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Abstract. We advocate the use of conformal prediction (CP) to enhance rule-based multi-label classi-
fication (MLC). In particular, we highlight the mutual benefit of CP and rule learning: Rules have the
ability to provide natural (non-)conformity scores, which are required by CP, while CP suggests a way
to calibrate the assessment of candidate rules, thereby supporting better predictions and more elaborate
decision making. We illustrate the potential usefulness of calibrated conformity scores in a case study
on lazy multi-label rule learning.

1 Introduction

The setting of multi-label classification (MLC), which generalizes standard multi-class classifica-
tion by relaxing the assumption of mutual exclusiveness of classes, has received a lot of attention
in machine learning, and various methods for tackling this problem have been proposed in the
literature [15]. A rule-based approach to MLC is appealing and comes with a number of interest-
ing properties. For example, rules are potentially interpretable and can provide explanations of a
prediction [7]. Moreover, due to their local nature, rule-based predictors are very expressive and
can adapt to local properties of the data in a flexible way.

In the context of MLC, the local nature of rules may also cause difficulties, however. In particular,
due to the imbalance between positive and negative labels, which is typical for MLC, “good”
rules with positive predictions that can stand up to negative rules are difficult to find. Here, we
advocate the combination of multi-label rule learning with conformal prediction (CP) to mitigate
this problem. To the best of our knowledge, CP has not been used in the context of MLC (neither
rule-based nor otherwise) so far.

2 Multilabel Classification

Let X denote an instance space, and let L = {λk}Kk=1 be a finite set of class labels. We assume
that an instance x ∈ X is (probabilistically) associated with a subset of labels Λ = Λ(x) ∈ 2L;
this subset is often called the set of relevant (positive) labels, while the complement L \ Λ is
considered as irrelevant (negative) for x. We identify a set Λ of relevant labels with a binary
vector y = (y1, . . . , yK), where yk = Jλk ∈ ΛK.4 By Y = {0, 1}K we denote the set of possible
labelings.

Given training data D = {(xn,yn)}Nn=1 ⊂ X × Y , the goal in MLC is to learn a predictive
model in the form of a multilabel classifier h, which is a mapping X −→ Y that assigns a
? Draft of an article presented at KI 2020, 43. German Conference on Artificial Intelligence, Bamberg, Germany
4 J·K is the indicator function, i.e., JAK = 1 if the predicate A is true and = 0 otherwise.
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(predicted) label subset to each instance x ∈ X . Thus, the output of a classifier h is a vec-
tor of predictions h(x) = (h1(x), . . . , hK(x)) ∈ {0, 1}K , also denoted as ŷ = (ŷ1, . . . , ŷK).
For measuring the (generalization) performance of such a model, a large spectrum of loss func-
tions or performance metrics have been proposed in the literature, including the Hamming loss
`H(y, ŷ) ..= 1

K

∑K
k=1 Jyk 6= ŷkK and the F1-measure [4].

3 Conformal Prediction

Conformal prediction [13,12,3,6] is a framework for reliable prediction that is rooted in classical
frequentist statistics and hypothesis testing. Given a sequence of training observations

(x1, y1), (x2, y2), . . . , (xN , yN ), (xN+1, •)

and a new query xN+1 with unknown outcome yN+1, the basic idea is to hypothetically replace •
by each candidate, i.e., to test the hypothesis yN+1 = y for all y ∈ Y . Only those outcomes y for
which this hypothesis can be rejected at a predefined level of confidence are excluded, while those
for which the hypothesis cannot be rejected are collected to form the prediction set or prediction
region Y ⊆ Y . By construction, the set-valued prediction Y = Y (xn+1) is guaranteed to cover
the true outcome yN+1 with a pre-specified probability of 1− ε (for example 95 %).

Hypothesis testing is done in a nonparametric way: Consider any “nonconformity” function f :

X × Y −→ R that assigns scores α = f(x, y) to input/output tuples; the latter can be inter-
preted as a measure of “strangeness” of the pattern (x, y), i.e., the higher the score, the less the
data point (x, y) conforms to what one would expect to observe. Applying this function to the
sequence of observations, with a specific (though hypothetical) choice of y = yN+1, yields a se-
quence of scores α1, α2, . . . , αN , αN+1, where αi = f(xi, yi). Denote by σ the permutation of
{1, . . . , N + 1} that sorts the scores in increasing order, i.e., such that ασ(1) ≤ . . . ≤ ασ(N+1).
Under the assumption that the hypothetical choice of yN+1 is in agreement with the true data-
generating process, and that this process has the property of exchangeability (which is weaker than
the assumption of independence and essentially means that the order of observations is irrelevant),
every permutation σ has the same probability of occurrence. Consequently, the probability that
αN+1 is among the ε% highest nonconformity scores should be low. This notion can be captured
by the p-values associated with the candidate y, defined as

p(y) ..=
#{i |αi ≥ αN+1}

N + 1
(1)

According to what we said, the probability that p(y) < ε (i.e., αN+1 is among the ε% highest α-
values) is upper-bounded by ε. Thus, the hypothesis yN+1 = y can be rejected for those candidates
y for which p(y) < ε.

Conformal prediction as outlined above realizes transductive inference, although inductive variants
also exist [9], where the nonconformity scores in (1) are produced on a training resp. validation
data set. The error bounds are valid and well calibrated by construction, regardless of the non-
conformity function f . However, the choice of this function has an important influence on the
efficiency of conformal prediction, that is, the size of prediction regions: The more suitably the
nonconformity function is chosen, the smaller these sets will be.



4 Conformal Rule-Based MLC

A rule-based classifier in the context of MLC is understood as a collection R = {r1, . . . , rM}
of individual rules rm, where each rule rm : Hm ← Bm is characterized by a head Hm and a
body Bm. Roughly speaking, the rule head makes an assertion about the relevance of the labels
λk, while the rule body specifies conditions under which this assertion is valid. It typically appears
in the form of a logical predicate that specifies conditions on a query instance x, for example a
logical conjunction of restrictions on some of the features (e.g., a numerical value must lie in a
certain interval).

4.1 Lazy Rule Learning

Here, we consider a lazy approach to multi-label rule learning, in which, instead of (eagerly)
inducing a complete model R from the training data D, a single rule rq : Hq ← Bq is induced at
prediction time [1,5]. This rule is specifically tailored to a query instance xq, for which a prediction
is sought. More concretely, considering a binary relevance approach, a separate rule rq,k : Hq,k ←
Bq,k is constructed for each label λk ∈ L. The rule head is of the form ŷk = 0 or ŷk = 1. In the
first case, the rule is a negative rule that predicts λk to be irrelevant, in the second case a positive
rule that predicts λk to be relevant.

The local nature of rules has advantages but may also cause difficulties, especially in the context
of MLC, where the data is highly imbalanced. In many cases, only a tiny fraction of the labels
is relevant (positive), while the majority is irrelevant (negative). In general, this makes it difficult
to find a “good” rule with positive predictions in its head, where the quality of a rule is typically
measured in terms of two criteria, namely support (the body should be general enough so as to
cover many instances) and confidence (the covered instances should belong to the same class). On
the contrary, the learner has a strong incentive to make negative predictions, especially for loss
functions such as Hamming. For example, the default rule with empty body, which predicts all
labels to be always negative, will often have a very low Hamming loss, because most labels will
be negative in the test examples. At the same time, this rule has a large support. When learning
a single rule, as opposed to a complete model with many rules, that single rule must at least be
better than the default rule — which is difficult for positive rules, as these normally have a small
support.

4.2 Conformity of Positive and Negative Predictions

In general, the evaluation of negative rules is systematically better than the evaluation of positive
rules. This is a motivation for the use of conformal prediction, which, if applied in a per-class
manner, could “calibrate” the evaluations. More specifically, for a query instance xq and a label
λk ∈ L, we propose the conformity (instead of non-conformity) score

c(xq, yk) ..= max
r∈C(xq ,yk)

eval(r) , (2)

where yk ∈ {0, 1}, C(xq, yk) is a set of candidate rules that cover xq and predict yk for the label
λk, and eval is an evaluation measure informing about the quality of the rule r. As already said,



such measures typically depend on the confidence and the support of the rule. In our illustration
below, we shall use the lower confidence bound p̂ −

√
1/n, where n is the number of examples

covered by the rule and p̂ the fraction of examples with the predicted label [2], though any other
measure could be used as well. Practically, it might be difficult to determine the maximum in (2)
exactly, as an exhaustive search of the candidate set C(xq, yk) might be infeasible. Instead, greedy
search techniques are often used to find an approximately optimal rule.

The measure (2) appears to be a very natural measure of conformity: The conformity of yk for xq
is high if a high-quality rule can be found that predicts yk. A measure of plausibility of this label
is then given by

q(xq, yk) = 1− p(xq, yk) =
#
{
(x, y) ∈ D | y = yk, c(xq, yk) > c(x, y)

}
#
{
(x, y) ∈ D | y = yk

} , (3)

where D is the training data and c(x, y) the conformity of the training example (x, y) determined
in a leave-one-out manner (i.e., the quality of the best rule for (x, y) found in D \ {(x, y)}). In
other words, if q(xq, 1) = α, it means that the quality of the best positive rule for xq is better than
the quality of 100α% of the rules found for the truly positive examples in the training data, and
the same interpretation applies to q(xq, 0). Consequently, only low values close to 0 provide real
evidence against a certain prediction. For example, if q(xq, 1) = 0.2, it means that the positive
rule found for xq is still better than 20% of the rules for the truly positive examples in the training
data. In the spirit of hypothesis testing, one would “reject” the positive class only if q(xq, 1) < t

for some critical threshold t such as t = 0.1 or t = 0.05, and similarly for the negative class.

Fig. 1: Positive and negative conformity scores (2) and calibrated plausibilities (3) for the first
label in the emotions data. Positive examples are plotted as red, negative examples as blue points.

As an illustration, Fig. 1 shows the distribution of positive and negative conformity scores (2) and
calibrated plausibilities (3) for the first label in the emotions data (on a randomly chosen training
set of size 400), a common benchmark data set with 596 examples, 72 attributes, and 6 labels
[14]. Here, simple rules in the form of Parzen windows [11] have been learned, searching the
space of such rules in a greedy, bottom-up manner (starting with a small window around xq and
successively increasing its size). As expected, the positive examples tend to have a higher positive
than negative plausibility, and vice versa for the negative examples. Moreover, the sum of the two
scores tends to be upper-bounded by 1 and sometimes takes values closer to 0, suggesting higher



certainty in the true label in some cases and less in others, again confirming the appropriateness of
the conformity measure (2).

4.3 Prediction and Decision Making

Given a query xq, the degrees q(xq, 1) and q(xq, 0) provide useful information about the plau-
sibility of the positive and negative class, respectively, and hence a suitable basis for prediction
and decision making. The arguably most obvious idea is to compare the two degrees and predict
the label with higher plausibility, i.e., positive if q(xq, 1) ≥ q(xq, 0) and negative otherwise. Yet,
since MLC losses are not necessarily symmetric, and the class distribution is imbalanced, one may
also think of a more general decision rule of the form

ŷk =
q
q(xq, 1) ≥ θ · q(xq, 0)

y
, (4)

where θ > 0 is a parameter. Fig. 2 (top) shows the average test performance5 on the emotions data
in terms of the Hamming loss and (micro) F1-measure. As can be seen, by tuning the threshold θ,
the performance can indeed be optimized, although θ = 1 is already close to optimal, confirming
that the scores (3) are already well calibrated.

Fig. 2: Top: Hamming loss and F-measure on the emotions data, depending on the threshold θ in
the decision rule (4). Bottom: Accuracy-rejection curves for Hamming loss and F1-measure on the
same data.

Recalling that conformal prediction is actually conceived for set-valued prediction, one may also
think of using the two plausibilities to support more sophisticated decision making. One example

5 50 random splits into 400 training examples and 196 test examples.



is multi-label classification with (partial) abstention, where the learner is allowed to abstain on
those labels on which it is not certain enough [8]. A natural reason to abstain, for example, is a
low support for both options: max{q(xq, 0), q(xq, 1)} ≤ θ, where θ is again a threshold. The
effectiveness of such an approach is shown by the accuracy-rejection curves in Fig. 2 (bottom),
which depict the average Hamming loss and F1-measure on those parts of the test data on which
the learner does not abstain. The curves show a drastic increase in performance with an increasing
amount of abstention (i.e., increasing θ), suggesting that the learner is indeed abstaining on the
right labels, namely those that are most uncertain6.

5 Conclusion and Outlook

The purpose of this paper is to highlight the potential usefulness of combining multi-label (rule)
learning with conformal prediction. On the one side, rules provide a natural means for producing
conformity scores of candidate labelings, very much like nearest neighbor methods, which are
commonly used for CP [10]. On the other side, CP allows for producing meaningful and better
calibrated measures of support in favor or label relevance, thus providing the basis for improved
prediction, especially in advanced settings like MLC with abstention.

Exploiting the potential of this approach requires answers to a multitude of questions. One im-
portant building block, for example, is the class of candidate rules C(xq, y) and the search in this
class. Lazy rule learning as well as ensemble methods appear to be appealing in this regard. More-
over, to capture correlations and dependencies between different labels, the approach should be
generalized toward the learning of rules with multi-label heads, predicting complete label combi-
nations instead of individual labels.
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