1 corresponds to the testing problem considered in Lemma B.1.
For the sake of convenience, suppose without loss of generality J = {1, . . . , N}. For an algorithm A′ with sample access
to (p1, . . . , pN ), write TAj for the number of times A′ queries the coin Cj (with bias pj) until termination. Moreover, for

j ∈ [N ] and p ∈ [0, 1] define p[j](p) = (p
[j]
j′ (p))j′∈J where p[j]

j (p) = p and p[j]
j′ = 1/2 + hj′ for j′ 6= j.

Now, suppose A, p′ and p(j) to be as in the statement of this Lemma. Let A(j) be the algorithm, which is given sample
access to pj as input, simulatesA with sample access to p[j](pj) as input, terminates as soon asA terminates and outputs 0 if
A outputs 0 and outputs 1 ifA outputs 1. AsA is able to decide H0;J : ∀j ∈ J : pj > 1/2 versus H1;J : ∃j ∈ J : pj < 1/2
with error probability ≤ γ for every p ∈

∏
j∈J Lhj , A(j) is able to decide whether pj > 1/2 or pj < 1/2 with error

probability ≤ γ in both cases pj = 1/2 + hj and pj = 1/2− hj . Lemma B.1 assures that A(j) fulfills

E1/2+hj
[TA(j)] ≥ ch−2

j ln(γ−1) and E1/2−hj
[TA(j)] ≥ ch−2

j ln(γ−1)

with c = c(h0, γ0) > 0 as in Lemma B.1, where TA(j) denotes the number of times algorithm A(j) with sample access
to p[j](pj) queries any of the coins C1, . . . , CN before termination. As deciding whether pj > 1/2 or pj < 1/2 does
not require knowledge about any of the coins Cj′ , j′ 6= j, which are independent of Cj , we may assume without loss of
generality that A(j) throws only coin Cj for this purpose.7 Regarding that p[j](1/2 + hj) = p′ and p[j](1/2− hj) = p(j)

hold, we obtain

Ep′ [T
A
j ] = E1/2+hj

[TA(j)] ≥ ch−2
j ln(γ−1) and Ep(j) [TA] ≥ Ep(j) [TAj ] = E1/2−hj

[TA(j)] ≥ ch−2
j ln(γ−1).

As this holds for each j ∈ [N ] we get

Ep′ [T
A] =

∑
j∈[N ]

Ep′ [T
A
j ] ≥ c

∑
j∈[N ]

h−2
j ln(γ−1),

which completes the proof.

We proceed with the proof of Theorem F.2.

Proof of Theorem F.2. (i) As any (probabilistic) algorithm A, which solves Verify_i_as_CW{∃CW} on Qhm with the
guarantees (7), trivially also fulfills the weaker guarantees

infQ∈Qh
m(CW):CW(Q)=i PQ(D(A[i]) = i) ≥ 1−max{α, β} and

infQ∈Qh
m:Q∈Qm(¬CW) or CW(Q) 6=i PQ(D(A[i]) = ¬i) ≥ 1−max{α, β}

for every i ∈ [m], we may suppose w.l.o.g. α = β ..=γ from now on.
Let i ∈ [m] be fixed. Choose J := {i} × ([m] \ {i}). As A solves Verify_i_as_CW{∃CW}, A[i] is able to decide8

H0;J : ∀j ∈ [m] \ {i} : pi,j ≥ 1/2 H1;J : ∃j ∈ [m] \ {i} : pi,j < 1/2

for each p = (pi,j)j∈[m]\{i} ∈
∏
j∈[m]\{i}{1/2±hi,j} with error probability≤ γ. If Q ∈ Qhm(CW) with CW(Q) =

i, then qi,j = 1/2 + hi,j > 1/2 for every (i, j) ∈ J and thus Lemma G.1 implies

EQ[TA[i]] ≥ c
∑

j∈[m]\{i}
h−2
i,j ln(γ−1)

7To see this formally, suppose on the contrary that TA(j)
j < ch−2 ln(γ−1). Let Ã(j) be given sample access to p[j](pj) and behave

asA(j) with the only difference that samples from any coin Cj′ 6= Cj are replaced by an artificial sample Ber(pj′), which is independent

of all the coins. Then, none of the coins Cj′ 6= Cj are thrown, we have T Ã(j) = T
Ã(j)
j and thus E1/2+hj

[T Ã(j)] = E1/2+hj
[T
Ã(j)
j ] =

E1/2+hj
[T
A(j)
j ] < ch−2 ln(γ−1), a contradiction to Lemma B.1.

8Note here that for every i ∈ [m] and (pi,j)j∈[m]\{i} ∈
∏
j∈[m]\{i}{1/2 ± hi,j} with mini 6=j hi,j > h, there is a Q′ =

(q′i′,j′)1≤i′,j′≤m ∈ Qhm(i) with |q′i,j − 1/2| = |pi,j − 1/2| for every j 6= i.



with c = c(h0, γ0) as in Lemma G.1. By choosing Q(ε) ∈ Qhm(CW) with CW(Q(ε)) = i such that |qi′,j′ − 1/2| =
h+ ε for all (i′, j′) ∈ (m)2 and arbitrarily small ε > 0 we obtain

supQ∈Qh
m
EQ[TA[i]] ≥ EQ(ε)[T

A[i]] ≥ c(m− 1) ln(γ−1)

(h+ ε)2
,

whence taking the limit ε↘ 0 completes the proof of (i).

(ii) As in part (i), we may suppose w.l.o.g. α = β ..=γ from now on. As Q = (qi,j)1≤i,j≤m has a CW iff
(qσ(i),σ(j))1≤i,j≤m ∈ Qm has a CW, we may suppose w.l.o.g. σ = id in the following, i.e., CW(Q) = 1 and
qi,i+1 > 1/2 for every i ∈ [m− 1]. For p = (p1,3, . . . , p1,m) ∈ [0, 1]m−2 define Q̂(p) ∈ Qm via

Q̂(p)i,j =

{
pi,j , if i = 1 and j ∈ {3, . . . ,m},
qi,j , otherwise,

for any 1 ≤ i < j ≤ m. As mini∈[m−1] qi,i+1 > 1/2 by assumption on σ, for any p ∈ [0, 1]m−2 either Q̂(p) ∈
Qm(¬CW) or CW(Q̂(p)) = 1 is fulfilled. Provided p ∈ ([0, 1/2) ∪ (1/2, 1])m−2, we thus have the equivalence

Q̂(p) ∈ Qm(CW) ⇔ ∀j ∈ {3, . . . ,m} : p1,j > 1/2.

Suppose A′ to be the algorithm, which gets as input sample access to p ∈ [0, 1]m−2, simulates A on Q̂(p) and then
outputs 0 if D(A) = CW, and 1 if D(A) = ¬CW. As A solves Check_CW onQhm for γ, the algorithm A′ is able to
decide

H0 : ∀j ∈ {3, . . . ,m} : p1,j ≥ 1/2 versus H1 : ∃j ∈ {3, . . . ,m} : p1,j < 1/2

with error probability at most γ for every p ∈ ([0, 1/2− h) ∪ (1/2 + h, 1])m−2. Regarding that Q ∈ Qhm(CW) with
CW(Q) = 1 implies p′ := (q1,3, . . . , q1,m) = (1/2 + h1,3, . . . , 1/2 + h1,m) ∈ (1/2 + h, 1]m−2, Lemma G.1 yields

EQ[TA] = Ep′

[
TA

′
]
≥ c

∑m

j=3
h−2

1,j ln(γ−1) ≥ cminj∈[m]\{1}
∑

j′∈[m]\{1,j}
h−2

1,j′ ln(γ−1).

The rest follows as in Part (i), i.e., by considering relations Q(ε) with entries in {1/2± (h+ ε)} and taking the limit
ε↘ 0.

With Theorem F.2, the proof of Theorem 4.1 becomes trivial.

Proof of Theorem 4.1. Suppose Q ∈ Qhm(CW) to be fixed and let i∗ := CW(Q). If A solves the testification task for the
CW onQhm for α, β, then the algorithm Â which takes any i ∈ [m] as input, simulatesA until it terminates and then outputs

D(Â[i]) ..=

{
i, if D(A) = CW,

¬i, if D(A) = ¬CW or D(A) ∈ [m] \ {i},

solves Verify_i_as_CW onQhm for α and β. Therefore, the statement follows directly from Part (i) of Theorem F.2 with the
choice i = i∗.

H PROOF OF THEOREM 5.3 AND AN INSTANCE-WISE VERSION OF THEOREM 5.3

Proof of Theorem 5.3. Write A ..= ANTS for the algorithm as considered in the statement of this Theorem. Note that the
choices of the queries in Algorithm 6 can indeed be described by an appropriate sampling strategy π, i.e., A is of the form
as stipulated by Algorithm 1 with α = β = γ. Lines 19–21 in Algorithm 6 and the same argumentation as in the proof
of Theorem 5.2 assure that A – and whence also π – fulfills (nt)i,j → ∞ almost surely for every (i, j) ∈ (m)2. Thus,
according to Theorem 5.2,A terminates a.s. (cf. the discussion in Section 5.4). Moreover, Lemma B.1 ensures that each duel
proposed byABin is conducted in expectation at mostO(h−2 ln(γ−1)) times. Now, supposeABin to be testification-correct,
i.e., an element of A∗m. If ABin terminates, then (due to its testification-correctness) we have according to Lemma E.1
that Ĝt ∈ Gm(¬CW) ∪

⋃
i∈[m] Gm(i). Consequently, A terminates before reaching Line 19; at termination it has queried

only those edges, which have been proposed by ABin, i.e., at most TABin many. From this, we can directly infer that
supQ∈Qh

m
[TA] ∈ O(TABinh−2 ln(γ−1)) as max{h−1, γ−1} → ∞.



Algorithm 6 ANTS using ABin as DSTA
Parameters: ABin ∈ Am, h ∈ (0, 1/2), γ ∈ (0, 1)
Initialization: Let Ê0 ← ∅, n0 ← (0)1≤i,j≤m, w0 ← (0)1≤i,j≤m, t′ ← 1, t← 1 and γ′ ← γ

m , Ch,γ′ as in (7)
. Êt = set of edges (i, j), for which qi,j > 1

2 w.h.p.
. t = number of observations for π

. t′ = number of observations for ABin

. 1− γ′ = confidence to which each pair is tested
1: (i, j)← (iABin(1), jABin(1)) . Get first query of ABin

2: while ABin did not terminate yet do
3: Observe X [t]

i,j ∼ Ber(qi,j)
4: Define wt via (wt)k,l ← (wt−1)k,l + 1{{k,l}={i,j} andX[t]

k,l=1} ∀1 ≤ k, l ≤ m
5: Define nt via (nt)k,l ← (nt−1)k,l + 1{{k,l}={i,j}} ∀1 ≤ k, l ≤ m
6: Êt ← Êt−1

7: if (q̂t)i,j > 1/2 + Ch,γ′((nt)i,j) then . i → j in GQ w.h.p.
8: Êt ← Êt ∪ {(i, j)}
9: Forward 1 to ABin and set t′ ← t′ + 1 . ABin observes iABin(t′) → jABin(t′)

10: Let (i, j)← (iABin(t′), jABin(t′)) . Choose next query from ABin

11: else if (q̂t)i,j < 1/2− Ch,γ′((nt)i,j) then . j → i in GQ w.h.p.
12: Êt ← Êt ∪ {(j, i)}
13: Forward 0 to ABin and set t′ ← t′ + 1 . ABin observes jABin(t′) → iABin(t′)
14: Let (i, j)← (iABin(t′), jABin(t′)) . Choose next query from ABin

15: t← t+ 1
16: if ∃i∗ ∈ [m] : Ĝt ∈ Gm(i∗) then
17: return i∗
18: if Ĝt ∈ Gm(¬CW) then return ¬CW

19: while True do . No interaction with ABin anymore
20: Sample a pair (i, j) uniformly at random from 〈m〉2.
21: Do Steps 3–8, 11, 12 and 15–18

Without much effort, we obtain the following instance-wise bound for the expected runtime of Algorithm 6. Similarly, one
may obtain an instance-wise expected runtime bound of Algorithm 5, which solves Verify_i_as_CW.

Theorem H.1. Let α, β ∈ (0, 1/2) and h ∈ (0, 1/2) be fixed. Suppose ABin ∈ A∗m and let A = ANTS be Algorithm 6
called with the parameters h, α, β and ABin as its black-box DSTA. Then, A solves the testification problem for the CW
on Qhm for α and β. Define γ′ = min{ αm ,

β
m−1}, fix an arbitrary Q ∈ Qhm and let hi,j = |1/2 − qi,j | for each distinct

i, j ∈ [m]. Suppose (i1, j1), . . . , (i(m
2 ), j(m

2 )) ∈ (m)2 to be distinct and such that hi1,j1 ≤ · · · ≤ hi
(m

2 )
,j

(m
2 )

holds. Then,

we have with c(h, γ′) :=
⌈

ln((1−γ′)/γ′)
ln((1/2+h)/(1/2−h))

⌉
that

EQ[TA] ≤ c(h, γ′)
∑TABin

k=1
(2hik,jk)−1

∣∣∣∣1− 2
(

1 + (1/2 + hik,jk)c(h,γ
′)(1/2− hik,jk)−c(h,γ

′)
)−1

∣∣∣∣ .
Proof. Similarly as in the proof of Theorem 5.3 we see that A solves the testification problem for the CW on Qhm and also
that it only queries those edges, which have been proposed by ABin. According to the choice of Ch,γ′ and the identity (3)
stated in the proof of Lemma B.1, any such edge (i′, j′) proposed by ABin is queried in expectation at most

c(h, γ′)

2hi′,j′

∣∣∣∣1− 2
(

1 + (1/2 + hi′,j′)
c(h,γ′)(1/2− hi′,j′)−c(h,γ

′)
)−1

∣∣∣∣
times by A. This immediately concludes the proof.



I FURTHER EXPERIMENTS

In this section, we provide further experiments for the algorithmic solutions developed in this work. In particular, Section I.1
resp. Section I.2 extend the experiments from Section 7 with regard to two important aspects, namely by considering
preference relations with a larger number of arms resp. with or without a Condorcet winner. Finally, we provide in Section I.3
the Hudry tournament, which has been considered in the experiment of Section 7.2.

Throughout our experiments (this includes the experiments in Section 7 as well), we denote by ANTS (or simply NTS)
Algorithm 6 initiated with Algorithm 3 (i.e., according to Proposition E.2 an optimal testification-correct DSTA) as ABin,
and parameters m, h and α = β = γ. The experiments in Sections 7, I.1 and I.2, which involved a variation of γ, were
conducted with the values 0.001, 0.005, 0.01, 0.015, 0.02, 0.03, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.35, 0.45, 0.5,
0.55, 0.6, 0.65, 0.7, 0.75, 0.95 and 0.99 for γ.

I.1 LARGER NUMBER OF ARMS

Here, we repeat the experiment from Section 7.1 with m = 8 and m = 10 arms. That is, we sample uniformly at random
relations Q from Q0.05

m , execute ANTS and SELECT-THEN-VERIFY with the same parameter h for different values of γ
and plot the average termination time as well as the observed accuracy over 100000 repetitions of the experiments.

Figure 1 illustrates the effect of increasing the number of arms on the success rate and termination time of both algorithms. It
is clearly visible that the larger the value of m, the larger both the success rate and the termination times of both algorithms.
Again, ANTS apparently outperforms SELECT-THEN-VERIFY in terms of accuracy and sample complexity.

Figure 1: Accuracy and termination time of ANTS and SELECT-THEN-VERIFY for 8 arms (on the left) and 10 arms (on the
right)

To further compare ANTS (from Cor. 5.4) with SELECT-THEN-VERIFY (StV), we conduct the following experiment:
We fix m ∈ N, γ ∈ (0, 1/2) and h ∈ (0, 1/2) in advance, sample relations Q1, . . . ,QN uniformly at random from
Q̂h′m := {Q ∈ Qm | qi,j ∈ {1/2 ± h′}∀(i, j) ∈ (m)2} and execute ANTS and SELECT-THEN-VERIFY with parameters
m,h, γ on every instance Qi, i ∈ {1, . . . , N}. Table 1 shows the observed mean sample complexities (with standard errors
in brackets) as well as the accuracies of both algorithms for N = 100, m = 20, γ = 0.05 and h = 0.05 for different values
of h′. Both algorithms achieve an accuracy of 100% for any h′ ≥ h = 0.05 and even for h′ = 0.02. Moreover,ANTS clearly
outperforms SELECT-THEN-VERIFY for any h′ > h, and the magnitude to which extend this happens (i.e., the sample
complexity gap) appears to be increasing in h′.

I.2 EXISTENCE OR NON-EXISTENCE OF A CONDORCET WINNER

Next, we repeat our experiment from Section 7.1 with the only difference that we sample Q uniformly at random from
Q0.05

5 (CW) or from Q0.05
5 (¬CW), respectively. As in the main part, the plots are generated by averaging over 25000

repetitions each. The results are shown in Figures 2 and 3 and demonstrate that ANTS outperforms SELECT-THEN-VERIFY
in both cases.



Table 1: Experimental results for m = 20, γ = 0.05, h = 0.05, N = 100 and varying h′

TA Accuracy

h′ ANTS StV ANTS StV

0.45 887 (4.1) 21751 (42.4) 1.00 1.00
0.40 980 (5.4) 21730 (43.7) 1.00 1.00
0.35 1085 (6.5) 21707 (48.1) 1.00 1.00
0.30 1262 (8.5) 21773 (47.0) 1.00 1.00
0.25 1447 (10.8) 21730 (52.3) 1.00 1.00
0.20 1798 (15.6) 21832 (47.7) 1.00 1.00
0.15 2331 (21.8) 21870 (51.0) 1.00 1.00
0.10 3383 (29.3) 22096 (50.8) 1.00 1.00
0.05 6607 (88.6) 22544 (92.3) 1.00 1.00
0.02 14155 (234.6) 23567 (167.9) 1.00 1.00

Figure 2: Accuracy and termination time of ANTS and SELECT-THEN-VERIFY for 5 arms provided a CW exists

Figure 3: Accuracy and termination time of ANTS and SELECT-THEN-VERIFY for 5 arms provided a CW does not exist

I.3 DATA FOR THE PASSIVE SETTING

The preference relation QHudry corresponding to the Hudry-tournament (cf. [Ramamohan et al., 2016]), which is used in
Section 7.2 is formally given as



QHudry :=



0.5 0.1 0.1 0.1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0.9 0.5 0.9 0.1 0.1 0.1 0.1 0.9 0.9 0.9 0.9 0.9 0.9
0.9 0.1 0.5 0.9 0.9 0.9 0.9 0.1 0.1 0.1 0.9 0.9 0.9
0.9 0.9 0.1 0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.1 0.1 0.1
0.4 0.9 0.1 0.1 0.5 0.9 0.9 0.9 0.9 0.9 0.1 0.1 0.1
0.4 0.9 0.1 0.1 0.1 0.5 0.9 0.9 0.9 0.9 0.1 0.1 0.1
0.4 0.9 0.1 0.1 0.1 0.1 0.5 0.9 0.9 0.9 0.1 0.1 0.1
0.4 0.1 0.9 0.1 0.1 0.1 0.1 0.5 0.9 0.9 0.9 0.9 0.9
0.4 0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.5 0.9 0.9 0.9 0.9
0.4 0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.9 0.9 0.9
0.4 0.1 0.1 0.9 0.9 0.9 0.9 0.1 0.1 0.1 0.5 0.9 0.9
0.4 0.1 0.1 0.9 0.9 0.9 0.9 0.1 0.1 0.1 0.1 0.5 0.9
0.4 0.1 0.1 0.9 0.9 0.9 0.9 0.1 0.1 0.1 0.1 0.1 0.5


J STICKY TRACK-AND-STOP FOR CHECK_CW AND TESTIFICATION FOR THE CW

Degenne and Koolen [2019] have proposed the STICKY TRACK-AND-STOP algorithm for the setting of pure exploration
bandits with multiple correct answers, which also covers our problems of interest. In this section we explicitly state STICKY
TRACK-AND-STOP for the problems of Testification for the CW and Check_CW and state and discuss their guarantees. We
omit the problem Verify_i_as_CW here, because minor changes of the version for Testification for the CW also yields
a solution to Verify_i_as_CW with similar guarantees. For the sake of convenience, we start with the easier problem
Check_CW.

Let us define

∆(m)2
:=

{
(vi,j)1≤i<j≤m ∈ R(m

2 ) :
∑

(i,j)∈(m)2

vi,j = 1 and vi,j ≥ 0 for all (i, j) ∈ (m)2

}
and for any ε > 0 also

∆ε
(m)2

:=
{

(vi,j)1≤i<j≤m ∈ ∆(m)2
: vi,j ≥ ε for all (i, j) ∈ (m)2

}
.

In the following, let dKL(p, q) = p ln(p/q) + (1 − p) ln((1 − p)/(1 − q)) be the KL-divergence between two random
variables X ∼ Ber(p) and Y ∼ Ber(q). For v = (vi,j)1≤i<j≤m ∈ ∆(m)2

and Q,Q′ ∈ Qm let

D(v,Q,Q′) :=
∑

(i,j)∈(m)2

vi,jdKL(qi,j , q
′
i,j),

and for Q′m ⊆ Qm let further
D(v,Q,Q′m) := infQ′∈Q′m D(v,Q,Q′).

J.1 STICKY TRACK-AND-STOP FOR CHECK_CW

In the setting of Check_CW, the STICKY TRACK-AND-STOP algorithm from Degenne and Koolen [2019] can be stated as
Algorithm 7.

Note that steps 2 and 11 of Algorithm 7 are already computationally expensive, but the calculation of D(v,Q,Qhm(¬X)) in
step 5 is even more involved, especially in the case X = ¬CW, because Qhm(CW) is non-convex9. Hence, the algorithm
appears to be infeasible for practical applications to us.

For fixed m ∈ N and h ∈ (0, 1/2) define for any Q ∈ Qm the value

D̃h
m(Q) :=

{
supv∈∆(m)2

D(v,Q,Qhm(¬CW)), if Q ∈ Qm(CW),

supv∈∆(m)2
D(v,Q,Qhm(CW)), if Q ∈ Qm(¬CW).

This characteristic plays a crucial role in the theoretical results proven by Degenne and Koolen [2019], which we will state
and comment on below in Proposition J.4. As a first step, we prove upper and lower bounds for D̃h

m(Q). For this purpose,
we will make use of the following Lemma. It is taken from [Bubeck and Cesa-Bianchi, 2012] and is a mere consequence of
Pinsker’s theorem as well as the inequality lnx ≤ x− 1, which holds for all x > 0.

9It is the union of disjoint convex sets.



Algorithm 7 : STICKY TRACK-AND-STOP FOR CHECK_CW

Input: γ ∈ (0, 1), h ∈ (0, 1/2), a sequence (εt)t∈N, functions t 7→ f(t) and (t, γ) 7→ β(t, γ)
Initialization: t← 1, Q̂0 ← (0)1≤i<j≤m, n0 ← (0)1≤i,j≤m.

1: while True do
2: Let Ct ← {Q′ ∈ Qhm : D(nt−1/(t− 1), Q̂t−1,Q

′) ≤ ln(f(t− 1))}
3: Compute It = {X ∈ {CW,¬CW} | ∃Q′ ∈ Qhm(X) ∩ Ct}
4: Choose an element X from It, prefer CW over ¬CW
5: Compute that weight vt ∈ ∆(m)2

, which maximizes D(vt, Q̂t−1,Qhm(¬X))
6: Compute the projection vεtt of vt onto ∆εt

(m)2

7: Pull (i, j) = argmin(i′,j′)∈(m)2
(nt)i′,j′ −

∑t
s=1(vεss )i′,j′ , observe Xi,j ∼ Ber(qi,j)

8: Update wt via (wt)k,l ← (wt−1)k,l + 1{{k,l}={i,j} andXk,l=1} ∀1 ≤ k, l ≤ m
9: Update nt via (nt)k,l ← (nt−1)k,l + 1{{k,l}={i,j}} ∀1 ≤ k, l ≤ m

10: Update Q̂t ← wt

nt
.

11: Let Dt ← {Q′ ∈ Qhm : D(nt/t, Q̂t,Q
′) ≤ β(t, γ)}

12: if ∃X ∈ {CW,¬CW} with Dt ∩Qhm(¬X) = ∅ then
13: return X
14: Update t← t+ 1

Lemma J.1. For p, q ∈ [0, 1] we have

2(p− q)2 ≤ dKL(p, q) ≤ (p− q)2

q(1− q)
.

Moreover, we will make use of the following result, which follows immediately by the definition of the Condorcet winner.

Lemma J.2. Suppose Q ∈ Qm(CW) with i = CW(Q), j ∈ [m] \ {i} and let Q′ = (q′i,j)1≤i,j≤m be defined via
q′i,j = 1− qi,j and q′i′,j′ = qi′,j′ for every (i′, j′) ∈ 〈m〉2 \ {(i, j), (j, i)}. Then, either j = CW(Q′) or Q′ ∈ Qm(¬CW).

We obtain the following lower and upper bounds for D̃h
m(Q). Note that the factor m− 2 in (i) therein is in accordance with

the factor m− 2 in our lower bound for solutions to Check_CW from Theorem F.2.

Lemma J.3. (i) For any Q ∈ Qhm(CW) we have

D̃h
m(Q) ≤ 2dh(Q)

m− 2

with dh(Q) := max(i,j)∈(m)2
max{dKL(qi,j , 1/2 + h), dKL(qi,j , 1/2− h)}.

(ii) For any Q ∈ Qhm we have

D̃h
m(Q) ≥ 8h2

m
. (9)

Proof. (i) Let Q ∈ Qhm(CW) be fixed, and suppose v ∈ ∆(m)2
to be fixed for the moment. Let i := CW(Q). By

assumption on v there exists10 some distinct j′, j′′ ∈ [m] \ {i} with max{vi,j′ , vi,j′′} ≤ 2(m− 2)−1. According to
Lemma J.2 we can choose j ∈ {j′, j′′} such that qj,k < 1/2 for at least one k ∈ [m] \ {i}. Thus, for arbitrarily small
δ ∈ (0, 1/2− h), Q′ ∈ Qhm defined via

q′r,s :=


1/2− (h+ δ), if (r, s) = (i, j),

1/2 + h+ δ, if (r, s) = (j, i),

qr,s, otherwise,

10Indeed, as
∑
j′ 6=i vi,j′ ≤ 1 one can choose j′ 6= i with vi,j′ ≤ (m − 1)−1. Now,

∑
j′′ 6∈{i,j′} vi,j′′ ≤ 1 allows us to choose

j′′ ∈ [m] \ {i, j′} with vi,j′′ ≤ (m− 2)−1. Then, max{vi,j′ , vi,j′′} ≤ vi,j′ + vi,j′′ ≤ 2(m− 2)−1 holds.



for each (r, s) ∈ (m)2, fulfills Q′ ∈ Qhm(¬CW). As qi,j > 1/2 + h holds by assumption on Q and i, the definition of
Q′ assures ∑

(r,s)∈(m)2

vr,sdKL(qr,s, q
′
r,s) ≤ vi,jdKL(qi,j , q

′
i,j) ≤

2dKL(qi,j , 1/2− (h+ δ))

m− 2
.

Regarding Q′ ∈ Qhm(¬CW) and that this estimate is obtained for any v ∈ ∆(m)2
, we can conclude that

D̃h
m(Q) = supv∈∆(m)2

infQ′∈Qh
m(¬CW)

∑
(r,s)∈(m)2

vr,sdKL(qr,s, q
′
r,s) ≤

2dKL(qi,j , 1/2− (h+ δ))

m− 2
.

Taking the limit δ ↘ 0 yields

D̃h
m(Q) ≤ 2dKL(qi,j , 1/2− h)

m− 2
≤ 2dh(Q)

m− 2
.

(ii) Let Q ∈ Qhm be fixed. We distinguish two cases.
Case 1: Q ∈ Qhm(CW). Let i := CW(Q) and define v = (vr,s)(r,s)∈(m)2

∈ ∆(m)2
via vr,s = 1{i∈{r,s}}(m− 1)−1

for each (r, s) ∈ (m)2. For any Q′ ∈ Qhm(¬CW) there exists some j ∈ [m] \ {i} with q′i,j < 1/2− h, as otherwise
CW(Q′) = i would hold. But by assumption on i, qi,j > 1/2 + h holds, whence we can estimate with Lemma J.1 that∑

(r,s)∈(m)2

vr,sdKL(qr,s, q
′
r,s) ≥ vi,jdKL(qi,j , q

′
i,j) ≥

dKL(1/2 + h, 1/2− h)

m− 1
≥ 8h2

m− 1
.

As this holds for arbitrary Q′, (9) follows.
Case 2: Q ∈ Qhm(¬CW). For every i ∈ [m], CW(Q) 6= i implies the existence of some j(i) ∈ [m] \ {i} with
qi,j(i) < 1/2− h. Now, choose v = (vr,s)(r,s)∈(m)2

∈ ∆(m)2
such that

vr,s =

{
1
m , if (r, s) ∈ {(i, j(i)), (j(i), i)} for some i ∈ [m],

0, otherwise,

for any (r, s) ∈ (m)2. Let Q′ ∈ Qhm(CW) be arbitrary and write i′ = CW(Q′). Then, q′i′,j(i′) > 1/2 + h but at the
same time qi′,j(i′) < 1/2− h holds. Therefore, assuming for convenience w.l.o.g.11 i′ < j(i′), we obtain again with
the help of Lemma J.1 the estimate∑

(r,s)∈(m)2

vr,sdKL(qr,s, q
′
r,s) ≥ vi′,j(i′)dKL(qi′,j(i′), q

′
i′,j(i′)) ≥

dKL(1/2 + h, 1/2− h)

m
≥ 8h2

m
.

As Q′ was arbitrary, we obtain (9).

Equipped with these results, we show the following:

Proposition J.4. (i) Let h ∈ (0, 1/2) and m ∈ N be fixed. Any algorithm A, which is able to test for any parameter
γ > 0 (write A(γ)) and any Q ∈ Qhm with error probability at most γ whether Q is in Qm(CW) or not, fulfills

lim inf
γ→ 0

EQ[TA(γ)]

ln(γ−1)
≥ 1

D̃h
m(Q)

and consequently

sup
Q∈Qh

m(CW)

lim inf
γ→ 0

EQ

[
TA(γ)

]
ln(γ−1)

≥ (m− 2)(1/4− h2)

8h2
.

(ii) Let h ∈ (0, 1/2) and m ∈ N be fixed. Choose C > 0 such that C ≥ e
∑∞
t=1 t

−2
(
e/(m

2 )
)(m

2 ) (
ln2(Ct2) ln(t)

)(m
2 ) and

let

εt :=
1

2

((
m

2

)2

+ t

)− 1
2

, f(t) := Ct10 and β(t, γ) := ln(Ct2γ−1)

11In case i′ > j(i′) estimate the following sum by vj(i′),i′dKL(qj(i′),i′ , q
′
j(i′),i′) and argue analogously.



Write A(γ) for Algorithm 7 called with parameters γ, h, (εt)t, f and β. Then, A(γ) is able to test for any Q ∈ Qhm
with error probability at most γ whether Q is in Qm(CW) or not, and fulfills

lim
γ→ 0

EQ[TA(γ)]

ln(γ−1)
=

1

D̃h
m(Q)

for any Q ∈ Qhm. In particular,

sup
Q∈Qh

m

lim
γ→ 0

EQ

[
TA(γ)

]
ln(γ−1)

≤ m

8h2

Proof. (i) The first statement corresponds to Theorem 1 in [Degenne and Koolen, 2019]. Next, let Q = Q(δ) ∈ Qhm(CW)
be such that qi,j ∈ {1/2± (h+ δ)} for all (i, j) ∈ (m)2 and some arbitrarily small δ > 0. It holds that

dh(Q) = max(i,j)∈(m)2
max{dKL(qi,j , 1/2 + h), dKL(qi,j , 1/2− h)}

= dKL(1/2 + (h+ δ), 1/2− h) ≤ 4(h+ δ/2)2

1/4− h2

where we have used Lemma J.1 in the last step. Thus, the second statement follows from part (i) of Lemma J.3 by
taking the limit δ ↘ 0.

(ii) Theorem 11 in [Degenne and Koolen, 2019] implies the first statement. For the choice of εt confer p. 7 in [Garivier
and Kaufmann, 2016], for f(t) see Lemma 14 on p. 9 in [Degenne and Koolen, 2019] and for β(t, γ) see Theorem 10
on p. 6 in [Degenne and Koolen, 2019]. The second statement follows directly from the bound on D̃h

m(Q) stated in
Lemma J.3.

J.2 STICKY TRACK-AND-STOP FOR CW TESTIFICATION

Recall that Qm(k) = {Q ∈ Qm(CW) |CW(Q) = k} for any k ∈ [m] and define I := {¬CW, 1, . . . ,m}. Then,
Qm =

⋃
X∈I Qm(X) is a disjoint union. For X ∈ I write Qm(¬X) :=

⋃
X′∈I\{X}Qm(X′) and note that this definition is

consistent withQm(¬(¬CW)) = Qm(CW). Moreover, write as usualQhm(X) = Qhm ∩Qm(X) and similarlyQhm(¬X) =
Qhm ∩Qm(¬X) = Qhm \Qm(X) for any X ∈ I . We endow I with the ordering�I defined12 via 1 �I 2 �I · · · �I m �I
¬CW; This way, choosing, e.g., an element from {2, 3,¬CW} ⊂ I according to �I means to choose 2. Let ∆(m)2

and
∆ε

(m)2
be defined as above. For v = (vi,j)1≤i<j≤m ∈ ∆(m)2

and Q,Q′ ∈ Qm let again

D(v,Q,Q′) :=
∑

(i,j)∈(m)2

vi,jdKL(qi,j , q
′
i,j),

and for Q′m ⊆ Qm let further
D(v,Q,Q′m) := infQ′∈Q′m D(v,Q,Q′).

For Q ∈ Qm define
iF (Q) := argmaxX′∈I

(
X′ 7→ supv∈∆(m)2

D(v,Q,Qhm(¬X′))
)
.

and note that (¬CW) 6∈ iF (Q) whenever Q ∈ Qhm(CW) holds13.

In the setting of testification for the CW, the STICKY TRACK-AND-STOP algorithm from Degenne and Koolen [2019] can
be stated as Algorithm 8.

Steps 2 and 11 of Algorithm 8 are the same as in Algorithm 7 and thus similarly computationally very expensive, and
analogously step 5 is expensive, in particular if X = ¬CW. Moreover, as there are m + 1 possible answers for the
testification problem whereas testing is a problem with a binary outcome, step 3 in Algorithm 8 is far more complex than
the corresponding step in Algorithm 7. This step requires to calculate for each Q ∈ Ct the set iF (Q) ⊆ I, which is the
set of maximizers of X′ 7→ supv∈∆(m)2

D(v,Q,Qhm(¬X′)). Finding iF (Q) for one fixed Q already requires the solution

12Here, we merely have to choose any fixed ordering on I, which one is not of importance.
13In fact, if Q ∈ Qhm(CW) with CW(Q) = k, then D(v,Q,Qhm(¬k)) > 0 = D(v,Q,Qhm(CW)).



Algorithm 8 : STICKY TRACK-AND-STOP FOR TESTIFICATION FOR THE CW
Input: γ ∈ (0, 1), h ∈ (0, 1/2), a sequence (εt)t∈N, functions t 7→ f(t) and (t, γ) 7→ β(t, γ)
Initialization: t← 1, Q̂0 ← (0)1≤i<j≤m, n0 ← (0)1≤i,j≤m.

1: while True do
2: Let Ct ← {Q′ ∈ Qhm : D(nt−1/(t− 1), Q̂t−1,Q

′) ≤ ln(f(t− 1))}
3: Let It =

⋃
Q′∈Ct iF (Q′)

4: Choose an element X from It according to �I
5: Compute that weight vt ∈ ∆(m)2

, which maximizes D(vt, Q̂t−1,Qhm(¬X))
6: Compute the projection vεtt of vt onto ∆εt

(m)2

7: Pull (i, j) = argmin(i′,j′)∈(m)2
(nt)i′,j′ −

∑t
s=1(vεss )i′,j′ , observe Xi,j ∼ Ber(qi,j)

8: Update wt via (wt)k,l ← (wt−1)k,l + 1{{k,l}={i,j} andXk,l=1} ∀1 ≤ k, l ≤ m
9: Update nt via (nt)k,l ← (nt−1)k,l + 1{{k,l}={i,j}} ∀1 ≤ k, l ≤ m

10: Update Q̂t ← wt

nt
.

11: Let Dt ← {Q′ ∈ Qhm : D(nt/t, Q̂t,Q
′) ≤ β(t, γ)}

12: if ∃X ∈ I with Dt ∩Qhm(¬X) = ∅ then
13: return X
14: Update t← t+ 1

of a difficult min-max problem; doing this for any Q ∈ Ct is seemingly infeasible. This indicates that Algorithm 8 is
computationally even far more complex than Algorithm 7.

To analyze its theoretical performance, recall that we have defined above for fixed m ∈ N, h ∈ (0, 1/2), X ∈ I and any
Q ∈ Qm(X) the value

Dh
m(Q) := supv∈∆(m)2

D(v,Q,Qhm(¬X)) = supv∈∆(m)2
infQ′∈Qh

m(¬X)

∑
(r,s)∈(m)2

vr,sdKL(qr,s, q
′
r,s).

AsQhm =
⋃

X∈I Qhm(X) is a disjoint union, Dh
m(Q) is well-defined for any Q ∈ Qhm. Similarly as in Lemma J.3 we obtain

the following result. Therein, the term m− 1 is in accordance to our lower bound from Theorem 4.1.

Lemma J.5. (i) For any Q ∈ Qhm(CW) we have

Dh
m(Q) ≤ dh(Q)

m− 1

with dh(Q) := max(i,j)∈(m)2
max{dKL(qi,j , 1/2 + h), dKL(qi,j , 1/2− h)}.

(ii) For any Q ∈ Qhm we have

Dh
m(Q) ≥ 8h2

m

and in case Q ∈ Qhm(CW) we even obtain Dh
m(Q) ≥ 8h2

m−1 .

Proof. (i) Let Q ∈ Qhm(CW) and v ∈ ∆(m)2
be fixed for the moment. Let i := CW(Q). By assumption on v there

exists some j ∈ [m] \ {i} with vi,j ≤ (m− 1)−1. For arbitrary small but fixed δ ∈ (0, 1/2− h) define Q′ ∈ Qhm via

q′r,s :=


1/2− (h+ δ), if (r, s) = (i, j),

1/2 + h+ δ, if (r, s) = (j, i),

qr,s, otherwise,

for each (r, s) ∈ (m)2. Then, Q′ ∈ Qhm(¬i) due to q′i,j < 1/2− h. As qi,j > 1/2 + h holds by assumption on Q and
i, the definition of Q′ assures∑

(r,s)∈(m)2

vr,sdKL(qr,s, q
′
r,s) ≤ vi,jdKL(qi,j , q

′
i,j) ≤

dKL(qi,j , 1/2− (h+ δ))

m− 1
.



Regarding Q′ ∈ Qhm(¬i) and that this estimate is obtained for any v ∈ ∆(m)2
, we can conclude that

Dh
m(Q) = sup

v∈∆(m)2

inf
Q∈Qh

m(¬i)

∑
(r,s)∈(m)2

vr,sdKL(qr,s, q
′
r,s) ≤ vi,jdKL(qi,j , q

′
i,j) ≤

dKL(qi,j , 1/2− (h+ δ))

m− 1

and taking the limit δ ↘ 0 yields

Dh
m(Q) ≤ dKL(qi,j , 1/2− h)

m− 1
≤ dh(Q)

m− 1
.

(ii) Suppose X ∈ I and Q ∈ Qhm(X) to be arbitrary. In case X = ¬CW we have due to Qm(¬(¬CW)) = Qm(CW) the
equality D̃h

m(Q) = Dh
m(Q), whence Dh

m(Q) ≥ 8h2

m follows from Lemma J.3.
Now, consider the case X = i ∈ {1, . . . ,m}. Define v = (vr,s)(r,s)∈(m)2

∈ ∆(m)2
via vr,s = 1{i∈{r,s}}(m − 1)−1

for each (r, s) ∈ (m)2. For any Q′ ∈ Qhm(¬i) there exists some j ∈ [m] \ {i} with q′i,j < 1/2 − h, as otherwise
CW(Q′) = i would hold. But by assumption on i, qi,j > 1/2 + h holds, whence we can estimate with Lemma J.1 that∑

(r,s)∈(m)2

vr,sdKL(qr,s, q
′
r,s) ≥ vi,jdKL(qi,j , q

′
i,j) ≥

dKL(1/2 + h, 1/2− h)

m− 1
≥ 8h2

m− 1
.

As this holds for arbitrary Q′ ∈ Qhm(¬i), we obtain Dh
m(Q) ≥ 8h2

m−1 >
8h2

m .

With this, we obtain the following result, which is an analogue to Proposition J.4.

Proposition J.6. (i) Let h ∈ (0, 1/2) and m ∈ N be fixed. Any algorithm A, which is able to to solve the CW-testification
task on Qhm for any γ (write A(γ)) fulfills

lim inf
γ→ 0

EQ[TA(γ)]

ln(γ−1)
≥ 1

Dh
m(Q)

.

In particular,

sup
Q∈Qh

m(CW)

lim inf
γ→ 0

EQ[TA(γ)]

ln(γ−1)
≥ (m− 1)(1/4− h2)

4h2
.

(ii) Let h ∈ (0, 1/2) and m ∈ N be fixed. Choose C > 0, (εt)t∈N, t 7→ f(t) and (t, γ) 7→ β(t, γ) as in Proposition
J.4. Write A(γ) for Algorithm 8 called with parameters γ, h, (εt)t, f and β. Then, A(γ) solves the CW-testification
problem on Qhm for γ, and fulfills

lim
γ→ 0

EQ[TA(γ)]

ln(γ−1)
=

1

Dh
m(Q)

for any Q ∈ Qhm. In particular,

supQ∈Qh
m

limγ→ 0
EQ[TA(γ)]

ln(γ−1)
≤ m

8h2
.

Proof. (i) Theorem 1 in [Degenne and Koolen, 2019] implies the first statement. For the second statement let Q = Q(δ) ∈
Qhm be such that qi,j ∈ {1/2± (h+ δ)} for all (i, j) ∈ (m)2 and some arbitrarily small δ > 0. Then,

dh(Q) = max(i,j)∈(m)2
max{dKL(qi,j , 1/2 + h), dKL(qi,j , 1/2− h)}

= dKL(1/2 + (h+ δ), 1/2− h) ≤ 4(h+ δ/2)2

1/4− h2
(10)

where we have used Lemma J.1 in the last step. Thus, the second statement follows from part (i) of Lemma J.5 by
taking the limit δ ↘ 0.

(ii) Theorem 11 in [Degenne and Koolen, 2019] implies the first statement. For the choice of εt confer p.7 in [Garivier and
Kaufmann, 2016], for f(t) see Lemma 14 on p.9 in [Degenne and Koolen, 2019] and for β(t, γ) see Theorem 10 on
p.8 in [Degenne and Koolen, 2019]. The second statement follows directly from the bound on Dh

m(Q) stated in part (ii)
of Lemma J.5.
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