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Reinforcement Learning

Learning from rewarded interaction with an

environment.
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Reinforcement Learning

Learning from rewarded interaction with an

environment.
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Goal: Find policy rthat maximizes
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From Human Feedback

Defining rewards that induce desired behavior is

challenging — RLHF
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Note: This slide contains videos, which have been replaced by
single frames for the PDF export.

Pairwise Comparison Example
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Note: This slide contains videos, which have been replaced by
single frames for the PDF export.

Pairwise Comparison Example
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Assumption: Labeler makes reward-rational’ choice.

exp R(m1)
exp(R(12)) + exp(R(11))

Pl = 1) =
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Labeling is Important

Initial
Interaction

Query Poli(%y
selection Learning

Preference

Labeling ——

Learning

B Real human feedback is inconvenient.

B Researchers often synthesize feedback for
evaluation.

B Our argument: This is not enough!
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Challenges of Real Human Feedback

B Response biases, inconsistent behavior
B Acquiescence bias
B Primacy/recency effects

B Unobserved factors
B Motivation
B Distraction

B Disagreements
B Intra-labeler (fatigue, experience, ...)
B Inter-labeler

B Researcher-labeler (misunderstandings)
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Opportunities of Real Human Feedback

B Optimize the labeling task
B Goal: obtain more feedback for the same amount of human time

B Extend or replace comparison queries (e.g. explanations, more response options, long interactions)
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Opportunities of Real Human Feedback

B Optimize the labeling task via:

B More efficient query selection and
presentation?

B Aided evaluation

B Using implicit feedback

ASAL
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Future applications and research ideas

/> Designing a platform to make collecting HF easier.?
:}. Systematically reviewing research on best practices in collecting HF.
- - Facilitate this with platform.

%‘ Facilitate collaboration across disciplines to enhance research in RLHF.
(/
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Take-Away

B Synthesized feedback misses crucial aspects of real feedback.

B Real feedback poses challenges, but also provides opportunities.

B |tisimportantto incorporate these aspects into RLHF research.

B \We need more research to systematically compare different feedback
modes.
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and online:

timokaufmann.com
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Take-Away

Synthesized feedback misses crucial aspects of real feedback.

Real feedback poses challenges, but also provides opportunities.

It is important to incorporate these aspects into RLHF research.

We need more research to systematically compare different feedback
modes.

Questions?

and online:

timokaufmann.com
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https://timokaufmann.com/publications/#kaufmann2023challenges

	Intro
	Slide 1
	Slide 2: Reinforcement Learning
	Slide 3: Reinforcement Learning
	Slide 4: Reinforcement Learning
	Slide 5: Pairwise Comparison Example
	Slide 6: Pairwise Comparison Example
	Slide 7: Pairwise Comparison Example
	Slide 8: Pairwise Comparison Example
	Slide 9: Pairwise Comparison Example
	Slide 10: Labeling is Important

	Core
	Slide 11: Challenges of Real Human Feedback
	Slide 12: Challenges of Real Human Feedback
	Slide 13: Challenges of Real Human Feedback
	Slide 14: Challenges of Real Human Feedback
	Slide 15: Opportunities of Real Human Feedback
	Slide 16: Opportunities of Real Human Feedback
	Slide 17: Opportunities of Real Human Feedback
	Slide 18: Opportunities of Real Human Feedback
	Slide 19: Opportunities of Real Human Feedback
	Slide 20: Opportunities of Real Human Feedback
	Slide 21: Opportunities of Real Human Feedback
	Slide 22: Future applications and research ideas

	Conclusion
	Slide 23: Take-Away
	Slide 24: Take-Away
	Slide 25: Take-Away


