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Abstract. Algorithm selection refers to the task of automatically se-
lecting the most suitable algorithm for solving an instance of a compu-
tational problem from a set of candidate algorithms. Here, suitability
is typically measured in terms of the algorithms’ runtimes. To allow the
selection of algorithms on new problem instances, machine learning mod-
els are trained on previously observed performance data and then used
to predict the algorithms’ performances. Due to the computational ef-
fort, the execution of such algorithms is often prematurely terminated,
which leads to right-censored observations representing a lower bound
on the actual runtime. While simply neglecting these censored samples
leads to overly optimistic models, imputing them with precise though
hypothetical values, such as the commonly used penalized average run-
time, is a rather arbitrary and biased approach. In this paper, we pro-
pose a simple regression method based on so-called superset learning, in
which right-censored runtime data are explicitly incorporated in terms of
interval-valued observations, offering an intuitive and efficient approach
to handling censored data. Benchmarking on publicly available algorithm
performance data, we demonstrate that it outperforms the aforemen-
tioned näıve ways of dealing with censored samples and is competitive
to established methods for censored regression in the field of algorithm
selection.

Keywords: algorithm selection · superset learning · censored data.

1 Introduction

Per-instance Algorithm Selection (AS) denotes the problem of recommending an
algorithm that appears to be most suitable for a given instance of a problem class.
The suitability is assessed with respect to a specific performance criterion, such
as solution quality or runtime. The latter is of special interest when dealing with
computationally hard problems, such as the Boolean satisfiability problem (SAT)
[26,25], the traveling salesperson problem (TSP) [19], or constraint satisfaction
problems (CSP) [18], just to name a few. For this kind of problems, different
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solvers or optimizers have been developed, which build on different heuristics to
exploit certain structures inherent to the problem instances. As the heuristics are
complementary in some sense, choosing the solver or optimizer on a per-instance
basis can drastically improve the overall performance [13].

A common approach to AS is the use of machine learning methods to predict
the runtime of algorithms on unseen problem instances. One major challenge for
such approaches concerns the training data, parts of which are usually censored.
The censoring has its root in the way the training data is generated. To assess
the true runtime of an algorithm for a problem instance, it is simply run on
that particular instance. However, for specifically hard instances, the algorithms
may take days, weeks, or even years before returning a solution. To keep the
computational effort reasonable, a cutoff time is set at which the execution of
still running algorithms is aborted. In the commonly used AS benchmarking
suite ASlib [2], up to 70% of the instances in the training data are censored (cf.
Table 1).

To deal with censored data, several approaches consider them as missing
values and apply imputation techniques to replace these values [21,26]. Alterna-
tively, techniques from the field of survival analysis have been proposed [6,5,24].
While the latter approach appropriately captures the information provided by
a censored observation, namely that the runtime exceeds the cutoff time C,
the former turns it into unduly precise information and comes with the risk of
incorporating a bias in the learning process.

In this paper, we propose to consider AS as a so-called superset learning
problem [9], where the learner induces a (precise) predictive model from possibly
imprecise training data. More concretely, we learn a regression model for runtime
prediction from training instances that are either precisely labeled or labeled with
an interval of the form (C,∞). This is not only a just representation of the (weak
albeit non-void) information that the true runtime exceeds C, but, as will be
seen, also offers an efficient way for handling censored data. In our experimental
evaluation, we show that methods based on superset learning can induce (linear)
models that outperform näıve strategies for dealing with censored data in AS.

2 The Per-Instance Algorithm Selection Problem

The per-instance algorithm selection problem, first introduced in [20], is essen-
tially a recommendation problem where the sought recommendation is an algo-
rithm to be used on a specific instance of an algorithmic problem class (such as
SAT). More formally, given a problem class (instance space) I and a set of algo-
rithms A able to solve instances from this class, the goal is to learn a mapping
s : I −→ A, called algorithm selector. Provided a problem instance i ∈ I and a
performance measure m : I × A −→ R, such a selector s should ideally return
the algorithm performing best in terms of this measure. This ideal mapping s∗

is called the virtual best solver (VBS), aka. oracle, and formally defined as

s∗(i) ..= arg min
a∈A

E [m(i, a)] (1)
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for all instances i ∈ I, where the expectation accounts for the potential random-
ness in the application of the algorithm. While conceptually simple to define,
the computation cannot be performed through an exhaustive enumeration, as m
is usually costly to evaluate and often even requires running the algorithm on
the particular instance at hand, like in the case of runtime as a measure. For the
remainder of the paper, we will assume that runtime is used as the performance
measure. In contrast to the oracle, the single best solver (SBS) is the strategy
that always selects the algorithm which is best on average across all instances,
and accordingly can be seen as a natural baseline.

Closely related to AS is the problem of algorithm scheduling [17], where the
recommendation target is a schedule of algorithms (instead of a single algo-
rithm) assumed to be executed sequentially for a specific amount of time, until
a solution is either found or the schedule is over. Also closely related is the ex-
treme algorithm selection problem [22], where the recommendation target is still
a single algorithm, but the set of algorithms A to choose from is assumed to be
extremely large, i.e., in the hundreds to thousands compared to tens in the stan-
dard AS problem. Finally, meta-algorithm selection [23] refers to the problem of
choosing among the many existing algorithm selection approaches and can be
formalized as an algorithm selection problem itself.

2.1 Common Algorithm Selection Solutions

To circumvent the problem of costly evaluations of the performance measure m,
the majority of existing AS approaches in one way or another learns a surrogate
m̂ : I×A −→ R of the original performance measure, with the property of being
cheap to evaluate. This allows for the exhaustive enumeration in (1), and hence
to determine an algorithm selector s : I −→ A with

s(i) ..= arg min
a∈A

m̂(i, a) . (2)

For the purpose of representing instances, we assume the existence of a feature
function f : I −→ Rd mapping instances to d-dimensional feature vectors. Such
features should comprise properties of the instance that are potentially relevant
to determine the best algorithm. For SAT instances, examples of such features
include the number of variables or the number of clauses in a formula. The
computation of such features takes time, which is important to consider when
the measure m to optimize is (related to) runtime. Moreover, learning such
surrogate models requires training instances ID ⊂ I for which the performance
value m(i, a) ∈ R is available for some algorithms a ∈ A.

One of the simplest instantiations of the surrogate framework described above
is to learn a performance predictor m̂a : I −→ R separately for each algorithm
a ∈ A as done in Satzilla’07 [26]. In a later version of Satzilla, these models
were replaced by cost-sensitive decision forests m̂a,a′ : I −→ {0, 1} for each
pair of algorithms a 6= a′ ∈ A. Here, predictions are pairwise comparisons sug-
gesting which of two candidate algorithms will most likely perform better on a
given instance, and the final selection is determined by majority voting. In fact,
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Satzilla’11 can be seen as a cost-sensitive version of the all-pairs decomposition
scheme for solving multi-class classification problems, leading to the more gen-
eral application of multi-class classification approaches m̂ : I −→ A, where each
algorithm a ∈ A is considered a class [24].

Moreover, to estimate the unknown performance of an instance/algorithm
pair, instance-based approaches such as SUNNY [1] or ISAC [12] rely on similar
instances for which evaluations are available, and make use of k-nearest neighbor
or clustering techniques. In a more recent work [8], hybrid ranking and regression
models are successfully applied to the problem of algorithm selection, with the
aim to benefit from both perspectives (ranking and regression) on the problem.

2.2 The Influence of Censored Data

Recall that we assume a set of training instances ID ⊂ I with potentially missing
values for the performance measure. That is, the performance values m(i, a) ∈ R
are available for some but rarely for all algorithms a ∈ A. This is because
the training data generation for algorithm selection is usually performed under
the constraint of a timeout. When an algorithm a ∈ A is run on an instance
i ∈ ID and does not terminate before a given cutoff time C, its execution is
simply stopped at this point, as some algorithms can take extremely long to solve
specific instances of combinatorial optimization problems [7]. In such a case, no
precise performance value, i.e. runtime m(i, a), can be recorded. Instead, the true
runtime is only known to exceed the cutoff C, i.e. m(i, a) > C. In other words, the
observation is right-censored [15]. The well-known ASlib [2] benchmark contains
scenarios where over 70% of the data is censored. Obviously, since these data
points make up a significant amount of available data, they need to be treated
with care.

The simplest approach for dealing with censored data points is to completely
ignore them when training surrogate models m̂. This strategy does not only
waste important information, but also bears the danger of learning overopti-
mistic models, as potentially very long runtimes are not considered during the
training. A slightly more advanced strategy is to impute the censored points
either by the cutoff time C or a multiple thereof, motivated by the penalized
average runtime (PARN) score. However, once again, this strategy can lead to
strongly biased models, as in cases with many censored data points the major-
ity of the training data is deliberately distorted. A more advanced imputation
strategy has been proposed in [21] in the context of algorithm configuration (AC)
[10,4]. It iteratively estimates truncated normal distributions over the censored
data based on generalizations made by models over the uncensored data, and
finally replaces each censored sample by the mean of the corresponding distri-
bution. While offering a theoretical foundation, this approach makes a strong
assumption on the distribution of the runtimes of the algorithms. Moreover, it is
computationally expensive, as the process involves fitting the requested model
repeatedly before returning a final model.

An ideal algorithm selection technique would directly incorporate censored
samples in the training process, instead of artificially removing any imprecision in
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a preprocessing step. This is accomplished by AS techniques leveraging concepts
from survival analysis, which were first introduced in [6,5] for the setting of
algorithm scheduling and recently improved by Run2Survive [24]. The latter is
an algorithm for learning runtime distributions conditioned on an instance, which
are in turn used in a decision-theoretic framework to tailor the selection of an
algorithm towards a specific performance measure. Such methods do nevertheless
rely on distributional assumptions.

Therefore, in this paper, we adopt another approach based on so-called super-
set learning, a problem setting that has recently attracted increasing attention
in the machine learning literature [9]. Superset learning is an extension of stan-
dard supervised learning, which deals with the problem of learning predictive
models from possibly imprecise training data characterized in the form of sets
of candidate values. In principle, every method for supervised learning, whether
parametric or non-parametric, can be extended to the setting of superset learn-
ing. Moreover, imprecision can be modeled in a rather flexible way and is not
restricted to censoring.

3 Superset Learning with Right-Censored Data

In supervised learning, training data is supposed to be given in the form of tuples
(xn, yn) ∈ X ×Y, where X is the instance and Y the output space, and the task
is to learn the dependency between instances and outcomes. More specifically,
given a hypothesis space H ⊂ YX to choose from, the learner seeks to find an
accurate predictive model in the form of a risk-minimizing hypothesis

h∗ ∈ argmin
h∈H

∫
(x,y)∈X×Y

L(h(x), y) dP(x, y) , (3)

where L : Y × Y → R is a loss function and P an unknown joint probabil-
ity distribution characterizing the data-generating process. In superset learning,
the values of the target variables, i.e., the outcomes yn (and possibly also the
instances xn, though this is of less interest for our purpose), are not necessar-
ily observed precisely. Instead, they are characterized in terms of sets Yn 3 yn
known to cover the true observation yn. For example, in the case of classification,
Yn is a (finite) set of candidate classes. In regression, where Y = R is infinite,
imprecise observations are typically modeled in the form of intervals.

Several methods for learning from imprecise observations of that kind have
been proposed in the literature. Here, we adopt the approach of generalized loss
minimization based on the so-called optimistic superset loss [11], which has also
been proposed under the name infimum loss [3]. The optimistic superset loss
(OSL) is a generalization of the original loss L in (3) that compares h(x) = ŷ
with the set-valued target in an “optimistic” way:

L∗(ŷ, Y ) = inf
y∈Y

L(ŷ, y) (4)
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Learning is then accomplished by using L∗ in place of L, for example by min-
imizing the generalized empirical risk (or a regularized version thereof) on the
training data D = {(xn, Yn)}Nn=1:

h∗ ∈ argmin
h∈H

1

N

N∑
n=1

L∗(h(xn), Yn)

This way of learning from imprecise data is essentially motivated by the idea
of data disambiguation, i.e., of figuring out the true observations yn among the
candidates suggested by the set-valued observations Yn. We refer to [9] for a more
detailed explanation and to [3] for a theoretical foundation of this approach.

In our setting, hypotheses h correspond to algorithm-specific surrogate mod-
els m̂a : I → R that estimate the runtime of algorithm a ∈ A on problem
instance i ∈ I. More specifically, we seek to learn a function Rd → R that maps
instance feature vectors to algorithm runtime estimates. Here, precise values of
the target variable correspond to true runtimes, i.e., the exact time it took an
algorithm to solve a problem instance. However, these values are normally not
measured precisely, and there are various reasons for why runtimes might better
be characterized in the form of intervals [l, u] ⊂ R. For example, the actual run-
time might have been slowed down due to another process running in parallel,
so that only a rough estimate could be derived.

Here, we are specifically interested in imprecision due to censoring, namely
due to terminating an algorithm upon exceeding the cutoff time C. As we only
know a lower bound on the ground truth runtime, in this case, the observations
are right-censored. This information can be modeled in terms of the imprecise
observation Y = (C,∞). As a consequence, the OSL in (4) simplifies as follows1:

L∗(ŷ, Y ) =


L(ŷ, y) if Y = {y}
L(ŷ, C) if Y = (C,∞) and ŷ < C

0 if Y = (C,∞) and ŷ ≥ C

, (5)

where the first case corresponds to precise observations and the second case
to underestimated right-censored data points. In the third case, the runtime is
correctly predicted to exceed C, whence the loss is 0. In principle, the OSL L∗

can be instantiated with any suitable regression loss L : Y × Y → R. For this
paper, we choose the commonly used L2-loss, also known as the least squares
error L(ŷ, y) = L2(ŷ, y) ..= (y− ŷ)2. An illustration of the OSL instantiated with
this loss function is given in Figure 1.

In spite of its simplicity, the superset learning approach has several properties
that make it appealing for dealing with right-censored data in the algorithm se-
lection setting. Whereas the established iterative imputation scheme by Schmee
and Hahn (Schmee&Hahn) [21] assumes that the censored samples are drawn

1 Here, we make the assumptions that L(y, y) = 0 for all y ∈ Y, L(y, ·) is mono-
tone decreasing on (−∞, y) and monotone increasing on (y,∞), which hold for all
reasonable loss functions.
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y C ŷ

L
∗

y′C ŷ

L
∗

Fig. 1. Illustration of the OSL instantiated with the L2-loss. The left example shows a
precise observation y ≤ C for which we simply penalize the prediction with the squared
distance to the actual observation. The right example shows a censored observation of
a timed out algorithm run. As y′ > C, the actual runtime y′ is unknown and we only
know the lower bound C. Thus, we have an imprecise observation Y ′ = (C,∞), for
which we do not impose a penalty if the prediction ŷ lies in the interval, i.e. if ŷ ∈ Y ′.
If ŷ /∈ Y ′, we penalize with the squared distance to the interval’s lower bound C.

from a truncated normal distribution, the superset learning approach does not
make any assumptions about the distribution of censored data. Another sig-
nificant disadvantage of the iterative method is its computational cost. While
Schmee&Hahn needs to iteratively refit a regression model multiple times un-
til convergence (or a maximum number of iterations is reached), the superset
learning method only needs a single pass for integrating censored samples into
the regression model. Also intuitively, the approach is well-suited for the task
of algorithm selection: To select a well-performing algorithm for a new problem
instance, there is no need for precisely estimating the runtime of poorly per-
forming algorithms. Still, to avoid selecting these algorithms, they need to be
identified, which is reflected by enforcing predictions above the cutoff time C.

A toy example of precise and censored data points as well as the resulting
linear regression models when using the L2-loss and its OSL extension is given in
Figure 2. The example illustrates why imputing censored samples with a constant
leads to strongly biased models. The superset learning approach circumvents
this problem by treating the censored samples as imprecise (interval-valued)
observations, for which the loss is 0 if the prediction lies in the interval.

In the scope of this paper, we consider the class of linear models for the
algorithm-specific runtime surrogates m̂a. We minimize the proposed optimistic
superset loss as depicted in (5) using standard gradient-based optimization.

4 Experimental Evaluation

For conducting the experimental evaluation of the proposed superset learning
approach to algorithm selection, we use the ASlib benchmark [2]. This bench-
mark library consists of AS scenarios, which are collections of problem instances
from various algorithmic problem domains such as SAT or TSP, characterized
in terms of feature vectors as well as the performances achieved by all candidate
algorithms on the respective problem instance. These scenarios entail significant
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C

Model with OSL

Model with L2 Loss

Precise Observation

Censored Observation

Fig. 2. Toy example of data with a linear dependency between feature and target and
Gaussian centered noise. Observations above the cutoff C have been censored. The
two lines indicate linear regression models, the green one has been trained using the
OSL, the black one using the standard L2-loss for which the censored observations were
imputed with C.

amounts of censored algorithm runs; an overview of all scenarios is given in
Table 1.

Table 1. Overview of the ASlib scenarios with the corresponding number of instances
(#I), unsolved instances (#U), algorithms (#A), instance features (#F), the cutoff
(C) as well as the fraction of censored algorithm runs (%C).
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4.1 Experimental Setup

In this work, we consider linear models for modeling the performance surrogate
m̂. These models are trained using the Adam optimizer [14], minimizing the OSL
instantiated with the L2-loss. We chose a learning rate of 0.05 and a batch size
of 32. For regularization, validation-based early stopping was employed: Before
the training procedure starts, a fraction of 0.3 of the training data is put aside as
validation data. Then, during training, this validation data is used to compute
the validation loss periodically. If this loss increases for 16 consecutive checks,
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training is terminated and the model parameters are set to the best observed pa-
rameters (with respect to the validation loss) during training. After a maximum
number of 5, 000 epochs is reached, the training procedure is terminated. The
implementation (together with detailed documentation) used for the conducted
experiments is made publicly available on GitHub2.

The performance of the considered models is assessed in terms of a 10-fold
cross-validation. In each fold, a fraction of 0.9 of the problem instances and
corresponding algorithm performances is used for the training procedure as de-
scribed above and the remaining fraction of 0.1 is used for testing the model.
The performance of the approaches is quantified in terms of the commonly used
penalized average runtime with a penalty factor of 10 (PAR10). This measure
simply averages the runtimes achieved by the selected algorithms over the prob-
lem instances in a scenario, while penalizing algorithm runs that timed out with
a constant 10 · C.

4.2 Baseline Approaches

We compare the proposed algorithm selection technique based on superset learn-
ing with the commonly used strategies for dealing with censored samples. Using
the same model configuration as described in the previous section, we consider
the ignore strategy, in which we neglect training instances of censored runs
as well as the näıve imputation schemes clip and par10, in which we impute
the censored data points with the cutoff C or 10 · C, respectively, for training
regression models using the L2-loss. As a more elaborate solution, we compare
our method against the iterative imputation scheme Schmee&Hahn [21].

4.3 Results

In the following, we discuss the results of the conducted experiments, which are
summarized in Table 2. A • next to a baseline result indicates that the Superset
approach was significantly better, while a ◦ indicates that it was significantly
worse on the corresponding scenario according to a Wilcoxon signed-rank test
with p = 0.05. Per scenario, the best achieved result is highlighted in bold and the
rank of each result is given in parentheses. We observe that the Ignore strategy
is the worst strategy among all considered approaches. As the ASlib scenarios
include up to 73.5% of censored algorithm runs, this comes at no surprise, as
large parts of the training data are simply discarded. The approaches Clip and
PAR10 that impute censored observations with constants yield better results
than ignoring censored runs. Here, the approach Clip that imputes censored
runs with the exact algorithm cutoff yields better results than imputing with
10 · C as done for PAR10.

Due to the computational expense of iteratively refitting the regression mod-
els, the majority of the experimental runs for the Schmee&Hahn baseline
method did not manage to finish within a given time frame of 96 CPU days.

2 https://github.com/JonasHanselle/Superset_Learning_AS

https://github.com/JonasHanselle/Superset_Learning_AS
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Table 2. PAR10 scores of the proposed approach as well as all considered baselines
for all considered scenarios.

Scenario Clip Ignore PAR10 Schmee&Hahn Superset

ASP-POTASSCO 267.16 (1) 785.49 (5) • 285.82 (3) 312.05 (4) • 267.75 (2)
BNSL-2016 2333.59 (1) 10221.65 (5) • 5829.51 (4) • 2350.71 (2) 2392.99 (3)
CPMP-2015 6223.74 (3) 11490.41 (5) • 6683.52 (4) 5754.33 (1) 6020.67 (2)
CSP-2010 723.25 (1) 989.05 (4) 1081.57 (5) • 814.91 (3) 726.05 (2)
CSP-MZN-2013 1384.45 (2) 12466.45 (5) • 1460.69 (3) • 1582.99 (4) • 1337.03 (1)
CSP-Minizinc-Time-2016 2417.4 (2) 7416.88 (5) • 3314.75 (3) 3394.89 (4) 2417.29 (1)
MAXSAT-PMS-2016 605.77 (3) 8793.23 (5) • 2474.75 (4) • 563.13 (2) 542.93 (1)
MAXSAT-WPMS-2016 2391.88 (3) • 14633.54 (5) • 4173.15 (4) • 2124.11 (2) 2100.98 (1)
MAXSAT12-PMS 961.97 (3) • 2141.06 (5) • 1313.61 (4) 866.79 (2) 814.62 (1)
MAXSAT15-PMS-INDU 905.35 (1) 16085.16 (5) • 2658.04 (4) • 1116.16 (3) • 930.83 (2)
MIP-2016 9403.18 (2) ◦ 20182.02 (5) • 10097.0 (4) 9784.38 (3) 9403.18 (1)
PROTEUS-2014 5198.77 (2) 20111.7 (5) • 5623.13 (4) 5508.62 (3) 5095.73 (1)
QBF-2011 3601.4 (1) 20402.16 (5) • 6343.31 (4) • 3886.31 (3) 3771.58 (2)
QBF-2014 1706.53 (4) • 4345.37 (5) • 1666.69 (3) • 1469.3 (2) 1455.48 (1)
QBF-2016 2552.29 (2) 6431.72 (5) • 2997.55 (4) 2766.28 (3) 2531.79 (1)
SAT03-16 INDU 3528.8 (1) ◦ 7254.0 (5) • 3999.94 (4) 3836.84 (3) 3581.81 (2)
SAT11-HAND 11831.89 (3) ◦ 24563.68 (5) • 11960.84 (4) 11399.28 (1) 11831.89 (2)
SAT11-INDU 7107.54 (2) ◦ 12992.03 (5) • 8419.32 (4) 7326.67 (3) 7107.54 (1)
SAT11-RAND 3376.17 (1) 16395.14 (5) • 4193.79 (4) 3929.21 (3) 3380.65 (2)
SAT12-ALL 1635.69 (1) 8439.57 (5) • 1643.47 (3) 2073.78 (4) • 1639.68 (2)
SAT12-HAND 2612.79 (4) 8046.59 (5) • 2587.83 (3) 2554.14 (2) 2551.2 (1)
SAT12-INDU 1857.48 (2) 11204.39 (5) • 3411.23 (4) • 2123.33 (3) • 1840.33 (1)
SAT12-RAND 568.54 (1) 10576.49 (5) • 1075.56 (4) • 665.15 (3) 659.1 (2)
SAT15-INDU 6133.29 (2) 11637.43 (5) • 8575.57 (4) 7548.6 (3) • 6126.67 (1)
TSP-LION2015 485.22 (1) 9585.78 (5) • 743.14 (4) • 650.07 (3) 496.57 (2)

avg. rank 1.96 4.96 3.80 2.76 1.52
avg. PAR10 3192.57 11087.64 4104.55 3376.08 3160.97

While it is evident that the superset learning approach has a clear advantage with
respect to runtime over iterative imputation methods such as Schmee&Hahn, it
also exhibits the strongest predictive accuracy for the task of algorithm selection
in the conducted experiments3.

5 Conclusion

In this paper, we proposed to consider algorithm selection within the framework
of superset learning to handle censored data in a proper way. Instead of replacing
the censored labels with more or less arbitrary precise numbers, or leaving out
these data points entirely, the labels are considered as imprecise observations
in the form of intervals (ranging from the cutoff time to infinity). Invoking a
principle of generalized loss minimization, a regression model is then built to
predict (precise) runtimes of algorithms for unseen problem instances.

Our experimental evaluation reveals that working with these imprecisely an-
notated data, the generalization performance of the fitted models is significantly

3 Note that for the TSP-LION2015 scenario, only 9 out of 10 folds were evaluated
using the Schmee&Hahn imputation due to technical issues.
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better compared to näıve strategies for dealing with censored data. Moreover,
we showed superset learning to be competitive or superior to the imputation
technique proposed in [21]. Instead of repeatedly rebuilding the model until con-
vergence of the predicted values, each model needs to be fit only once. As the
number of such models equals the number of algorithms to choose from, su-
perset learning has a clear advantage over Schmee&Hahn in terms of runtime
complexity.

Interesting directions for future work include integrating superset learning
with a hybrid regression & ranking approach [8], or to consider the decision which
algorithm to choose according to the predicted runtimes in terms of a stacked
classifier instead of simply taking the algorithm with minimum predicted runtime
[16]. Besides, as already said, superset learning is a quite versatile approach that
allows for modeling imprecision in a flexible way. This might also be beneficial
in the context of algorithm selection, where censoring is certainly not the only
source of imprecision.
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11. Hüllermeier, E.: Learning from imprecise and fuzzy observations: Data disambigua-
tion through generalized loss minimization. International Journal of Approximate
Reasoning 55(7), 1519 – 1534 (2014), special issue: Harnessing the information
contained in low-quality data sources

12. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific
algorithm configuration. In: ECAI (2010)

13. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: Survey and perspectives. Evol. Comput. 27(1) (2019)

14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings (2015)

15. Kleinbaum, D.G., Klein, M.: Survival analysis, vol. 3. Springer (2010)
16. Kotthoff, L.: Hybrid regression-classification models for algorithm selection. In:

ECAI. pp. 480–485 (2012)
17. Lindauer, M., Bergdoll, R.D., Hutter, F.: An empirical study of per-instance algo-

rithm scheduling. In: International Conference on Learning and Intelligent Opti-
mization. pp. 253–259. Springer (2016)
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23. Tornede, A., Wever, M., Hüllermeier, E.: Towards meta-algorithm selection. In:

Workshop on Meta-Learning (MetaLearn 2020) @ NeurIPS 2020 (2020)
24. Tornede, A., Wever, M., Werner, S., Mohr, F., Hüllermeier, E.: Run2survive: a
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