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Abstract In cases of uncertainty, a multi-class classifier preferably returns
a set of candidate classes instead of predicting a single class label with little
guarantee. More precisely, the classifier should strive for an optimal balance
between the correctness (the true class is among the candidates) and the pre-
cision (the candidates are not too many) of its prediction. We formalize this
problem within a general decision-theoretic framework that unifies most of
the existing work in this area. In this framework, uncertainty is quantified in
terms of conditional class probabilities, and the quality of a predicted set is
measured in terms of a utility function. We then address the problem of finding
the Bayes-optimal prediction, i.e., the subset of class labels with highest ex-
pected utility. For this problem, which is computationally challenging as there
are exponentially (in the number of classes) many predictions to choose from,
we propose efficient algorithms that can be applied to a broad family of utility
functions. Our theoretical results are complemented by experimental studies,
in which we analyze the proposed algorithms in terms of predictive accuracy
and runtime efficiency.
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1 Introduction

In probabilistic multi-class classification, one often encounters situations in
which the classifier is uncertain about the class label for a given instance. In
such cases, instead of predicting a single class, it might be beneficial to return
a set of classes as a prediction, with the idea that the correct class should at
least be contained in that set. For example, in medical diagnosis, when not
being sure enough about the true disease of a patient, it is better to return a
set of candidate diseases. Provided this set is sufficiently small compared to
the total number of diagnoses, it can still be of great help for a medical doctor,
because only the remaining candidate diseases need further investigation.

Let us introduce set-valued prediction in a formal way. We assume training
examples {(xi, yi)}Ni=1 from a distribution P (x, y) on X ×Y, with X some in-
stance space (e.g., images, documents, etc.) and Y = {c1, . . . , cK} a class space
consisting of K classes. In a probabilistic multi-class classification setting, we
estimate the conditional class probabilities P (· |x) over Y, with properties
∀c ∈ Y : 0 ≤ P (c |x) ≤ 1 ,

∑
c∈Y P (c |x) = 1 . This distribution can be es-

timated using a wide range of well-known probabilistic methods (see further
below). We will consider a set-valued prediction Ŷ from the power set of Y,
i.e., predictions are (non-empty) subsets of Y, or more formally, Ŷ ∈ 2Y \ {∅}.

In the literature, different methods for set-valued prediction have been pro-
posed (cf. Section 4), essentially following two main directions. The first idea
is to construct a set that covers the true outcome with a predefined (high)
probability. A set-valued prediction of that kind can be seen as a generaliza-
tion of the notion of confidence interval in frequentist statistics or credible
interval in Bayesian statistics. A well-known representative of this statistical
approach is conformal prediction (Shafer and Vovk, 2008a). The second direc-
tion is rooted in (Bayesian) decision theory and involves the notion of a utility
function, which evaluates a set-valued prediction in terms of its usefulness
(Del Coz et al., 2009; Corani and Zaffalon, 2008, 2009; Zaffalon et al., 2012;
Yang et al., 2017b). Typically, the utility specifies a compromise between two
natural though conflicting criteria: like in the statistical approach, the predic-
tion should be correct in the sense of covering the true class, but at the same
time, it should be precise and not contain too many options. Given a utility
function of that kind, combined with a probability estimate on the classes, the
natural decision-theoretic approach consists of predicting the set with highest
expected utility. In this paper, we will focus on this approach, which we refer
to as the set-based utility maximization framework.

1.1 Set-based utility maximization

In set-based utility maximization, the quality of the prediction Ŷ can be ex-
pressed by means of a set-based utility function u(c, Ŷ ), where c corresponds
to the ground-truth class and Ŷ is the predicted set. Typically, a decision-
theoretic framework is considered, where one estimates a probabilistic model,
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followed by an inference procedure at prediction time. At prediction time, the
goal is to find the Bayes-optimal solution Ŷ ∗u by expected utility maximization:

Ŷ ∗u (x) = arg max
Ŷ ∈2Y\{∅}

EP (c |x)[u(c, Ŷ )] = arg max
Ŷ ∈2Y\{∅}

∑
c∈Y

u(c, Ŷ )P (c |x) ,

= arg max
Ŷ ∈2Y\{∅}

U(Ŷ , P, u) , (1)

where we introduce the shorthand notation U(Ŷ , P, u) for the expected utility.
Several authors have solved this optimization problem for different utility

functions that are members of a general family u : Y×2Y \{∅} → [0, 1], defined
as follows:

u(c, Ŷ ) =

{
0 if c /∈ Ŷ ,
g(|Ŷ |) if c ∈ Ŷ ,

(2)

where |Ŷ | denotes the cardinality of the predicted set Ŷ . This family is char-
acterized by a decreasing sequence (g(1), . . . , g(K)) ∈ [0, 1]K that can have
different forms. Del Coz et al. (2009), who use nondeterministic classification
as a synonym for set-based utility maximization, concentrate on three scores
from the information retrieval community: precision with gP (s) = 1/s, recall
with gR(s) = 1, and the Fβ-measure with gFβ(s) = (1 + β2)/(β2 + s). Other
utility functions with specific choices for g are also studied in the literature
(Corani and Zaffalon, 2008, 2009; Zaffalon et al., 2012; Yang et al., 2017b;
Nguyen et al., 2018). Those utility functions include:

gδ,γ(s) =
δ

s
− γ

s2
, gδ(s) = 1− exp

(
−δ
s

)
, glog(s) = log

(
1 +

1

s

)
.

Especially gδ,γ(s) is commonly used in the above papers, where δ and γ can
only take certain values to guarantee that the utility is in the interval [0, 1].
Precision (also called discounted accuracy) corresponds to the case (δ, γ) =
(1, 0). However, typical choices for (δ, γ) are (1.6, 0.6) and (2.2, 1.2) (Nguyen
et al., 2018), which overcome some of the limitations of precision (see below for
a discussion). The utility function gδ is an exponentiated version of precision,
where the parameter δ controls the reward when sets become larger.

1.2 Contributions and outline

In this paper we will focus on aspects related to optimizing (1). This is a
non-trivial optimization problem, as a brute-force search requires checking all
subsets of Y, resulting in an exponential time complexity. However, we will be
able to find the Bayes-optimal prediction more efficiently. As our main con-
tribution, we present several algorithms that solve (1) in an efficient manner.
In the literature the work of Del Coz et al. (2009) is the closest to our work.
We extend their work in two directions: 1) the algorithms that we introduce
are more efficient in multi-class classification settings where the number of



4 Thomas Mortier et al.

classes is large, such as language modelling and reinforcement learning, and 2)
our algorithms are applicable to a wide range of utility functions, unlike the
algorithm of Del Coz et al. (2009), which concentrates on the Fβ-measure.

In Section 2 we present several theoretical results. Those results are essen-
tial building blocks for solving (1), but we also discuss the impact of these re-
sults for different utility functions. The algorithms that we develop are further
materialized in Section 3. We first discuss an exact Bayes-optimal algorithm
that makes K queries to the conditional distribution P (c |x), with K the num-
ber of classes. In addition, we also introduce two approximate algorithms that
make less than K calls to P (c |x). Those algorithms are based on two differ-
ent paradigms: maximum inner product search and hierarchical factorization
of the conditional distribution. To conclude the theoretical part of this work,
we provide an overview of related work in Section 4. In Section 5 three differ-
ent types of experimental results are discussed. In a first experiment we use
image and text classification datasets to highlight the usefulness of set-valued
prediction in case of uncertainty. In a second type of experiments, we evaluate
the exact algorithm against some simple baselines for set-valued prediction. In
a last experiment, we focus on the runtime of the exact algorithm, highlight-
ing the additional speedups that can be obtained by considering approximate
algorithms for set-valued prediction.

2 Theoretical results

In this section, we present several theoretical results as building blocks of
the algorithms that we consider later on. We start with some general results,
followed by a discussion of considerations for specific utility functions.

2.1 General results

The formulation in (1) seems to suggest that all subsets of Y need to be
analyzed to find the Bayes-optimal solution, but a first result shows that this
is not the case.

Theorem 1. The exact solution of (1) can be computed by analyzing only K
subsets of Y.

Proof. With P (Ŷ |x) =
∑
c∈Ŷ P (c |x), the expected utility can be written as

U(Ŷ , P, u) =
∑
c∈Y

u(c, Ŷ )P (c |x) =
∑
c∈Ŷ

u(c, Ŷ )P (c |x) +
∑
c′ /∈Ŷ

u(c′, Ŷ )P (c′ |x) ,

=
∑
c∈Ŷ

g(|Ŷ |)P (c |x) = g(|Ŷ |)P (Ŷ |x) , (3)
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where the last summation in the second equality cancels out since u(c′, Ŷ ) = 0.
Let us decompose (1) into an inner and an outer maximization step. The inner
maximization step then becomes

Ŷ ∗su = arg max
|Ŷ |=s

g(s)P (Ŷ |x) = arg max
|Ŷ |=s

P (Ŷ |x) , (4)

for s = {1, . . . ,K}, where the last equality trivially holds due to g(s) being
constant. This step can be done very efficiently, by sorting the conditional class
probabilities, as for a given s, only the subset with highest probability mass
needs to be considered. The outer maximization simply consists of computing

Ŷ ∗u (x) = arg max
Ŷ ∈{Ŷ ∗1u ,...,Ŷ ∗Ku }

g(|Ŷ |)P (Ŷ |x) , (5)

which only requires the evaluation of K sets.

So, one only needs to evaluate Ŷ ∗1u , . . . , Ŷ ∗Ku to find the Bayes-optimal
solution, which limits the search to K subsets. In fact, we can even do bet-
ter as it turns out that by restricting g, we can assure that the sequence
U(Ŷ ∗1u , P, u), . . . , U(Ŷ ∗Ku , P, u) will have reached its global maximum when it
starts to decrease. This will allow us to further limit the search, by means of
an early stopping criterion, as soon as we reach that maximum. The restriction
required for g is (1/x)-convexity, i.e., convexity after a (1/x) transformation.
This is a somewhat surprising and rather technical result that is summarized
in the following definition and theorem.

Definition 1. A sequence g(1), g(2), . . . , g(K) is (1/x)-convex if

1/g(s+ 1) ≤ 1/g(s) + 1/g(s+ 2)

2
for all s ∈ {1, . . . ,K − 2} . (6)

Theorem 2. Let g(1), g(2), . . . , g(K) be a decreasing (1/x)-convex sequence.
Then the following implication holds for any s ∈ {1, . . . ,K − 2}:

U(Ŷ ∗su , P, u) > U(Ŷ ∗s+1
u , P, u) =⇒ U(Ŷ ∗s+1

u , P, u) > U(Ŷ ∗s+2
u , P, u) .

Proof. Let us first observe the following equivalence:

1/g(s+ 1) ≤ 1/g(s) + 1/g(s+ 2)

2

⇔ 2 ≤ g(s+ 1)

g(s)
+
g(s+ 1)

g(s+ 2)

⇔ g(s)g(s+ 1) + g(s+ 2)g(s+ 1) ≥ 2g(s)g(s+ 2)

⇔ g(s)[g(s+ 1)− g(s+ 2)] ≥ g(s+ 2)[g(s)− g(s+ 1)]

⇔ g(s)

g(s)− g(s+ 1)
≥ g(s+ 2)

g(s+ 1)− g(s+ 2)

⇔ g(s+ 1)

g(s)− g(s+ 1)
+ 1 ≥ g(s+ 2)

g(s+ 1)− g(s+ 2)
. (7)
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Assume that for a given s it holds that U(Ŷ ∗su , P, u) > U(Ŷ ∗s+1
u , P, u). Let

pi = P (ci |x) and observe that the following equivalences hold:

U(Ŷ ∗su , P, u) > U(Ŷ ∗s+1
u , P, u)⇔ g(s)

s∑
i=1

pi > g(s+ 1)

s+1∑
i=1

pi

⇔ [g(s)− g(s+ 1)]

s∑
i=1

pi > g(s+ 1)ps+1

⇔
s∑
i=1

pi >
g(s+ 1)

g(s)− g(s+ 1)
ps+1 . (8)

Observe that from (7) and (8) it follows that:

s+1∑
i=1

pi >
g(s+ 1)

g(s)− g(s+ 1)
ps+1 + ps+1 ⇔

s+1∑
i=1

pi >

(
g(s+ 1)

g(s)− g(s+ 1)
+ 1

)
ps+1

⇒
s+1∑
i=1

pi >
g(s+ 2)

g(s+ 1)− g(s+ 2)
ps+2

⇔ U(Ŷ ∗s+1
u , P, u) > U(Ŷ ∗s+2

u , P, u) .

This is what we needed to prove.

Thus, what Theorem 2 tells us is that, for (1/x)-convex sequences, we have
found a stopping criterion so that even less than K sets need to be analyzed
when optimizing (1). More specifically, we can stop as soon as the sequence

U(Ŷ ∗1u , P, u), U(Ŷ ∗2u , P, u) . . . , U(Ŷ ∗Ku , P, u)

starts to decrease. The stopping criterion is U(Ŷ ∗su , P, u) > U(Ŷ ∗s+1
u , P, u) for

a given s ∈ {1, . . . ,K − 1}.
Theorems 1 and 2 provide guarantees to optimize (1) in a classical decision-

theoretic context. In the appendix, we present a short theoretical analysis
that relates the Bayes-optimal solution for the set-based utility functions to
the solution obtained on the conditional class probabilities given by a trained
model. The goal is to upper bound the regret of the set-based utility functions
by the L1 error of the class probability estimates. Similarly as in decision-
theoretic utility maximization, the analysis is performed on the level of a
single x.

2.2 Considerations w.r.t. specific utility functions

Let us discuss the implications of the above theorems for the utility func-
tions that were mentioned in the introduction (see also Table 1 and the left
panel of Figure 1 for an overview). Is (1/x)-convexity satisfied for those utility
functions? For the ones that are most commonly used in the literature the
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answer turns out to be yes: precision, recall, the Fβ-measure, as well as the
gδ,γ family for recommended values of δ and γ, are all utilities with associated
(1/x)-convex sequences. Let us remark that (1/x)-convexity cannot easily be
assessed by plotting the graph of a specific sequence g(s). In practice one needs
to check this formally using (6) for all s.

Precision, with gP (s) = 1/s, in fact defines “how convex” a sequence is
allowed to be, because (6) is satisfied as an equality in that boundary case.
As shown in the left panel of Figure 1, most utility functions from the liter-
ature behave very similar to precision; they decrease very quickly, and their
curvature is similar to precision, but they are somewhat less convex (remark
that for functions the degree of convexity is determined by the slope of the
first derivative). From that perspective, it is obvious that concave sequences
will be (1/x)-convex. The following proposition states this formally.

Definition 2. A sequence g(1), g(2), ..., g(K) is concave if

g(s+ 1) ≥ g(s) + g(s+ 2)

2
for all s ∈ {1, ...,K − 2}

Proposition 1 Let g(1), g(2), ..., g(K) be a decreasing, concave sequence. Then
g(1), g(2), ..., g(K) is also (1/x)-convex.

Proof. As shown above, the following equivalence holds:

1/g(s+ 1) ≤ 1/g(s) + 1/g(s+ 2)

2
⇔ g(s)[g(s+ 1)− g(s+ 2)] ≥ g(s+ 2)[g(s)− g(s+ 1)] (9)

Due to the fact that g(1), g(2), ..., g(K) is a decreasing, concave sequence we
know that g(s) ≥ g(s+2) and g(s+1)−g(s+2) ≥ g(s)−g(s+1) . Combining the
two inequalities lets us conclude that the sequence must be (1/x)-convex.

Apart from (1/x)-convexity, there is another property that an interesting
utility function should obey: g(s) should be lower bounded by precision, i.e.
gP . Precision and recall are frequently used in binary classification, but one
may argue that they are both not very useful utility functions for assessing
set-valued predictions. For recall this is pretty obvious, as this measure does
not have any penalty for the size of the set. Yet, also for precision, there is
a problem. Its utility maximiser will always be a set of cardinality one. For
example, consider a multi-class problem with hundred classes, and assume that
for a given instance the conditional class probabilities are 0.1 for ten of these
hundred classes. Clearly, in this case, the best prediction is to return a set
consisting of the ten classes, resulting in an expected utility of 0.1. If g(10) =
1/10, a singleton set that contains one of the ten classes also yields an expected
utility of 0.1. Both are Bayes-optimal predictions in view of (1). Thus, the
problem with precision is that it is not risk-averse. In the face of uncertainty,
a risk-averse utility function will prefer a set with many classes over a singleton
set that contains one of those classes (Zaffalon et al., 2012). That is why we
highlight g(s) ≥ 1/s as an absolute requirement. Utility functions violating
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this requirement are practically pointless, because the solution to (1) is always
a set of cardinality one in that case. The next proposition formalizes this claim,
which has been reported by Zaffalon et al. (2012) from a different perspective
and using a different notation.

Proposition 2 Let g be a sequence such that g(1) = 1, then for any distribu-
tion P the following statements hold.

– When g(s) < 1/s for some s > 1, then Ŷ ∗su is not a solution of (1),
– When g(s) < 1/s for all s > 1, then the unique solution of (1) is Ŷ ∗1u ,
– When g(s) = 1/s for all s, then Ŷ ∗1u is a solution of (1).

Proof. Let us start by proving the first statement. When g(s) < 1/s it follows
that:

U(Ŷ ∗su , P, u) <
P (Ŷ ∗su |x)

s
≤ P (Ŷ ∗1u |x) = U(Ŷ ∗1u , P, u) ,

where the second inequality holds because Ŷ ∗1u must correspond to the mode of
P , and the last equality holds because we assume g(1) = 1. So, we have shown
that, when g(s) < 1/s for some s, it holds that U(Ŷ ∗su , P, u) < U(Ŷ ∗1u , P, u)
for any distribution P . This reasoning can be applied to any s > 1, which also
proves the second statement. Using g(s) = 1/s in the above reasoning, the
inequalities become equalities. This proves the third statement.

The proposition lets us conclude that it is pointless to use any utility for
which g(s) < 1/s for all s, because Ŷ ∗1u is then the unique solution of (1).
It is also pointless to use gP as utility function: Ŷ ∗1u will then be one of the
solutions of (1), but there might be other solutions as well. When g(s) < 1/s
for some but not all s, only sets of specific cardinalities can be the solution of
(1). This is probably also unwanted in practice.

So, what about the other utility functions from the literature? In Figure 1,
one can see that utility functions gF1 and gδ=1.6,γ=0.6 behave similarly as gP ,
but they are lower bounded by gP , so with those utility functions it will be
possible to predict non-singleton sets. In general, the faster those functions
decrease, the smaller the sets that will be predicted. For gFβ the parameter
β controls the degree of convexity, as shown in the right panel of Figure 1.
As such, this parameter will in a way also control the size of the sets that are
predicted. Note that Proposition 2 cannot be applied for glog and gδ, because
g(1) 6= 1 in those cases. One would need to rescale those utility functions first,
before applying the proposition.

As a summary of the above discussion, we define four properties that an
interesting utility function g should have:

– g should be strictly decreasing. Smaller sets should have a bigger utility
than bigger sets.

– g(1) = 1. This is just an interesting property to compare different utility
functions. When a function violates this property, it is best rescaled.
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– g(s) > 1/s for all s. The spectrum of utility maximizers will be limited to
sets of particular cardinalities when g(s) < 1/s for some s. If g(s) < 1/s
for all s, the utility function becomes completely useless.

– g should be (1/x)-convex. This guarentees that the utility maximizer can
be found efficiently.

There is a close link between the third and fourth property: if g(s) < 1/s for
some s, then g cannot be (1/x)-convex. However, the converse is not true. To
give such an example, let us introduce a novel family of utility functions that
generalizes a utility function that is often used in the literature on multi-class
classification with reject option, see e.g. (Ramaswamy et al., 2015). When a
reject option is allowed, the prediction can only be a singleton or the full set
Y containing K classes. The first case typically gets a reward of one, while
the second case should receive a lower reward, e.g. 1 − α. This second case
corresponds to abstaining, i.e., not predicting any class label, and the (user-
defined) parameter α specifies a penalty for doing so, with the requirement
0 < α < 1 − 1/K to be risk-averse. To include sets of any cardinality s, the
utility could be generalized as follows:

gα,β(s) = 1− α
(
s− 1

K − 1

)β
, (10)

which we call the generalized reject option utility. Here, we have the same
interpretation for α, whereas β ∈ (0,∞) defines whether g(s) is convex or
concave, as shown in the bottom panel of Figure 1. While convexity (like in
most of the above utility functions) appears natural in most applications, a
concave utility might be useful when predicting a large set is tolerable. In the
limit, when β → 0, we obtain the simple utility function for classification with
reject option.

The gα,β family is quite intuitive from an application perspective, and
it has a lot of flexibility. This makes this family interesting, but for certain
parameterizations it is not lower bounded by precision. It is important to
choose α ≤ K−1

K and β ≥ log 1
K−1

K
2 + 1 to guarantee that gα,β(s) ≥ 1/s

for all s (see appendix for derivations). For example, as shown in the figure
in the appendix, for α = 1, gα,β(s) is dominated by gP (s) for large s. We
also observed that gα,β(s) is for some α and β not (1/x)-convex. In contrast,
the gFβ family and gδ,γ for recommended values of δ and γ deliver utility
functions that satisfy all the four properties that are listed above. This makes
them interesting from an application perspective, and they will be our focus
in the experiments.

3 Algorithmic solutions

The above theoretical results (in particular Theorems 1 and 2) suggest that
problem (1) can be efficiently solved for (1/x)-convex set-based utility func-
tions. In this section, we present three algorithmic solutions for this problem,
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Table 1 The utility functions g(s) discussed in this paper.

Name g(s) Article

Precision gP (s) = 1
s (Del Coz et al., 2009)

Recall gR(s) = 1 (Del Coz et al., 2009)

Fβ-measure gFβ(s) = 1+β2

s+β2
(Del Coz et al., 2009)

Credal Utility gδ,γ(s) = δ
s −

γ

s2
(Zaffalon et al., 2012)

Exp. Utility gδ(s) = 1− exp
(
− δs

)
(Zaffalon et al., 2012)

Log. Utility glog(s) = log(1 + 1
s ) (Zaffalon et al., 2012)

Reject Option grej(s) =

{
1 if s = 1 ,
1− α if s = K .

(Ramaswamy et al., 2015)

Gen. Reject Option gα,β(s) = 1− α
(
s−1
K−1

)β
Extension of (Ramaswamy et al., 2015)

0 20 40 60 80 100
|Y|

0.0

0.2

0.4

0.6

0.8

1.0

g

gR

g = 5
g = 2.2, = 1.2

gF1
g = 1.6, = 0.6

glog

gP0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
|Y|

0.0

0.2

0.4

0.6

0.8

1.0

g

gF100
gF50
gF25
gF10
gF5
gF1
gP

Fig. 1 A visualization of g in function of different values of |Ŷ | and set-based utility func-
tions. K = 100.

Algorithm 1 SVBOP – input: u(·), x, Y = {c1, . . . , cK}, PC
1: Ŷ ← ∅, pŶ ← 0, U∗ ← 0 . Initialize the current best solution, its probability and utility

2: PC.initPrediction(x, Y) . Initialize the prediction procedure

3: while (c, pc)← PC.getNextClass() do . Repeat until all the classes are returned by PC

4: Ŷ ← Ŷ ∪ {c}, pŶ ← pŶ + pc . Update the current solution and its probability

5: UŶ ← pŶ × g(Ŷ ) . Compute U(Ŷ , P, u) according to Eq. (3)

6: if U∗ ≤ UŶ then . If the current solution is better than the best solution so far

7: Ŷ ∗u ← Ŷ , U∗ ← UŶ . Replace the current best solution

8: else break . If there is no improvement break the while loop according to Theorem 2

9: return Ŷ ∗u . Return the set of classes with the highest utility

and are all based on the same generic framework. The first algorithm returns
the Bayes-optimal solution to (1) in an exact manner. The other two algo-
rithms compute approximate solutions, but yield substantial runtime gains.
Those algorithms can be used when the number of classes is large.

Algorithm 1 presents the generic framework. We use the acronym SVBOP,
which stands for Set-Valued Bayes-Optimal Prediction. SVBOP uses a proba-
bilistic classifier, denoted as PC, that supports two operations. The first oper-
ation, initPrediction, initializes the prediction procedure for a given test exam-
ple x. The second operation, getNextClass, placed in the while loop, returns
the next class label with respect to decreasing conditional class probabilities.
In each subsequent iteration of the while loop, the solution of inner maximiza-
tion (4) is for a given s found by adding the class with the s-highest conditional
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Algorithm 2 SVBOP-Full.initPrediction – input: x, Y = {c1, . . . , cK}
1: Q ← ∅ . Initialize a list to store classes and P (c |x)

2: for c ∈ Y do pc ← P (c |x), Q.add
(
(c, pc)

)
. Query PC to get P (c |x) for all classes

3: Q.sort() . Sort the list decreasingly according to P (c |x)

Algorithm 3 SVBOP-Full.getNextClass
1: return Q.pop() . Pop the next highest element from the sorted list.

class probability to the predicted set. In this way, U(Ŷ ∗1u , P, u),. . . ,U(Ŷ ∗su , P, u)
are computed in a sequential way, till the stopping criterion of Theorem 2 is
satisfied.

This framework can be seen as a generalization of an algorithm introduced
by Del Coz et al. (2009) for optimizing the Fβ-measure in multi-class classi-
fication. There is also a strong correspondence with certain Fβ-maximization
algorithms in multi-label classification (see e.g. Jansche 2007; Ye et al. 2012;
Waegeman et al. 2014).

3.1 SVBOP-Full

The first algorithm is further referred to as SVBOP-Full, because it computes
all conditional class probabilities. PC is here a standard multi-class proba-
bilistic classifier that returns the estimated conditional class distribution for
a given test example x. Examples of such classifiers are logistic regression,
linear discriminant analysis, gradient boosting trees or neural networks with a
softmax output layer. The inference algorithm starts by querying the under-
ling classifier to get all K conditional class probabilities P (c |x). Then, the
conditional class probabilities are sorted in decreasing order (Algorithm 2).
When in Algorithm 1 the next class label is needed, it can simply be taken
from this sorted list (Algorithm 3).

This approach is simple and elegant but requires sorting of allK conditional
class probabilities, which results in an O(K logK) complexity. However, the
most costly operation is usually querying the distribution P to obtain values
of conditional probabilities for all K classes. In case of linear models, this
cost scales linearly with the number of classes, multiplied by the number of
non-zero feature values. For problems with a large number of classes, often
referred to as extreme classification problems (Prabhu and Varma, 2014), this
is usually too costly.

3.2 Hierarchical search with similarity graphs (SVBOP-HSG)

Since only class labels with high probability mass are required, a procedure
would be desirable that returns the top classes without the need to compute
conditional class probabilities for all classes. To accomplish this, we leverage
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approaches for approximate nearest neighbor search (Yagnik et al., 2011; Shri-
vastava and Li, 2014; Johnson et al., 2017) and adapt them to our setting. The
use of such methods essentially becomes possible through two problem trans-
formations: first, we reduce maximum probability search to maximum inner
product search, which we then in turn reduce to nearest neighbor search. In
the following, we briefly comment on both reduction steps and eventually on
approximate nearest neighbor search itself.

As for the first step, note that most learning algorithms produce class
probability estimates in a last step of the learning procedure by mapping
scores to probabilities. A typical example, which is also used in our approach,
is the softmax transformation:

P (c |x) =
exp(wc · x)∑

c′∈Y exp(wc′ · x)
. (11)

Obviously, as long as the probability is a monotone function of an inner
product wc · x between the query instance x and a weight vector wc, like in
(11), finding arg maxc P (c |x) is equivalent to finding arg maxcwc · x. More
generally, finding the top-s inner products corresponds to finding the top-
s probabilities. Futhermore, there is no need to compute the value of the
partition function, i.e., the denominator of (11), to find the optimal set-valued
prediction. For a given x, the value of the partition function is constant for
all c and since arg max f(x) = arg max a × f(x), for any constant a > 0, the
lack of normalization does not affect the result of both inner (4) and outer (5)
maximization.

As for the second step, let us assume that, as discussed before, we have
a linear model for each class c, which is represented by a vector wc in a
suitable (perhaps transformed) feature space X (e.g., the last but one layer
in a neural network, which is mapped to the output via softmax). Now, since
the squared Euclidean distance between wc and x is given by d(wc,x) =
‖wc‖2−2wc ·x+‖x‖2, maximizing wc ·x is “almost” equivalent to minimizing
d(wc,x). More specifically, it is equivalent to minimizing the distance d(w′c,x

′)
between two expanded vectors w′c and x′. The former is obtained by adding
an entry −

√
‖wc‖2 to wc, and the latter by adding a 0 to x. Consequently,

maximizing inner products in X is equivalent to minimizing distances in the
augmented space X ′.1

A reduction, as outlined above, is interesting because many methods for
efficient nearest neighbor search have been proposed in the literature. In this
work, we use Hierarchical Navigable Small World (H-NSW) graphs, introduced
by Malkov and Yashunin (2018). This method is based on the concept of a
similarity graph (Navarro, 2002), in which edges connect similar objects. In
our case, these objects are weight vectors wc. H-NSW uses multiple such
graphs, each on a different level. The lowest level contains all objects, while
higher levels contain successively sparser subsets of these objects. Roughly
speaking, the idea is to search the nearest neighbors of the query x level-wise

1Practically, this augmentation is often omitted for simplicity.
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Algorithm 4 SVBOP-HSG.initPrediction – input: x, Y = {c1, . . . , cK}
1: Q ← ∅ . Initialize a list of classes with their inner prod. wc · x
2: i← 0 . Initialize the class counter

3: Q′ ← H-NSW Index.query(x, k) . Query for initial top-k elements

4: for c ∈ Q′ do . For initial top-k classes

5: Q.add((c, exp(wc · x))) . Transform inner prod. to unnorm. P (c|x) and add to list

Algorithm 5 SVBOP-HSG.getNextClass
1: i← i+ 1 . Increment class counter

2: if |Q| < i then . If class counter is greater than size of list of classes

3: Q′ ← H-NSW Index.query(x, 2× |Q|) . Perform doubling

4: for c ∈ Q′/Q do . For each new class found by index

5: Q.add((c, exp(wc · x))) . Transform inner prod. to unnorm. P (c|x) and add to list

6: return Q.at(i) . Return next class from the list

(by traversing the graph for the layer in a greedy way), starting with the
highest level. The neighbors found on each level do not necessarily correspond
to the true neighbors of x on the lowest level, but should at least indicate the
region in which these neighbors are located, and hence provide a good entry
point for refining the search on the next level. For technical details and the
complete pseudocode of the H-NSW method, we refer to Malkov and Yashunin
(2018). What the algorithm eventually returns is a list of s weight vectors wc

for the s classes that have (approximately) the highest inner products with
the test example x.

We conclude this section with two remarks. First, finding the top-s classes
may not be enough to satisfy the stopping criterion of Theorem 2. To solve this
problem, we use a simple doubling strategy. When PC is requested to provide
the (s+1)-st class, we double the value of s and query the H-NSW index again.
Since the nearest neighbor search is approximate, we append all new labels to
the original list. In this way, we do not omit any new label with a probability
higher than the minimum probability of labels found in the previous query.
Second, this search method should lead to a faster inference than SVBOP-
Full, as the number of inner products should be lower than a number required
to compute all conditional class probabilities. While this method significantly
speeds up inference, it adds additional cost to the training phase, due to the
need to construct the H-NSW index. For training, one also relies on multi-class
classifiers that scale linearly with the number of classes.

3.3 Hierarchical factorization of the conditional distribution (SVBOP-HF)

To have a compatible probabilistic classifier that allows for efficient prediction
of top-s classes, while having a much faster training at the same time, we in-
vestigate in this subsection a solution based on a hierarchical factorization of
the distribution P (c |x). This approach underlies many popular algorithms,
such as nested dichotomies (Fox, 1997; Frank and Kramer, 2004; Melnikov
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and Hüllermeier, 2018), conditional probability estimation trees (Beygelzimer
et al., 2009), probabilistic classifier trees (Dembczyński et al., 2016), or hier-
archical softmax (Morin and Bengio, 2005), often used in neural networks as
an output layer.

With a hierarchical tree structure over the classes, where the root repre-
sents the class space and leafs the singleton sets of classes, one can express the
conditional class probability P (c |x) via the chain rule of probability:

P (c |x) =
∏

v∈Path(c)

P (v |Parent(v),x) , (12)

where Path(c) is a set of nodes on the path connecting the leaf and the root
of the tree structure. Parent(v) gives the parent of node v, and for the root
node r we have P (r |Parent(r),x) = 1. In each node of the tree, we train a
multi-class probabilistic classifier of choice.

For inference, we adapt an A∗-style algorithm, closely related to search
methods used with probabilistic tree classifiers (Dembczyński et al., 2012,
2016; Mena et al., 2017). It uses a priority queue for storing visited nodes in the
order of their decreasing conditional class probabilities. The queue is initialized
with the root node (Algorithm 6). In the main loop, for each iteration, the next
label is returned in order of decreasing conditional class probabilities. This is
achieved by visiting nodes one by one, taking them from the queue and adding
for each visited node its children to the queue (Algorithm 7).

On average, this search should result in significantly faster inference than
the standard SVBOP-Full algorithm, as only a part of the tree will be explored.
Optimistically, the speedup can be even exponential (i.e., the query for a single
x can proceed in logarithmic time in the number of classes K), Yet, in the
worst case, the algorithm can visit all nodes in the tree, a number that is upper
bounded by 2K − 1. With specific optimization algorithms, such as the ones
used for hierarchical softmax implementations in deep neural networks, the
hierarchical factorization might also lead to much faster training. One only
needs to update nodes on a path from the root to a leaf corresponding to the
class label of the example. This results in logarithmic training times in terms
of the number of classes, assuming that the tree is balanced.

Similarly, as in the previous approach, there is an additional step required
for building the hierarchical structure before training. This structure can be
obtained from data. For example, Huffman trees are commonly used for similar
algorithms in natural language processing problems (Mikolov et al., 2013).
More involved learning algorithms, such as the one used in (Prabhu et al.,
2018) run hierarchical balanced 2-means on class profiles. In some applications,
a natural hierarchy may exist and this one can be used as well, as we will show
in the experiments.
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Algorithm 6 SVBOP-HF.initPrediction – input: x, Y = {c1, . . . , cK}
1: Q = ∅ . Initialize a priority queue

2: Q.add((vroot, P (vroot|x)) . Add the tree root with the corresponding P (v|x)

Algorithm 7 SVBOP-HF.getNextClass
1: while Q 6= ∅ do . While the number of predicted labels is less than k
2: (v, pv)← Q.pop() . Pop the node with highest P (v|x) from the queue

3: if v is a leaf then . If the node is a leaf node

4: return (Class(v), pv) . Return corresponding class and P (c|x)

5: for v′ ∈ Children(v) do . Else for all child nodes of v

6: pv′ ← pv × P (v′|v,x) . Computed probability estimate to the child node

7: Q.add((v′, , x)) . Add the child node and its P (v′|x) to the priority queue

4 Related work

The paper that is the closest to our work is (Del Coz et al., 2009), in which
an efficient algorithm for the Fβ-measure is proposed. Our work extends this
paper in two directions: 1) we introduce a general optimization framework that
generalizes the results of Del Coz et al. (2009) to other utility functions, and
2) we also develop efficient algorithms that further improve their algorithm,
which can be interpreted as a specific case of the SVBOP-Full algorithm.

We discussed several papers that introduce various set-based utility func-
tions (Corani and Zaffalon, 2008, 2009; Zaffalon et al., 2012; Yang et al., 2017b;
Nguyen et al., 2018; Ramaswamy et al., 2015). Those papers mainly highlight
the usefulness and properties of these functions, while focussing less on algo-
rithmic aspects. From that perspective, we rather see our work as complemen-
tary instead of competing.

In the literature, one can find several simple approaches to generate set-
valued predictions. Arguably, the most simple approach is to look at the con-
ditional class probabilities, and return a predefined number of s classes; the
classes with the highest conditional class probabilities (top-s prediction). The
main downside of this approach is that set-valued predictions for different
instances will have the same cardinality. In practice this is often unwanted;
small sets should be returned when the uncertainty about the true class label
is small, while bigger sets are needed when the uncertainty becomes larger. An-
other simple approach is thresholding on conditional class probabilities. One
can define a fixed threshold for P (c |x) and return those classes that exceed
this threshold, or one can define a threshold on the cumulative probability of
the resulting set. In the latter case, one first sorts the classes in decreasing
order of conditional class probabilities. For a user-defined θ ∈ [0, 1], one then
returns the top-s classes for which s is given by

inf
{
s :

s∑
i=1

P (c(i) |x) ≥ θ
}
, (13)
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with c(1), . . . , c(K). Both thresholding approaches have a clear disadvantage:
they only look at a specific threshold, and do not account for the fact that
the size of the predicted set might considerably change if the threshold is
slightly changed. Thresholding will be suboptimal in view of optimizing (1).
This can be best observed from (8), which proves that the Bayes-optimal
set not only depends on the sum of the first s conditional probabilites, but
also on the next probability in the sorted list, i.e., ps+1. Nonetheless, top-s
prediction and thresholding are two obvious baselines that will be analyzed in
our experiments.

Set-valued predictions are also considered in hierarchical multi-class clas-
sification, mostly in the form of internal nodes of the hierarchy (Alex Freitas,
2007; Rangwala and Naik, 2017; Yang et al., 2017a). Compared to the “flat”
multi-class case, the prediction space is thus restricted, because only sets of
classes that correspond to nodes of the hierarchy can be returned as a pre-
diction. In this paper, we do not consider such a setup, but the SVBOP-HF
algorithm could be adjusted for that purpose.

Set-based utility functions have been analyzed in the context of hierarchical
multi-class classification. For example, Yang et al. (2017a) evaluate various
members of the uδ,γ family in a framework where hierarchies are considered

for computational reasons, while Oh (2017) optimizes recall by fixing |Ŷ | as a
user-defined parameter. Popular in hierarchical multi-label classification is the
tree-distance loss, which could also be interpreted as a way of evaluating set-
valued predictions (see e.g. (Bi and Kwok, 2015)). This loss is not a member
of the family (2), however. Besides, from the perspective of abstention in the
case of uncertainty, it appears to be a less useful loss function, because it has
the tendency to return large sets.

Set-valued predictions are also produced in the framework of conformal
prediction (CP) (Vovk et al., 2003; Shafer and Vovk, 2008b; Balasubramanian
et al., 2014; Denis and Hebiri, 2017). This framework is rooted in statistical
hypothesis testing, and in a sense can be seen as a “frequentist statistics”
counterpart to our approach, which is more in the spirit of Bayesian decision
theory. More specifically, given a new query instance x, CP constructs a pre-
diction set or prediction region Y ⊆ Y that is guaranteed to cover the true
outcome y with a pre-defined probability 1−ε (for example 95 %). To this end,
the hypothesis that y = ŷ is tested for each candidate prediction ŷ ∈ Y, and
only those candidates for which the test can be rejected are excluded from
Y . The test itself is non-parametric and leverages a “nonconformity” func-
tion s : X × Y → R that assigns scores s(x, y) ∈ R to input/output tuples;
the latter can be interpreted as a measure of “strangeness” of the pattern
(x, y), i.e., the higher the score, the less the data point (x, y) conforms to
what one would expect to observe. Roughly speaking, the hypothesis y = ŷ is
then rejected if the nonconformity score s(x, ŷ) is among the ε% highest of all
scores s(x1, y1), . . . , s(xN , yN ) observed in the (training) data so far. Confor-
mal prediction has originally been introduced as an online learning method,
but inductive variants have been developed as well (Papadopoulos, 2008).
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As we are maximizing a set-based utility function, our work is also some-
what connected to submodular optimization in machine learning (Syed, 2016;
Vondrak, 2019). From (3) it follows that U(Ŷ , P, u) is either a submodular
or supermodular function, when g is concave or convex, respectively. In the
first case, when g is decreasing and concave, then g(|Ŷ |) is submodular, and
because P (Ŷ |x) is modular, U(Ŷ , P, u) must be submodular. One could there-
fore think of using submodular optimization algorithms to solve (1), but we
believe that such algorithms would not be very useful. Theorem 1 made us
conclude that the combinatorial problem (1) could be reduced to a line search
on K + 1 sets. In contrast, a line search cannot be applied in combinato-
rial machine learning problems that are solved with submodular optimization
techniques. To give one example, submodular optimization of (1) by means of
a continuous relaxation via the Lovasz extension (Vondrak, 2019) would still
require the computation of P (c |x) for all classes c, whereas the algorithms
that we introduce avoid this.

Currently, the development of efficient algorithms is an active theme of
research in the area of extreme classification. The overwhelming majority of
algorithms developed in this area focus on multi-label classification, but also
some algorithms for multi-class problems, with a large number of classes, have
been proposed. Such algorithms are not immediately applicable to the set-
ting of set-valued prediction. Nevertheless, the idea of sorting probabilities is
commonly used in extreme multi-label classification, for optimizing specific
loss functions, such as the Fβ-measure, precision, and normalized discounted
cumulative gain, see e.g. (Waegeman et al., 2014; Babbar and Dembczyński,
2018). For several of those measures, one typically either selects the top-s
scoring labels (with s predefined), or those labels for which the marginal prob-
ability exceeds a threshold. Those two approaches are suboptimal in view of
optimizing (1), but it is interesting to see how much we gain with our more
complicated algorithms. That is something we will analyze in the experiments.

Finally, set-valued prediction is also closely connected to uncertainty mod-
elling for multi-class classification. For safety-critical applications such as self-
driving cars and medical decision making, it is important to have an indication
of uncertainty when making decisions. Some recently developed methods make
a distinction between epistemic and aleatoric uncertainty, see e.g. (Hüllermeier
and Waegeman, 2019) for an overview. The former type of uncertainty arises
due to a lack of data for training, whereas the latter alludes to uncertainty
that cannot be reduced by collecting more data, e.g. measurement noise, low-
quality features, etc. In our framework, we only consider aleatoric uncertainty,
because we produce a set based on the estimated conditional class probabilities
P (c |x). Approaches that analyze epistemic uncertainty take other properties
of the data into account, such as generalizations of probability theory (Senge
et al., 2014; Nguyen et al., 2018) or measures based on dropout resampling at
test time (Kendall and Gal, 2017; Depeweg et al., 2018). Very recently, Ziyin
et al. (2019) combine the idea of set-based utility maximization with density
estimation, producing an empty set in case of high epistemic uncertainty. This
might be an interesting path for future work.
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Table 2 Summary of image (top) and text (bottom) datasets used in all experiments.
Notation: K – number of classes, D – number of features, N – number of samples

Dataset K D Ntrain Ntest

MNIST (LeCun and Cortes, 2010) 10 32 33600 8400
VOC 2006 (Everingham et al., 2006) 10 25088 1398 1477
VOC 2007 (Everingham et al., 2007) 20 25088 2808 2841
Caltech-101 (Li et al., 2003) 97 25088 4338 4339
Caltech-256 (Griffin et al., 2007) 256 25088 14890 14890
ALOI.BIN (Geusebroek et al., 2005) 1000 636911 90000 8000

DBpedia (Ofer, 2019) 219 483214 240942 96797
Bacteria (RIKEN, 2013) 2631 2472 10576 2301
Proteins (Li et al., 2018) 3485 26276 11830 10179
DMOZ (Partalas et al., 2015) 11939 833484 335068 38340
LSHTC1 (Partalas et al., 2015) 12166 381571 93805 34905

5 Experiments

We perform three types of experiments to illustrate and benchmark the al-
gorithms that we introduce. The datasets for all experiments are shown in
Table 2. In the following section, we first illustrate the practical relevance
of set-valued prediction on both image and text classification datasets. In
Section 5.2, we evaluate the proposed exact algorithm, together with simple
baseline methods that produce sets, for different set-based utility functions
on a wide range of practical datasets. For the last group of experiments, in
Section 5.3, we compare the proposed exact and approximate algorithms by
looking at runtime efficiency versus predictive performance. For a general dis-
cussion on the experimental setup, we refer the reader to the appendix.

5.1 Illustrations on image datasets

In the illustrative experiments we provide some examples that emphasize the
practical usefulness of set-valued prediction. In Fig. 2(a) we show predictions
obtained by the SVBOP-Full algorithm with utility function gFβ , on three
MNIST test samples. From left to right, we show three test instances for
which the uncertainty (in the conditional class probabilities) is increasing. To
this end, uncertainty is expressed by the Shannon entropy

H =

K∑
i=1

P (ci |x) logP (ci |x) .

From top to down, we show predictions for each image in function of decreasing
β ∈ {5, 2, 1}. For increasing β and uncertainty, the SVBOP-Full algorithm
typically predicts larger sets. For the last image, corresponding to number
two, one can see that predicting the class with the highest conditional class
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β = 5 {8} {3, 5, 9} {9, 3, 2, 7, 8, 1}

β = 2 {8} {3} {9, 3, 2}

β = 1 {8} {3} {9, 3}

H = 10−5 H = 0.56 H = 2.54

(a) Predictions for three MNIST test samples, for
increasing β ∈ {1, 2, 5} and Shannon entropy H.

(b) VOC 2006 test sam-
ple with top-5 prediction
{sheep, cow, horse, car,
motorbike}. SVBOP-Full
candidates, for β = 1, are
indicated in bold.

Lance Ten Broeck (born

March 21, 1956) is an

American professional

golfer who has played on

the PGA Tour, Nationwide

Tour, and Champions Tour.

Ten Broeck was born in

Chicago, Illinois, and

grew-up in Beverly,

a community on the

city’s southwest side...

MTS TV is a digital

television service

owned by Telekom Srbija.

The service provides

thematic channels, HD

channels, video on

demand, video recording,

the use of an Electronic

Program Guide (EPG)

and other services...

Liao Bingxiong was

a Chinese political

cartoonist, painter and

calligrapher. He remained

active from 1934 until

he gave up in 1995 (with

a 20-year break between

1957 and 1978). Liao

is widely regarded as

one of China’s foremost

political cartoonists...

{GolfTournament, GolfPlayer,
RugbyPlayer, Soccer-
Player, CyclingRace}

{TelevisionStation,
BroadcastNetwork,

BusCompany, Come-
dian, RailwayLine}

{Painter, ComicsCreator,
PoliticalParty, Pres-
ident, Philosopher}

(c) DBpedia test samples with corresponding top-5 predictions. SVBOP-Full candidates, for
β = 1, are indicated in bold.

Fig. 2 Set-valued predictions with SVBOP-Full and utility function gFβ illustrated on
MNIST, VOC 2006 and DBpedia. Ground truths are underlined in each prediction.

probability, i.e., the first element in the predicted set2, would result in a false
positive. However, for β ∈ {2, 5}, the ground truth is returned as candidate
solution in the set-valued predictions.

We further illustrate the usefulness of set-valued prediction by looking
at another image (VOC 2006) and a couple of text (DBpedia) examples in
Fig. 2(b) and (c). There we show top-5 predictions and predictions obtained
by SVBOP-Full (denoted in bold), by using utility function gF1. For the VOC
2006 test image, with a cow and sheep in the background, the uncertainty
reflected in the conditional class probabilities is high, most likely due to tak-

2Note that the candidate solutions in the set are sorted in decreasing order of conditional
class probability.
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ing the picture in low light conditions. Again, returning the label with the
highest conditional class probability (i.e., sheep) results in a false positive. A
set-valued prediction by means of the simple top-5 or SVBOP-Full method,
however, includes the ground truth as candidate solution for this particular
case. A second observation is the suboptimality of the top-5 method, com-
pared to SVBOP-Full. As the size of the prediction does not depend on the
conditional class probabilities, but is rather fixed, we are at risk of includ-
ing irrelevant candidates in the predicted set. These irrelevant candidates are
most often characterized by low conditional class probabilities, for which an
inclusion would result in a drop of expected utility in the SVBOP-Full Algo-
rithm (1). For example, for the image of the cow in Fig. 2(b), two irrelevant
candidates {car,motorbike} are included in the top-5 prediction. The same
can be observed for the examples in Fig. 2(c).

5.2 Comparison of different utility functions and baselines

The goal of the second type of experiments is to evaluate the SVBOP-Full
algorithm for several utility functions. Two different parameterizations of the
uδ,γ and uFβ families are studied, leading to four utility functions in total. We
benchmark the SVBOP-Full algorithm against several baselines (which are all
described in the related work section):

1. Thresholding: predicting those classes for which the total cumulative prob-
ability mass exceeds a user-defined threshold, as explained by (13). For
each of the four utility functions we tune the threshold on a validation
set, by considering ten equally-spaced values. As a result, we obtain four
different thresholding strategies, each of them tailored for a specific utility
function.

2. Top-s: predicting a set consisting of the s classes with highest conditional
class probabilities. Here we consider three versions, with s ∈ {1, 3, 5}. As
discussed in the related work section, top-s returns a fixed number of classes
for each instance, which can be considered as a limitation. However, it is
interesting to see how this suboptimal approach performs w.r.t. set-based
utility functions.

3. Inductive conformal prediction (ICP): we experiment with the commonly-
used nonconformity function s(x, y) = 1−P (y |x) , and consider two fixed
significance levels ε ∈ {0.01, 0.10}.
Table 3 shows for all methods the results obtained on test sets, where the

highest obtained utilities are underlined. The utility functions are ordered in
decreasing order of convexity: uδ=1.6,γ=0.6, uF1, uδ=2.2,γ=1.2 and uF5. The first
three utility functions all behave very similar to precision, which explains why
the results are similar. Due to a higher convexity, these utility functions give
a high reward to small sets, such that the top-1 in general yields very good
results for those utility functions. At the other side, for uF5 the picture looks
different; there top-3 or top-5 are often much better than top-1, because this
utility function gives a higher reward to larger sets.
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Table 3 Comparison of SVBOP-Full with baselines (thresholding, top-s and inductive con-
formal prediction) in terms of optimizing different utility functions (listed in decreasing order
of convexity: uδ=1.6,γ=0.6, uF1, uδ=2.2,γ=1.2 and uF5) for all datasets. Optimal utilities are
underlined.

VOC 2006 VOC 2007
Method uδ=1.6,γ=0.6 uF1 uδ=2.2,γ=1.2 uF5 uδ=1.6,γ=0.6 uF1 uδ=2.2,γ=1.2 uF5

SVBOP-Full-uδ=1.6,γ=0.6 91.03 91.11 91.73 92.51 88.93 89.01 89.62 90.39
SVBOP-Full-uF1 91.13 91.22 91.90 92.82 88.84 88.94 89.64 90.62
SVBOP-Full-uδ=2.2,γ=1.2 91.14 91.31 92.61 94.27 88.73 88.91 90.27 92.06
SVBOP-Full-uF5 87.76 88.35 90.74 97.12 83.60 84.29 86.80 94.74

Threshold-uδ=1.6,γ=0.6 87.84 88.40 90.64 96.73 83.72 84.36 86.43 94.18
Threshold-uF1 87.84 88.40 90.64 96.73 83.72 84.36 86.43 94.18
Threshold-uδ=2.2,γ=1.2 87.84 88.40 90.64 96.73 83.72 84.36 86.43 94.18
Threshold-uF5 86.92 87.54 89.80 96.71 83.72 84.36 86.43 94.18

Top-1 90.72 90.72 90.72 90.72 88.95 88.95 88.95 88.95
Top-3 45.91 49.19 59.03 91.35 44.94 48.15 57.78 89.43
Top-5 29.46 33.18 39.01 86.26 29.03 32.69 38.44 84.99

ICPε=0.01 87.06 87.64 90.09 96.23 70.44 71.67 74.65 92.45
ICPε=0.10 89.72 89.72 89.72 89.72 88.94 89.02 89.64 90.40

Caltech-101 DBpedia
Method uδ=1.6,γ=0.6 uF1 uδ=2.2,γ=1.2 uF5 uδ=1.6,γ=0.6 uF1 uδ=2.2,γ=1.2 uF5

SVBOP-Full-uδ=1.6,γ=0.6 95.29 95.36 95.83 96.49 88.47 88.50 88.76 89.08
SVBOP-Full-uF1 95.24 95.33 95.84 96.67 88.49 88.52 88.82 89.18
SVBOP-Full-uδ=2.2,γ=1.2 94.73 94.86 95.77 97.08 88.65 88.72 89.29 89.99
SVBOP-Full-uF5 87.89 88.41 90.10 96.93 88.57 88.76 90.07 91.91

Threshold-uδ=1.6,γ=0.6 81.90 82.31 83.31 91.64 88.48 88.70 90.22 92.37
Threshold-uF1 81.90 82.31 83.31 91.64 88.48 88.70 90.22 92.37
Threshold-uδ=2.2,γ=1.2 81.90 82.31 83.31 91.64 88.09 88.38 90.30 93.16
Threshold-uF5 81.90 82.31 83.31 91.64 87.46 87.84 90.18 93.88

Top-1 95.07 95.07 95.07 95.07 88.22 88.22 88.22 88.22
Top-3 46.02 49.31 59.17 91.57 45.48 48.73 58.47 90.49
Top-5 29.37 33.08 38.90 86.01 29.22 32.91 38.70 85.56

ICPε=0.01 89.31 89.83 91.64 97.69 65.04 66.39 72.30 89.84
ICPε=0.10 95.34 95.34 95.34 95.34 88.04 88.11 88.66 89.35

Caltech-256 ALOI.BIN
Method uδ=1.6,γ=0.6 uF1 uδ=2.2,γ=1.2 uF5 uδ=1.6,γ=0.6 uF1 uδ=2.2,γ=1.2 uF5

SVBOP-Full-uδ=1.6,γ=0.6 81.90 82.04 83.06 84.46 96.38 96.41 96.66 96.97
SVBOP-Full-uF1 81.91 82.09 83.21 85.02 96.34 96.38 96.65 97.02
SVBOP-Full-uδ=2.2,γ=1.2 80.97 81.27 83.39 86.39 96.25 96.33 96.86 97.56
SVBOP-Full-uF5 69.47 70.60 73.74 89.06 94.04 94.28 95.23 98.04

Threshold-uδ=1.6,γ=0.6 69.73 70.48 72.28 85.59 89.56 89.80 90.54 94.14
Threshold-uF1 69.73 70.48 72.28 85.59 89.56 89.80 90.54 94.14
Threshold-uδ=2.2,γ=1.2 69.73 70.48 72.28 85.59 89.56 89.80 90.54 94.14
Threshold-uF5 69.73 70.48 72.28 85.59 89.56 89.80 90.54 94.14

Top-1 81.46 81.46 81.46 81.46 96.43 96.43 96.43 96.43
Top-3 42.52 45.56 54.67 84.61 46.10 49.39 59.26 91.72
Top-5 27.77 31.27 36.78 81.31 29.38 33.09 38.91 86.03

ICPε=0.01 45.43 46.77 49.49 75.23 93.33 93.62 94.71 98.00
ICPε=0.10 77.10 77.77 80.95 87.80 96.18 96.18 96.18 96.18

Bacteria Proteins
Method uδ=1.6,γ=0.6 uF1 uδ=2.2,γ=1.2 uF5 uδ=1.6,γ=0.6 uF1 uδ=2.2,γ=1.2 uF5

SVBOP-Full-uδ=1.6,γ=0.6 92.91 93.00 93.61 94.45 70.52 70.56 70.91 71.33
SVBOP-Full-uF1 92.86 92.98 93.61 94.77 70.54 70.59 70.97 71.44
SVBOP-Full-uδ=2.2,γ=1.2 91.37 91.57 92.85 94.81 70.75 70.85 71.69 72.71
SVBOP-Full-uF5 84.28 85.01 88.67 96.12 71.39 71.66 73.66 76.32

Threshold-uδ=1.6,γ=0.6 88.80 89.28 91.53 96.41 71.41 71.76 74.21 77.58
Threshold-uF1 88.80 89.28 91.53 96.41 71.41 71.76 74.21 77.58
Threshold-uδ=2.2,γ=1.2 88.80 89.28 91.53 96.41 71.42 71.90 75.19 79.93
Threshold-uF5 88.80 89.28 91.53 96.41 71.42 71.90 75.19 79.93

Top-1 93.16 93.16 93.16 93.16 70.24 70.24 70.24 70.24
Top-3 45.83 49.11 58.93 91.20 42.31 45.33 54.40 84.19
Top-5 29.33 33.03 38.84 85.87 27.69 31.18 36.67 81.07

ICPε=0.01 50.68 53.05 63.38 91.09 34.78 36.19 43.03 60.80
ICPε=0.10 93.46 93.46 93.46 93.46 64.12 65.48 72.32 86.28

DMOZ LSHTC1
Method uδ=1.6,γ=0.6 uF1 uδ=2.2,γ=1.2 uF5 uδ=1.6,γ=0.6 uF1 uδ=2.2,γ=1.2 uF5

SVBOP-Full-uδ=1.6,γ=0.6 41.14 41.48 43.35 46.85 42.61 42.72 43.52 44.60
SVBOP-Full-uF1 40.43 40.91 42.83 48.28 42.63 42.78 43.66 45.06
SVBOP-Full-uδ=2.2,γ=1.2 39.51 40.14 43.31 49.80 42.65 42.88 44.49 46.75
SVBOP-Full-uF5 19.14 19.97 21.42 39.76 39.14 40.01 42.46 54.02

Threshold-uδ=1.6,γ=0.6 10.73 10.88 11.06 17.54 35.92 36.18 37.01 41.36
Threshold-uF1 10.73 10.88 11.06 17.54 35.92 36.18 37.01 41.36
Threshold-uδ=2.2,γ=1.2 10.73 10.88 11.06 17.54 35.92 36.18 37.01 41.36
Threshold-uF5 10.73 10.88 11.06 17.54 35.92 36.18 37.01 41.36

Top-1 40.41 40.41 40.41 40.41 42.00 42.00 42.00 42.00
Top-3 25.99 27.84 33.41 51.71 27.13 29.06 34.88 53.98
Top-5 18.27 20.57 24.19 53.49 18.96 21.35 25.10 55.50

ICPε=0.01 1.39 1.45 1.57 2.99 2.46 2.61 2.84 6.32
ICPε=0.10 2.55 2.82 3.10 13.30 14.46 15.09 16.30 29.59
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The performance of the SVBOP-Full algorithm is in accordance with our
theoretical results. In general, it is one of the best-performing methods for
all datasets and utility functions that were analyzed. However, the differences
with the other methods are small. This is of course not very surprising, because
all tested inference algorithms depart from the same conditional class proba-
bilities. Differences in performance can only be attributed to (relatively small)
differences in the inference algorithms. As discussed in Section 4, thresholding
is not Bayes-optimal w.r.t. (1), but on the analyzed datasets it performs quite
well. We can conclude that the theoretical shortcomings of thresholding will
only lead to small performance drops in practice.

Finally, inductive conformal prediction performs quite well on some datasets,
but this method yields bad results on other datasets. This can of course be
explained by the fact that inductive conformal prediction does not intend to
maximize a utility function. As explained in Section 4, this method rather in-
tends to return sets that contain the true class label with high confidence. This
phenomenon is especially visible on the LSHTC and DMOZ datasets, where
K is large. Then, inductive conformal prediction will produces very large sets,
when it wants to cover the true class with high probability.

5.3 Comparison of exact and approximate algorithms on large datasets

In the final group of experiments, we would like to compare the proposed exact
and approximate algorithms by looking at runtime efficiency versus predictive
performance. Table 4 summarizes the results for the SVBOP-Full, SVBOP-
HSG, and SVBOP-HF approaches, obtained on the five largest datasets (w.r.t.
the number of classes). We use the same weights for SVBOP-Full and SVBOP-
HSG algorithms. For SVBOP-HF, we consider a predefined hierarchy, if avail-
able, and a hierarchy constructed during training by means of hierarhical bal-
anced 2-means on class profiles, as explained in Section 3. For each algorithm
we optimize two different utility functions: uF1 and uδ=2.2,γ=1.2. We report
train and test time, as well as average utility, recall (1yi∈Ŷ (xi)

) and size of the
predicted sets. Additionally, we also include average recall for top-1 predic-
tions; this is in essence accuracy.

For almost all datasets, SVBOP-Full yields the best predictive performance
while being, as expected, always the slowest. For all datasets, SVBOP-HSG
achieves a predictive performance that is very close to SVBOP-Full, while
being at the same time even a few times faster in inference on DMOZ and
LSTHC1 datasets. Unsurprisingly, hierarchical factorization leads to the high-
est speedup both in training and inference. However, for most datasets, it
comes at the expense of predictive performance. Only for datasets where a
meaningful natural hierarchy is given (i.e. biological datasets), SVBOP-HFp
outperforms SVBOP-Full and SVBOP-HFc.

In general, we observe that for almost all datasets, both approximate algo-
rithms behave similarly to SVBOP-Full and manage to significantly improve
recall with an only small increase in average prediction size. At the same time,



Efficient Set-Valued Prediction in Multi-Class Classification 23

Table 4 Performance versus runtime for the SVBOP-Full, SVBOP-HSG and SVBOP-HF
algorithms, tested on five benchmark datasets for F1-measure utility (uF1) and credal utility

with δ = 2.2 and γ = 1.2 (uδ,γ). Notation: R – recall, u – utility value, |Ŷ | – prediction size,
ttrain – CPU train time in seconds, ttest – CPU test time in milliseconds / number of test
samples, p – predefined hierarchy, c – hierarchy built with hierarchical balanced 2-means
clustering

Dataset Algo. ttrain Top-1 uF1 R |Ŷ | ttest uδ,γ R |Ŷ | ttest

ALOI.BIN Full 5065 96.43 96.38 97.11 1.03 4.89 96.86 97.68 1.05 4.74
HSG 5087 96.41 96.23 96.96 1.04 3.09 96.66 97.54 1.05 3.11
HFc 163 93.15 93.46 95.16 1.06 0.29 93.97 95.44 1.10 0.27

Bacteria Full 6303 93.16 92.98 94.55 1.14 5.02 92.85 94.64 1.18 4.61
HSG 6323 92.45 93.16 94.11 1.09 1.83 93.58 94.58 1.12 1.92
HFp 360 91.19 91.38 92.97 1.06 0.18 91.42 92.98 1.09 0.20
HFc 70 90.72 91.14 92.58 1.06 0.08 91.08 92.59 1.09 0.09

Proteins Full 2192 70.24 70.59 70.98 1.31 15.53 71.69 71.73 1.36 14.28
HSG 2672 69.58 69.83 70.61 1.22 10.95 69.46 70.38 1.27 11.35
HFp 77 81.59 81.80 82.54 1.03 0.48 82.21 82.57 1.05 0.43
HFc 22 79.73 79.95 80.92 1.04 0.17 80.10 80.67 1.07 0.17

DMOZ Full 82872 40.41 40.91 51.33 3.52 55.04 43.31 52.46 2.73 54.47
HSG 83181 39.97 40.13 49.66 3.26 2.67 42.02 50.05 2.36 2.72
HFc 722 38.03 22.79 46.70 7.15 11.94 25.79 45.44 5.32 11.01

LSHTC1 Full 71509 42.00 42.78 45.38 1.29 46.13 44.49 47.24 1.44 48.37
HSG 72361 41.52 42.30 44.86 1.30 8.28 43.99 46.71 1.44 9.71
HFp 557 39.82 40.96 44.79 1.42 0.52 43.20 47.21 1.60 0.60
HFc 338 38.53 39.19 43.36 1.48 1.15 41.38 45.78 1.66 1.24

the approximate algorithms improve the test times at the cost of predictive
performance. This is not very surprising, as one might expect a clear trade-off
between the two. In practice, the choice of a particular method should depend
on the desired trade-off between runtime and predictive performance.

6 Conclusion

We introduced a decision-theoretic framework for a general family of set-based
utility functions, including most of the measures used in the literature so far,
and developed three Bayes-optimal inference algorithms that exploit specific
assumptions to improve runtime efficiency. Depending on the concrete dataset,
those assumptions may or may not affect predictive performance.

In future work, we plan to extend our decision-theoretic framework to-
ward uncertainty representations more general than standard probability, for
example taking up a distinction between so-called aleatoric and epistemic un-
certainty recently put forward by several authors (Senge et al., 2014; Kendall
and Gal, 2017; Depeweg et al., 2018; Nguyen et al., 2018).



24 Thomas Mortier et al.

References

Alex Freitas AdC (2007) A tutorial on hierarchical classification with applica-
tions in bioinformatics. In: Research and Trends in Data Mining Technolo-
gies and Applications,, pp 175–208
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(2016) Consistency of probabilistic classifier trees. In: ECML/PKDD

Denis C, Hebiri M (2017) Confidence sets with expected sizes for multiclass
classification. J Mach Learn Res 18:102:1–102:28

Depeweg S, Hernández-Lobato JM, Doshi-Velez F, Udluft S (2018) Decompo-
sition of uncertainty in bayesian deep learning for efficient and risk-sensitive
learning. In: ICML, PMLR, Proceedings of Machine Learning Research,
vol 80, pp 1192–1201

Everingham M, Eslami ASM, Gool LV, Williams CKI, Winn J, Zisserman
A (2006) The PASCAL Visual Object Classes Challenge 2006 (VOC2006)
Results

Everingham M, Gool LV, Williams CKI, Winn J, Zisserman A (2007) The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results



Efficient Set-Valued Prediction in Multi-Class Classification 25

Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) LIBLINEAR: A
library for large linear classification. Journal of Machine Learning Research
9:1871–1874

Fiannaca A, Paglia LL, Rosa ML, Bosco GL, Renda G, Rizzo R, Gaglio S,
Urso A (2018) Deep learning models for bacteria taxonomic classification of
metagenomic data. BMC Bioinformatics 19-S(7):61–76

Fox J (1997) Applied regression analysis, linear models, and related methods.
Sage

Frank E, Kramer S (2004) Ensembles of nested dichotomies for multi-class
problems. In: Proceedings of the Twenty-first International Conference on
Machine Learning, ACM, New York, NY, USA, ICML ’04, pp 39–

Geusebroek JM, Burghouts G, Smeulders A (2005) The amsterdam library of
object images. International Journal of Computer Vision 61(1):103–112

Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset.
Tech. Rep. 7694, California Institute of Technology
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A Regret bounds for the utility functions

In this part we present a short theoretical analysis that relates the Bayes optimal solution
for the set-based utility functions to the solution obtained on the probabilities given by a
trained model. The goal is to upper bound the regret of the set-based utility functions by
the L1 error of the class probability estimates. The analysis is performed on the level of a
single x.

Let P̂ (x) be the estimate of the true underlying distribution P (x). Let U∗(P, u) denote

the optimal utility for P obtained by the optimal solution Ŷ ∗ (this solution does not have

to be unique). Now, let Ŷ denote the optimal solution with respect to P̂ (x). We define the

regret of Ŷ as:

regu(Ŷ ) = U∗(P, u)− U(Ŷ , P, u)

=
∑
c∈Y

u(c, Ŷ ∗)P (c |x)−
∑
c∈Y

u(c, Ŷ )P (c |x)

=
∑
c∈Y

(
u(c, Ŷ ∗)− u(c, Ŷ )

)
P (c |x)

We bound regu(P̂ (x)) in terms of the L1-estimation error, i.e.:∑
c∈Y
|P (c |x)− P̂ (c |x)|

Note that if Ŷ ∗ = Ŷ the regret is 0. Otherwise, we need to have

U(Ŷ , P̂ , u) ≥ U(Ŷ ∗, P̂ , u)

Thus, we can write

regu(Ŷ ) ≤ U∗(P, u)− U(Ŷ , P, u) + U(Ŷ , P̂ , u)− U(Ŷ ∗, P̂ , u)

=
∑
c∈Y

(
u(c, Ŷ ∗)− u(c, Ŷ )

)
P (c |x) +

∑
c∈Y

(
u(c, Ŷ )− u(c, Ŷ ∗)

)
P̂ (c |x)

=
∑
c∈Y

u(c, Ŷ ∗)
(
P (c |x)− P̂ (c |x)

)
+
∑
c∈Y

u(c, Ŷ )
(
P̂ (c |x)− P (c |x)

)
≤
∑
c∈Y

u(c, Ŷ ∗)
∣∣∣P (c |x)− P̂ (c |x)

∣∣∣+
∑
c∈Y

u(c, Ŷ )
∣∣∣P̂ (c |x)− P (c |x)

∣∣∣ (14)

=
∑
c∈Y

(
u(c, Ŷ ∗) + u(c, Ŷ )

) ∣∣∣P (c |x)− P̂ (c |x)
∣∣∣

≤ 2
∑
c∈Y

∣∣∣P (c |x)− P̂ (c |x)
∣∣∣ (15)

The inequality in (14) follows from the properties of the absolute function, a ≤ |a|, while the
one in (15) holds because the utility functions are from the bounded interval, u(·, ·) ∈ [0, 1].
We clearly see that the regret is upper bounded by the quality of the estimated probability
distribution.

B Generalized reject option utility and parameter bounds

In this part we analyze which values α and β can take so that the gα,β family is lower
bounded by precision. This family is visualized in Figure 3. For a given K, the following
inequality must hold ∀s ∈ {1, . . . ,K}, such that gα,β(s) is lower bounded by precision:

gα,β(s) ≥ gP (s) ,
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with utilities:

gα,β(s) = 1− α
( s− 1

K − 1

)β
, gP (s) =

1

s
.

When looking at the boundary cases (i.e., s = 1, s = K), we find that:

α ≤
K − 1

K
.

By fixing α = K−1
K

, the above inequality can be rewritten, ∀s ∈ {2, . . . ,K − 1}, as:

1−
(K − 1

K

)( s− 1

K − 1

)β
≥

1

s

⇔
( s− 1

K − 1

)β
≤
K

s

( s− 1

K − 1

)
⇔ β ≥ log s−1

K−1

K

s
+ 1

⇒ β ≥ log 1
K−1

K

2
+ 1

Note that in the limit, when K →∞, we obtain the following upper and lower bound for α
and β, respectively:

lim
K→∞

K − 1

K
= 1 , lim

K→∞
log 1

K−1

K

2
+ 1 = 0 .
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Fig. 3 A visualization of gα,β in function of different values of |Ŷ | and K.

C Experimental setup

For all image datasets, except ALOI.BIN, we use hidden representations obtained by convo-
lutional neural networks, whereas for the text datasets (bottom) tf-idf representations are
used. The dimensionality of the representations are denoted by D. For the MNIST dataset
we use a convolutional neural network with three consecutive convolutional, batchnorm
and max-pool layers, followed by a fully connected dense layer with 32 hidden units. We
use ReLU activation functions and optimize the categorical cross-entropy loss by means of
Adam optimization with learning rate η = 1e−3. For the VOC 20063, VOC 20073, Caltech-
101 and Caltech-256, the hidden representations are obtained by resizing images to 224x224

3The multi-label VOC datasets are transformed to multi-class by removing instances
with more than one label.
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Table 5 Values of hyperparameters used for SVBOP-Full, SVBOP-HSG, and SVBOP-HF
algorithms for different datasets.

Full HSG HF
Dataset C εl M efc k C εl l εc

VOC 2006 100 0.1 - - - - - - -
VOC 2007 100 0.1 - - - - - - -
Caltech-101 100 0.1 - - - - - - -
Caltech-256 100 0.1 - - - - - - -
DBpedia 105 0.1 - - - - - - -
ALOI.BIN 100 0.1 10 50 10 500 0.1 20 0.001
Bacteria 106 0.1 50 200 100 106 0.1 20 0.001
Proteins 106 0.1 50 200 200 109 0.1 20 0.001
Dmoz 1000 0.1 20 100 100 50 0.1 100 0.001
LSHTC1 1000 0.1 20 100 100 50 0.1 100 0.001

pixels and passing them through the convolutional part of an entire VGG16 architecture,
including a max-pooling operation (Simonyan and Zisserman, 2014). The weights are set
to those obtained by training the network on ImageNet. For all convolutional neural net-
works, the number of epochs are set to 100 and early stopping is applied with a patience
of five iterations. For ALOI.BIN, we use the ALOI dataset with random binning features,
obtained by using the Laplacian kernel, as described in (Rahimi and Recht, 2008). Training
is performed end-to-end on a GPU, by using the PyTorch library (Paszke et al., 2017) and
infrastructure with the following specifications:

– CPU: i7-6800K 3.4 GHz (3.8 GHz Turbo Boost) 6 cores / 12 threads.
– GPU: 2x Nvidia GTX 1080 Ti 11GB + 1x Nvidia Tesla K40c 11GB.
– RAM: 64GB DDR4-2666.

For the bacteria dataset, tf-idf representations are calculated by using 3-, 4-, and 5-
grams extracted from each 16S rRNA sequence in the dataset (Fiannaca et al., 2018). For
the proteins dataset, we consider 3-grams in order to calculate the tf-idf representation for
each protein sequence. To comply with literature, we concatenate the tf-idf representations
with functional domain encoding vectors, which provide distinct functional and evolutional
information about the protein sequence. For more information about the functional domain
encodings, we refer the reader to (Li et al., 2018).

Finally, we use the learned hidden representations for the image datasets and calculate
tf-idf representations for the text datasets to train the probabilistic models using a dual
L2-regularized logistic regression model. For the DMOZ and LSHTC1 dataset we enforce
sparsity by clipping all the learned weights less than a threshold η = 0.1 to zero (Babbar
and Schölkopf, 2017). We implemented all SVBOP algorithms in C++ using Liblinear li-
brary (Fan et al., 2008) and H-NSW implementation from NMSLIB (Naidan and Boytsov,
2015). All experiments were conducted on Intel Xeon E5-2697 v3 2.60GHz (14 cores) with
64GB RAM. We include detail information about selection of hyperparameters for all the
models in the next section.

D Hyperparameters

For Liblinear library, used for implementations of all SVBOP algorithms, we tuned two
parameters: C – inverse of the regularization strength and εl – tolerance of termination
criterion. For SVBOP-HSG and underlying H-NSW index method, we tuned four parame-
ters: M – the maximum number of neighbors in the layers of H-NSW index, efc – size of
the dynamic candidate list during H-NSW index construction, k – initial size of the query
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to H-NSW index, efs – size of the dynamic candidate list during H-NSW index query, was
always set to the current value of k. For balanced 2-means tree building, we tuned two
parameters: l – maximum number of leaves on the last level of a tree and εc – tolerance of
termination criterion of the 2-means algorithm. We list all the hyperparameters we used to
obtained all the results presented in Section 5.2 and Section 5.3 in Table 5
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