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Abstract. Principles of analogical reasoning have recently been applied in the context of machine
learning, for example to develop new methods for classification and preference learning. In this paper,
we argue that, while analogical reasoning is certainly useful for constructing new learning algorithms
with high predictive accuracy, is is arguably not less interesting from an interpretability and explain-
ability point of view. More specifically, we take the view that an analogy-based approach is a viable
alternative to existing approaches in the realm of explainable Al and interpretable machine learning,
and that analogy-based explanations of the predictions produced by a machine learning algorithm can
complement similarity-based explanations in a meaningful way. To corroborate these claims, we outline
the basic idea of an analogy-based explanation and illustrate its potential usefulness by means of some
examples.
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1 Introduction

Over the past couple of years, the idea of explainability and related notions such as transparency
and interpretability have received increasing attention in artificial intelligence (Al) in general and
machine learning (ML) in particular. This is mainly due to the ever growing number of real-world
applications of Al technology and the increasing level of autonomy of algorithms taking deci-
sions on behalf of people, and hence of the social responsibility of computer scientists developing
these algorithms. Meanwhile, algorithmic decision making has a strong societal impact, which
has led to the quest for understanding such decisions, or even to claiming a “right to explana-
tion” [12]. Explainability is closely connected to other properties characterizing a “responsible”
or “trusthworthy” AI/ML, such as fairness, safety, robustness, responsibility, and accountability,
among others.

Machine learning models, or, more specifically, the predictors induced by a machine learning al-
gorithm on the basis of suitable training data, are not immediately understandable most of the
time. This is especially true for the most “fashionable” class of ML algorithms these days, namely
deep neural networks. On the contrary, a neural network is a typical example of what is called a
“black-box” model in the literature: It takes inputs and produces associated outputs, often with
high predictive accuracy, but the way in which the inputs and outputs are related to each other, and
the latter are produced on the basis of the former, is very intransparent, as it involves possibly mil-
lions of mathematical operations and nonlinear transformations conducted by the network (in an
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attempt to simulate the neural activity of a human brain). A lack of transparency and interpretabil-
ity is arguably less problematic for other ML methodology with a stronger “white-box” character,
most notably symbol-oriented approaches such as rules and decision trees. Yet, even for such
methods, interpretability is far from being guaranteed, especially because accurate models often
require a certain size and complexity. For example, even if a decision tree might be interpretable
in principle, a tree with hundreds of nodes will hardly be understandable by anyone.

The lack of transparency of contemporary ML methodology has triggered research that is aimed at
improving the interpretability of ML algorithms, models, and predictions. In this regard, various
approaches have been put forward, ranging from “interpretability by design”, i.e., learning models
with in-built interpretability, to model-agnostic explanations — a brief overview will be given in
the next section. In this paper, we propose to add principles of analogical reasoning [11]] as another
alternative to this repertoire. Such an approach is especially motivated by so-called example-based
explanations, which refer to the notion of similarity. Molnar [[L6] describes the blueprint of such
explanations as follows: “Thing B is similar to thing A and A caused Y, so I predict that B will
cause Y as well.” In a machine learning context, the “things” are data entities (instances), and
the causes are predictions. In (binary) classification, for example, the above pattern might be used
to explain the learner’s prediction for a query instance: A belongs to the positive class, and B is
similar to A, hence B is likely to be positive, too. Obviously, this type of explanation is intimately
connected to the nearest neighbor estimation principle [8]].

Now, while similarity establishes a relationship between pairs of objects (i.e. tuples), an analogy
involves four such objects (i.e. quadruples). The basic regularity assumption underlying analogical
reasoning is as follows: Given objects A, B, C, D, if A relates to B as C' relates to D, then this
“relatedness” also applies to the properties caused by these objects (for example, the predictions
produced by an ML model). Several authors have recently elaborated on the idea of using ana-
logical reasoning for the purpose of (supervised) machine learning [6J2)5]], though without raising
the issue of interpretability. Here, we will argue that analogy-based explanations can complement
similarity-based explanations in a meaningful way.

The remainder of the paper is organized as follows. In the next section, we give a brief overview of
different approaches to interpretable machine learning. In Section 3, we provide some background
on analogy-based learning — to this end, we recall the basics of a concrete method that was re-
cently introduced in [2]. In Section 4, we elaborate on the idea on analogy-based explanations in
machine learning, specifically focusing on classification and preference learning.

2 Interpretable Machine Learning

In the realm of interpretable machine learning, two broad approaches are often distinguished. The
first is to learn models that are inherently interpretable, i.e., models with in-built transparency
that are interpretable by design. Several classical ML methods are put into this category, most
notably symbol-oriented approaches like decision trees, but also methods that induce “simple”
(typically linear) mathematical models, such as logistic regression. The second approach is to
extract interpretable information from presumably intransparent “black-box” models. Within this
category, two subcategories can be further distinguished.



In the first subcategory, global approximations of the entire black-box model are produced by
training more transparent “white-box” models as a surrogate. This can be done, for example, by
using the black-box model as a teacher, i.e., to produce training data for the white-box model
[3]. In the second subcategory, which is specifically relevant for this paper, the idea is to extract
interpretable /ocal information, which only pertains to a restricted region in the instance space, or
perhaps only to a single instance. In other words, the idea is to approximate a black-box model
only locally instead of globally, which, of course, can be accomplished more easily, especially
by simple models. Prominent examples of this approach are LIME [17]] and SHAP [14]. These
approaches are qualified as model agnostic, because they use the underlying model only as a
black-box that is queried for the purpose of data generation.

In addition to generic, universally applicable methods of this kind, there are various methods for
extracting useful information that are specifically tailored to certain model classes, most notably
deep neural networks [[18]]. Such methods seek to provide some basic understanding of how such a
network connects inputs with outputs. To this end, various techniques for making a network more
transparent have been proposed, many of them based on the visualization of neural activities.

Interestingly, the focus in interpretable machine learning has been very much on classification so
far, while other ML problems have been considered much less. In particular, there is very little
work on interpretable preference learning and ranking [10]. As will be argued later on, the idea of
analogy-based explanation appears to be especially appealing from this point of view.

3 Analogy-Based Learning

In this section, we briefly recall the basic ideas of an analogy-based learning algorithm that was
recently introduced in [2]]. This will set the stage for our discussion of analogy-based explanation
in the next section, and provide a basis for understanding the main arguments put forward there.

The mentioned approach proceeds from the standard setting of supervised learning, in which data
objects (instances) are described in terms of feature vectors * = (z1,...,24) € X C R%. The
authors are mainly interested in the problem of ranking, i.e., in learning a ranking function p that
accepts any (query) subset @ = {x1,...,x,} C X of instances as input. As output, the function
produces a ranking in the form of a total order of the instances, which can be represented by a
permutation 7, with () the rank of instance ;. Yet, the algorithmic principles underlying this
approach can also be used for the purpose of classification. In the following, to ease explanation,
we shall nevertheless stick to the case of ranking.

3.1 Analogical Proportions

The approach essentially builds on the following inference pattern: If object a relates to object b as
crelates to d, and knowing that a is preferred to b, we (hypothetically) infer that ¢ is preferred to d.
This principle is formalized using the concept of analogical proportion [15]. For every quadruple
of objects a, b, ¢, d, the latter provides a numerical degree to which these objects are in analogical
relation to each other. To this end, such a degree is first determined for each attribute value (feature)
separately, and these degrees are then combined into an overall degree of analogy.



More specifically, for four values a, b, ¢, d from an attribute domain X, the quadruple (a, b, ¢, d) is
said to be in analogical proportion, denoted by a : b :: ¢ : d, if “a relates to b as c relates to d”, or
formally:

E(R(a,b),R(c,d)), (1)

where the relation E/ denotes the “as” part of the informal description. R can be instantiated in
different ways, depending on the underlying domain X:

— In the case of Boolean variables, where X = {0, 1}, there are 2* = 16 instantiations of the
pattern a : b :: ¢ : d, of which only the following 6 satisfy a set of axioms required to hold for
analogical proportions:

——_ =0 O Ol
_—_ 0 = O Ol
—_ O = O = Ofl0
—_ O O = = Ol

This formalization captures the idea that a differs from b (in the sense of being “equally true”,
“more true”, or “less true”, if the values 0 and 1 are interpreted as truth degrees) exactly as c
differs from d, and vice versa.

— In the numerical case, assuming all attributes to be normalized to the unit interval [0, 1], the
concept of analogical proportion can be extended on the basis of generalized logical operators
[619]]. In this case, the analogical proportion will become a matter of degree, i.e., a quadruple
(a,b, ¢, d) can be in analogical proportion fo some degree between 0 and 1. An example of such
a proportion, with R being the arithmetic difference, i.e., R(a,b) = a — b, is the following:

1—|(a—0b)—(c—d)|, if sign(a—b) =sign(c—d)

0, otherwise.

v(a,b,c,d) = { 2

Note that this formalization indeed generalizes the Boolean case (where a,b,c,d € {0,1}).
Another example is geometric proportions R (a, b) = a/b.

To extend analogical proportions from individual values to complete feature vectors, the individual
degrees of proportion can be combined using any suitable aggregation function, for example the

arithmetic mean:
d

1
v(a,b,c,d) = y Zv(ai, bi, ciy d;) -
=1

3.2 Analogical Prediction

The basic idea of analogy-based learning is to leverage analogical proportions for the purpose of
analogical transfer, that is, to transfer information about the target of prediction. In the case of
preference learning, the target could be the preference relation between two objects ¢ and d, i.e.,
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Fig. 1: Illustration of analogy-based prediction: The four objects a, b, ¢, d are in analogical pro-
portion to each other. In the case of preference learning, the known preference a > b would hence
be taken as an indication that ¢ > d (left). Likewise, in the case of binary classification, knowing
that a and ¢ are positive while b is negative, analogical inference suggests that d is negative, too
(right).

whether ¢ > d or d > c. Likewise, in the case of classification, the target could be the class label
of a query object d (cf. Fig.|[l|for an illustration).

In the context of preference learning, the authors in [2] realize analogical transfer in the style of
the k-nearest neighbor approach: Given a query pair (¢, d), they search for the tuples (a;, b;) in
the training data producing the k highest analogies {a; : b; :: ¢ : d}le. Since the preferences
between a; and b; are given as part of the training data, each of these analogies suggests either
c > dor d > c by virtue of analogical transfer, i.e., each of them provides a vote in favor of the
first or the second case. Eventually, the preference with the higher number of votes is adopted, or
the distribution of votes is turned into an estimate of the probability of the two cases.

Obviously, a very similar principle could be invoked in the case of (binary) classification. Here,
given a query instance d, one would search for triplets (a;, b;, ¢;) in the training data forming
strong analogies a; : b; :: ¢; : d, and again invoke the principle of analogical transfer to conjecture
about the class label of d. Each analogy will suggest the positive or the negative class, and the
corresponding votes could then be aggregated in one way or the other.

3.3 Feature Selection

Obviously, the feature representation of objects will have a strong effect on whether, or to what
extent, the analogy assumption applies to a specific problem, and hence influence the success of
the analogical inference principle. Therefore, prior to applying analogical reasoning methods, it
could make sense to find an embedding of objects in a suitable space, so that the assumption of the
above inference pattern holds true in that space. This is comparable, for example, to embedding
objects in R? in such a way that the nearest neighbor rule with Euclidean distance yields good
predictions in a classification task.

In [[1]], the authors address the problem of feature selection [13] in analogical inference, which can
be seen as a specific type of embedding, namely a projection of the data from the original feature
space to a subspace. By ignoring irrelevant or noisy features and restricting to the most relevant
dimensions, feature selection can often improve the performance of learning methods. Moreover,
feature selection is also important from an explainability point of view, because the representation
of data objects in terms of meaningful features is a basic prerequisite for the interpretability of a



machine learning model operating on this representation. In this regard, feature selection is also
more appropriate than general feature embedding techniques. The latter typically produce new
features in the form of (nonlinear) combinations of the original features, which lose semantic
meaning and are therefore difficult to interpret.

4 Analogy-based Explanation

To motivate an analogy-based explanation of predictions produced by an ML algorithm, let us
again consider the idea of similarity-based explanation as a starting point. As we shall argue, the
former can complement the latter in a meaningful way, especially because it refers to a different
type of “knowledge transfer”. As before, we distinguish between two exemplary prediction tasks,
namely classification and ranking. This distinction is arguably important, mainly for the following
reason: In classification, a property (class membership) is assigned to a single object , whereas
in ranking, a property (preference) is ascribed to a pair of objects (¢, d). Moreover, in the case of
ranking, the property is in fact a relation, namely a binary preference relation. Thus, since analogy-
based inference essentially deals with “relatedness”, ranking and preference learning lends itself
to analogy-based explanation quite naturally, perhaps even more so than classification.

For the purpose of illustration, we make use of a data set that classifies 172 scientific journals in
the field of pure mathematics into quality categories A*, A, B, C [4]. Each journal is moreover
scored in terms of 5 criteria, namely

— cites: the total number of citations per year;

— IF: the well-known impact factor (average number of citations per article within two years
after publication);

— II: the immediacy index measures how topical the articles published in a journal are (cites to
articles in current calendar year divided by the number of articles published in that year);

— articles: the total number of articles published;

half-line: cited half-life (median age of articles cited).

In a machine learning context, a classification task may consist of predicting the category of a jour-
nal, using the scores on the criteria as features. Likewise, a ranking task may consist of predicting
preferences between journals, or predicting an entire ranking of several journals.

4.1 Explaining Class Predictions

Similarity-based explanations typically “justify” a prediction by referring to local (nearest neigh-
bor) information in the vicinity of a query instance x. In the simplest case, the nearest neighbor
of z is retrieved from the training data, and its class label is provided as a justification (cf. Fig.[2):
“There is a case &’ that is similar to x, and which belongs to class ¥, so « is likely to belong to
y as well.” For example, there is another journal with similar scores on the different criteria, and
which is ranked in category A, which explains why this journal is also put into this category.

A slightly more general approach is to retrieve, not only the single nearest neighbor but the &
nearest neighbors, and to provide information about the distribution of classes among this set of
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Fig. 2: Left: Illustration of similarity-based explanation in a binary classification setting (black
points are positive examples, white ones negative). The shaded circle indicated the neighborhood
(of size 3) of the query instance (red point). The dashed line is a discriminant function that could
have been induced by another (global) learning method. Right: Illustration of analogy-based ex-
planation. Again, the query point is shown in red. Together with the three other points, it forms an
analogical relationship.

examples. Information of that kind is obviously useful, as it conveys an idea of the confidence
and reliability of a prediction. If many neighbors are all from the same class, this will of course
increase the trust in a prediction. If, on the other side, the distribution of classes in the neighbor-
hood is mixed, the prediction might be considered as uncertain, and hence the explanation as less
convincing.

Similarity- or example-based explanations of this kind are very natural and suggest themselves if
a nearest neighbor approach is used by the learner to make predictions. It should be mentioned,
however, that similarity-based explanations can also be given if predictions are produced by an-
other type of model (like the discriminative model indicated by the dashed decision boundary
in Fig. [2). In this case, the nearest neighbor approach serves as a kind of surrogate model. This
could be justified by the fact that most machine learning methods do indeed obey the regularity
assumption underlying similarity-based inference. For example, a discriminant function is more
likely to assign two similar objects to the same class than to separate them, although such cases
do necessarily exist as well.

Obviously, a key prerequisite of the meaningfulness of similarity-based explanations is a meaning-
ful notion of similarity, formalized in terms of an underlying similarity or distance function. This
assumption is far from trivial, and typically not satisfied by “default” metrics like the Euclidean
distance. Instead, a meaningful measure of distance needs to properly modulate the influence of
individual features, because not all features might be of equal importance. Besides, such a measure
should be able to capture interactions between features, which might not be considered indepen-
dently of each other. For example, depending on the value of one feature, another feature might
be considered more or less important (or perhaps completely ignored, as it does not apply any
more). In other words, a meaningful measure of similarity may require a complex aggregation
of the similarities of individual features [7]. Needless to say, this may hamper the usefulness of
similarity-based explanations: If a user cannot understand why two cases are deemed similar, she
will hardly accept a similar case as an explanation.

Another issue of the similarity-based approach, which brings us to the analogy-based alternative,
is related to the difficulty of interpreting a degree of similarity or distance. Often, these degrees are



not normalized (especially in the case of distance), and therefore difficult to judge: How similar is
similar? What minimal degree of similarity should be expected in an explanation? For example,
when explaining the categorization of a journal as B by pointing to a journal with similar proper-
ties, which is also rated as B, one may wonder whether the difference between them is really so
small, or not perhaps big enough to justify a categorization as A.

An analogy-based approach might be especially interesting in this regard, as it explicitly refers to
this distance, or, more generally, the relatedness between data entities. In the above example, an
analogy-based explanation given to the manager of a journal rated as B instead of A might be of
the following kind: “There are three other journals, two rated A (a and c¢) and one rated B (b).
The relationship between a and b is very much the same as the relationship between ¢ and your
journal, and b was also rated B.” For example, a and b may have the same characteristics, except
that b has 100 more articles published per year. The manager might now be more content and
accept the decision more easily, because she understands that 100 articles more or less can make
the difference.

A concrete example for the journal data is shown in Fig.[3| Here, an analogy is found for a journal
with (normalized) scores of 0.03, 0.06, 0.08, 0.04, 1 on the five criteria. To explain why this journal
is only put in category C but not in B, three other journals a, b, ¢ are found, a from category A,
and b and c from category B, so thata : b :: ¢ : d (the degree of analogical proportion is ~ 0.98).
Note that the score profiles of a and ¢ resp. b and d are not very similar themselves, which is not
surprising, because a and c are from different categories. Still, the four journals form an analogy,
in the sense that an A-journal relates to a B-journal as a B-journal relates to a C'-journal.
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Fig. 3: Example of an analogy a : b :: ¢ : d in the journal data set, with a (dashed line) and b
(solid) on the left panel, ¢ (dashed line) and d (solid) on the right.

Note that this type of explanation is somewhat related to the idea of explaining with counterfac-
tuals [19]], although the cases forming an analogy are of course factual and not counterfactual.
Nevertheless, an analogy-based explanation may give an idea of what changes of features might
be required to achieve a change in the classification. On the other side, an analogy can of course
also explain why a certain difference is not enough. For example, explaining the rating as B to a
journal d by pointing to another journal ¢ might not convince the journal manager, because she
feels that, despite the similarity, her journal is still a bit better in most of the criteria. Finding an
analogy a : b :: ¢ : d, with journals a and b also categorized as B, may then be helpful and
convince her that the difference is not significant enough.



Of course, just like the nearest neighbor approach, analogy-based explanations are not restricted to
a single analogy. Instead, several analogies, perhaps sorted by their strength (degree of analogical
proportion), could be extracted from the training data. In this regard, another potential advantage
of an analogy-based compared to a similarity-based approach should be mentioned: While both
approaches are local in the sense of giving an explanation for a specific query instance, i.e., local
with respect to the explanandum, the similarity-based approach is also local with respect to the
explanans, as it can only refer to cases in the vicinity of the query — which may or may not exist.
The analogy-based approach, on the other side, is not restricted in this sense, as the explanans is
not necessarily local. Instead, a triplet a, b, ¢ forming an analogy with a query d can be distributed
in any way, and hence offers many more possibilities for constructing an explanation (see also Fig.
M). Besides, one should note that there are much more triplets than potential nearest neighbors (the
former scales cubicly with the size of the training data, the latter only linearly).
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Fig. 4: Decumulative analogy/similarity distribution: The solid line shows the average percentage
of triplets (y-axis) a, b, c in the journal data set exceeding a degree of analogical proportion (x-
axis) with a specific query d. Likewise, the dashed line shows the average percentage of examples
in the training data exceeding a degree of similarity (1 — L;-distance) with a query instance. As
can be seen, the latter drops much faster than the former.

Last but not least, let us mention that analogy-based explanations, just like similarity-based ex-
planations, are in principle not limited to analogical learning, but could also be used in a model-
agnostic way, and as a surrogate for other models.

4.2 Explaining Preference Predictions

In the case of classification, training data is given in the form of examples of the form (x,y),
where @ is an element from the instance space X and y a class label. In the case of preference
learning, we assume training data in the form of pairwise preferences a >~ b, and the task is to
infer the preferential relationship for a new object pair (¢,d) € X x X given as a query (or a
ranking of more than two objects, in which case the prediction of pairwise preferences could be
an intermediate step). How could one explain a prediction ¢ > d?

The similarity-based approach amounts to finding a “similar” preference a > b in the training
data. It is not immediately clear, however, what similarity of preferences is actually supposed



to mean, even if a similarity measure on X is given. A natural solution would be a conjunctive
combination: a preference a > b is similar to ¢ > d if both a is similar to ¢ and b is similar to d.
This requirement might be quite strong, so that finding similar preferences gets difficult.

The analogy-based approach can be seen as a relaxation. Instead of requiring the objects to more or
less coincide, they are only supposed to stand in a similar relationship to each other, i.e., R(a, b) ~
R(e, d). The relationship R can mean similarity, but does not necessarily need to do so (as shown
by the definition of R in terms of arithmetic or geometric proportions).

The explanation of preferences in terms of analogy appears to be quite natural. For the purpose
of illustration, consider again our example: Why did the learner predict a preference ¢ > d,
i.e., that journal c is ranked higher (evaluated better than) journal d? To give an explanation,
one could find a preference a > b between journals in the training data, so that (a,b) is in
analogical proportion to (¢, d). In the case of arithmetic proportions, this means that the feature
values (ratings of criteria) of a deviate from the feature values of d in much the same way as those
of ¢ deviate from those of d, and this deviation will then serve as an explanation of the preference.

5 Conclusion and Future Work

In this paper, we presented some preliminary ideas on leveraging the principle of analogy for the
purpose of explanation in machine learning. This is essentially motivated by the recent interest in
analogy-based approaches to ML problems, such as classification and preference learning, though
hitherto without explicitly addressing the notion of interpretability. In particular, we tried to high-
light the potential of an analogy-based approach to complement similarity-based (example-based)
explanation in a reasonable way.

Needless to say, our discussion is just a first step, and the evidence we presented in favor of
analogy-based explanations is more of an anecdotal nature. In future work, the basic ideas put
forward need to be worked out in detail, and indeed, there are many open questions to be addressed.
For example, which analogy in a data set is best suited for explaining a specific prediction? In the
case of analogy, the answer appears to be less straightforward than in the case of similarity, where
more similarity is simply better than less. Also, going beyond the retrieval of a single analogy
for explanation, how should one assemble a good composition of analogies? Last but not least,
it would of course also be important to evaluate the usefulness of analogy-based explanation in a
more systematic way, ideally in a user study involving human domain experts.
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