
Hybrid Ranking and Regression
for Algorithm Selection

Jonas Hanselle[0000−0002−1231−4985], Alexander Tornede[0000−0002−2415−2186],
Marcel Wever[0000−0001−9782−6818], and Eyke Hüllermeier[0000−0002−9944−4108]

Heinz Nixdorf Institut and Department of Computer Science, Paderborn University,
Paderborn, Germany

{jonas.hanselle, alexander.tornede, marcel.wever, eyke}@upb.de

Abstract. Algorithm selection (AS) is defined as the task of automat-
ically selecting the most suitable algorithm from a set of candidate al-
gorithms for a specific instance of an algorithmic problem class. While
suitability may refer to different criteria, runtime is of specific practical
relevance. Leveraging empirical runtime information as training data,
the AS problem is commonly tackled by fitting a regression function,
which can then be used to estimate the candidate algorithms’ runtimes
for new problem instances. In this paper, we develop a new approach to
algorithm selection that combines regression with ranking, also known
as learning to rank, a problem that has recently been studied in the
realm of preference learning. Since only the ranking of the algorithms
is eventually needed for the purpose of selection, the precise numerical
estimation of runtimes appears to be a dispensable and unnecessarily dif-
ficult problem. However, discarding the numerical runtime information
completely seems to be a bad idea, as we hide potentially useful in-
formation about the algorithms’ performance margins from the learner.
Extensive experimental studies confirm the potential of our hybrid ap-
proach, showing that it often performs better than pure regression and
pure ranking methods.

Keywords: algorithm selection · hybrid loss optimization · combined
ranking and regression

1 Introduction

Algorithm selection (AS) refers to the task of automatically selecting an algo-
rithm from a set of candidate algorithms, which appears to be most suitable for
a given instance of a problem class. A typical application of AS is the selection
of solvers for computationally hard problems on a per-instance basis. Prominent
examples of such problems include the Boolean satisfiability problem (SAT) [25]
and the travelling salesman problem (TSP) [16]. Depending on the specific prob-
lem class, different criteria can be considered for assessing candidate algorithms.
Especially important in this regard is an algorithm’s efficiency measured in terms
of its runtime.

2 J. Hanselle et al.

On the basis of empirical runtime information, i.e., observations of runtimes
on training instances, the AS problem is typically tackled by fitting regression
functions, one per algorithm, to predict the runtime on new query instances [5,
25]. Collecting the predictions for all algorithms, the presumably fastest one is
then selected. Regression-based approaches proved to perform well in practice,
often improving over the algorithm that performs best on average, also known
as the single best solver (SBS), by orders of magnitude [25].

In spite of this practical success, one may wonder whether AS should indeed
be tackled as a regression problem. First, since selection is eventually based on
the comparison of the predicted runtimes, regression appears to be an unneces-
sarily difficult problem. Indeed, prediction errors could be tolerated as long as
they do not change the ranking of the algorithms, or even less, the presumably
best algorithm. From this point of view, one may also question symmetric loss
functions like the squared error loss, as commonly used in regression. For exam-
ple, if algorithms A and B have runtimes of, respectively, 10 and 13 minutes, the
estimates 12 and 11 minutes are clearly better than 5 and 9 minutes in terms
of the squared error. However, whereas the former switch the order of the two
algorithms, the latter will still promote the faster algorithm, namely A.

These considerations may suggest to tackle AS as a ranking instead of a
regression problem, and indeed, ranking methods from the field of preference
learning have been used for constructing algorithm selectors [6, 19, 9, 22, 23]. Such
models are learned from data comprised of problem instances together with re-
spective rankings of the candidate algorithms. Data of that kind can often be
collected more easily than precise numerical runtimes, which is another advan-
tage of ranking methods. For example, if algorithm A finished before a given
timeout is reached, while algorithm B did not, the preference A � B can still be
derived as training information, even if the concrete runtime of B is not known.

However, the ranking-based approach could be criticized as well, namely
for ignoring potentially useful training information about the actual runtimes,
if available, and the performance margins between algorithms. For example, a
runtime of 2 minutes for algorithm A and 2.1 minutes for B leads to the same
ranking A � B as a runtime of 2 minutes for A and 200 minutes for B.

In this paper, we propose a hybrid approach to algorithm selection that com-
bines both approaches, ranking and regression, hoping to benefit from the best
of the two worlds: simplifying the learning task and solving the right problem
while providing sufficiently detailed information such that concrete runtime in-
formation and margins between candidate algorithms are taken into account.
To this end, we make use of hybrid loss functions [21]. Following a more formal
description of the AS setting in the next section, our approach will be detailed
in Sections 3 and 4.

Our experimental evaluation in Section 5 confirms the potential of the pro-
posed hybrid approach, which proves beneficial for several of the investigated
scenarios. More specifically, optimizing our hybrid regression and ranking loss
improves over optimizing the pure regression respectively ranking loss in terms
of various metrics, eventually yielding a better performing algorithm selector.

Hybrid Ranking and Regression for Algorithm Selection 3

2 Algorithm Selection

In the (per-instance) algorithm selection problem, first introduced by Rice [18],
one is concerned with automatically selecting the most suitable algorithm from
a set of candidate algorithms A = {A1, . . . , AK} for a specific instance I ∈ I of
an algorithmic problem class such as the Boolean satisfiability problem (SAT).
Formally, the goal is to find a mapping s : I → A, also referred to as algorithm
selector, from a problem instance space I to the set of candidate algorithms A,
which optimizes a costly-to-evaluate performance measure m : I × A → R of
interest. The arguably most relevant example of such a measure, which is also
considered in this paper, is runtime. The optimal algorithm selector (the oracle)
is defined as

s∗(I) ..= arg min
A∈A

E [m(I, A)] , (1)

for I ∈ I, where the expectation accounts for the potential randomness of the
algorithm (and any other random effects causing the performance of A on I to
be non-deterministic).

2.1 Existing Approaches

To evaluate the performance measure m, an algorithm normally needs to be run
on a given problem instance. This makes an exhaustive search over the algorithm
space A computationally intractable or at least extremely costly. To circumvent
this problem, a surrogate model m̂ : I ×A → R can be used to estimate the per-
formance. Such models, which should be cheap to evaluate, are trained on data
collected from previous algorithm runs. A feature extraction function f : I → Rd
is used to compute d-dimensional feature representations of problem instances,
which then allow for modeling the algorithm performance as functions of in-
stance features. To keep the notation simple, we will not distinguish between
I and f(I) in the remainder of this paper; instead, we denote both a problem
instance and its feature representation by I. Using such a model, the canoni-
cal algorithm selector will suggest the algorithm A with the lowest predicted
runtime on the instance I:

ŝ(I) ..= arg min
A∈A

m̂(I, A) (2)

A natural choice for m̂ is an algorithm-specific regression model m̂k : I → R,
directly estimating the runtime achieved by an algorithm Ak ∈ A on a problem
instance of interest I ∈ I [8].

Early work on such surrogates can be found in [13], where the authors tackle
the winner determination problem for the CPLEX solver. They demonstrate
that, under certain conditions, the hardness of an instance represented by fea-
tures, i.e., the expected performance of an algorithm on that instance, can be
learned using machine learning approaches. Both linear and nonlinear models
(multivariate adaptive regression splines [5]) were successfully applied for mod-
eling the hardness of an instance (with respect to the root mean squared error).

4 J. Hanselle et al.

In one of the earlier versions of the well-known algorithm selection approach
Satzilla [25], the authors leverage such empirical hardness models on a per-
algorithm basis. To this end, they learn one linear model per algorithm using
ridge regression, which estimates its performance for unseen instances based on
associated features.

Similarly, restart strategies are selected based on conditional runtime pre-
diction models in [7]. These models are inferred through ridge linear regression
conditioned on the satisfiability of an instance. Instead of directly selecting an
algorithm based on the predicted runtime, the authors of [4] use regression tech-
niques in a more indirect way: The runtimes predicted by random forests are
used to map instances into another feature space, in which k-nearest neighbor
methods are then applied to make the final selection.

As already explained in the introduction, an accurate prediction of runtimes
is a sufficient but not necessary condition for selecting the best performing algo-
rithm. Actually, such a selection rather corresponds to a classification instead of
a regression problem, with the algorithms playing the role of the classes. Training
a classifier, however, has a number of disadvantages. For example, by looking at
the best algorithm only, large parts of the training data would be ignored. Like-
wise, recommendations are not very informative in this setting, as they do not
differentiate between the (presumably) non-optimal algorithms. Alternatively,
the AS problem could also be tackled as a ranking task, which can be seen as a
compromise between classification and regression.

Ranking methods have been developed in the field of preference learning.
Specifically relevant in the context of AS is so-called label ranking (LR) [24].
Here, instances are associated with rankings over a set of choice alternatives, in
our case algorithms. Thus, training data is of the form

(I, A1 � · · · � Az) ∈ Rd ×R(A) , (3)

where R(A) is the set of all total orders on A, and Ai � Aj suggests that al-
gorithm Ai performs better than algorithm Aj . What is then sought is a model
h : Rd → R(A), which, given an instance I ∈ I (resp. its feature representation
f(I)), predicts a ranking over the set of candidate algorithms A. A recommenda-
tion can then be derived from that ranking, for example in the form of the top-1
or more generally top-k candidates. An example of label ranking applied to AS
can be found in [6], where the authors infer rankings of collaborative filtering al-
gorithms for instances of recommendation problems. Similarly, the authors of [9]
use neural network based LR techniques to select meta-heuristics for travelling
salesman problem instances.

In [23], dyadic approaches to ranking and regression are presented, which do
not only leverage instance but also algorithm features, allowing one to select from
an extremely large set of algorithms. A ranking method based on the Plackett-
Luce model is shown to perform very well in a setting with many algorithms
and very few training data, called extreme algorithm selection. Similarly, [15]
leverage a ranking approach motivated from a Bayesian perspective, where the
joint utility score of a pair of algorithms for an instance is defined in terms of
the difference of the individual utility scores.

Hybrid Ranking and Regression for Algorithm Selection 5

For a comprehensive and up-to-date survey of methods for algorithm selec-
tion, we refer to [11].

3 Hybrid Ranking and Regression Losses

There are several motivations for casting AS as a (label) ranking instead of a
regression problem. As already explained, ranking not only appears to be the
simpler task, but actually also the “right” problem. Indeed, the goal of AS is
better reflected by a (non-symmetric) ranking than by a (symmetric) regression
loss. Besides, precise numerical performance degrees are not always observable,
for example when an algorithm is timed out, leading to missing or censored data
in the case of regression, while preferences can still be derived. On the other hand,
if precise performances are available, then considering only the qualitative part of
the training information, namely the order relations, comes with a certain loss of
information. For example, information about the algorithms’ actual performance
degrees, and the differences between them, may provide useful information about
the reliability of a (pairwise) comparison.

These considerations suggest that both aspects should be taken into account
when training an algorithm selector: predicted runtimes should first of all match
the order of algorithms, and if possible, even be close to the actually observed
runtimes. This could be accomplished by training the predictor with a hybrid
loss function that combines both aspects into a single criterion.

Therefore, we propose the use of hybrid ranking and regression approaches
for the AS problem. To this end, we model the performance of each algorithm
in the candidate set Ak ∈ A in terms of a scoring function vk : I → R. As
will be seen, the scoring function is in direct correspondence to the performance
measure mk, though not necessarily the same. The overall scoring model v is
then given by v(I, Ak) ..= vk(I). Similar to the original combined regression
and ranking approach presented by Sculley [21], our hybrid loss functions are
based on a convex combination of a ranking term LRANK that imposes ordering
constraints between the individual predictions vk(I), k ∈ [K] ..= {1, . . . ,K}, and
a regression term LREG that relates vk to the actual runtime m(I, Ak) achieved
by algorithm Ak on the respective instance I.

3.1 Training Data

As training data, we assume (possibly incomplete or partial) information about
the performance of algorithms on a set of training instances I1, . . . , IN ∈ I:

D ..=
{

(In,m
′
1(In), . . . ,m′K(In))

}N
n=1

, (4)

where m′k(In) is information about the performance (runtime) of algorithm Ak
on the instance In. Usually, m′k(In) is the runtime itself, however, the perfor-
mance is also allowed to be unknown (m′k(In) = ⊥), for example because the

6 J. Hanselle et al.

algorithm has not been executed. Moreover, m′k(In) might be censored infor-
mation about the true performance. A practically motivated example of such
information is a timeout (m′k(In) = TO): algorithm Ak has been run on In, but
not till the end, because it did not terminate within a given time frame.

From the information about each of the N instances In, we construct a set of
training examples Rn for a regression learner and a set of training examples Pn
for a preference learner. For regression, if m′k(In) 6= ⊥, we include an example
(In, yk,n) which is normalized by the timeout Tmax, namely yk,n = 1 if m′k(In) =
TO and yk,n = m′k(In)/Tmax. In the case where m′k(In) = ⊥, no information
about Ak is included in Rn.

The set Pn consists of pairwise preferences of the form Ai � Aj , suggesting
that algorithm Ai performed better on In than algorithm Aj . We include such a
preference, which we formally represent as (In, i, j), whenever one of the following
conditions holds:

– m′i(In) 6∈ {⊥, TO}, m′j(In) 6∈ {⊥, TO}, m′i(In) < m′j(In),
– m′i(In) 6∈ {⊥, TO}, m′j(In) = TO.

3.2 Loss Functions

As already said, the overall loss of a model v on a dataset D is a convex combi-
nation of a ranking and a regression loss:

L(D, v) ..= λLRANK (D, v) + (1− λ)LREG (D, v) , (5)

where the hyperparameter λ ∈ [0, 1] can be tuned to balance the two objectives.
Setting λ = 0 corresponds to a pure regression model, whereas λ = 1 results in
a pure ranking model.

In general, any ranking loss LRANK and any regression loss LREG can be used
to instantiate our generic framework. Here, we model the latter in terms of the
mean squared error (MSE)

LREG(Rn, v) ..=
1

|Rn|
∑

(In,yk,n)∈Rn

(
vk(In)− yk,n

)2
. (6)

The overall loss LREG(D, v) is then obtained by averaging (6) over all N training
instances.

For ranking, we consider the squared hinge ranking loss given by

LRANK(Pn, v) ..=

(
|Pn|

2

)−1∑
(In,i,j)

`
(
ε− vi(In) + vj(In)

)
, (7)

where ε ∈ R+ is a margin and `(x) = (max{0, x})2. This loss function is a smooth
convex approximation of the simple 0/1 loss and enforces a margin effect in the
sense that, to have a loss of 0, the two predictions must be correctly ordered and
have a distance of at least ε. Again, the loss on the entire data, LRANK(D, v) is

Hybrid Ranking and Regression for Algorithm Selection 7

obtained by averaging over all N training instances. For computational reasons,
since LRANK(Pn, v) contains a quadratic number of preferences, one may consider
approximating this loss by sampling a subset of these preferences.

As an alternative to the squared hinge ranking loss (7), we also consider the
following loss:

LRANK(Pn, v) ..=

(
|Pn|

2

)−1∑
(In,i,j)

`
(
vi(In), vj(In)

)
, (8)

with
`
(
x, y
)

= log
(

exp(−x) + exp(−y)
)

+ x . (9)

This loss corresponds to the negative log-likelihood of observing a pairwise pref-
erence under the Plackett-Luce (PL) model for ranking data [17, 14], which is
commonly used in preference learning and label ranking [3].

4 Models and Optimization

For modeling the scoring functions vk : I → R, we consider three types of mod-
els, namely linear models, quadratic models, and feed-forward neural networks.
Linear models define the score of an algorithm Ak ∈ A for a specific problem
instance I ∈ I in terms of a linear combination of the instance features:

vk(I) = wT
k I , (10)

where wk ∈ Rd are the model parameters. To model quadratic relationships,
a polynomial feature transformation φ : Rd → Rd(d+1)/2 is applied that maps
the instance features to all monomials of degree 2. Consequently, the quadratic
models are described by weight vectors wk ∈ Rd(d+1)/2. We summarize all model
parameters in a single parameter set W = {wk |Ak ∈ A}. Since all loss terms
are convex, their convex combination (5) remains convex, and their minimization
can be accomplished using gradient-based optimization methods. We apply the
L-BFGS-B algorithm [2, 26] for this task. To avoid overfitting, we employ weight

decay by adding a regularization term R(W) = γ
∑K
k=1

∑d
j=1[wk]2j , which can

be adjusted by setting γ ∈ R to an appropriate value.
The neural network is given by a simple feed-forward architecture as illus-

trated in Figure 1. We adapt the training procedure from [20] for our setting of
hybrid ranking and regression. For adjusting the model’s weights W , backprop-
agation is applied. The Adam optimizer [12] was selected as a gradient-based
optimization method for minimizing the loss function. Regularization is imple-
mented in terms of early stopping. Before the training procedure starts, a fraction
of the original training dataset is selected as a validation set and removed from
the training data. During the training, the model’s loss on this validation set is
computed periodically. A rising validation loss is an indicator of overfitting, thus
the training procedure is stopped if an increase in the validation loss is observed
for several consecutive checks. Afterwards, the model parameters are fixed to
the set of weights that achieved the best validation loss during training.

8 J. Hanselle et al.

1 1

Input
Layer

Hidden
Layer

Output
Layer

Instance
Features Scores

Fig. 1. Architecture of the neural network. Problem instance feature descriptions are
fed into the input layer. The nodes of the fully connected hidden layer use a sigmoidal
activation function in order to learn non-linear relationships. The nodes in the output
layer use the identity as an activation function. Here, [I]j denotes the j-th entry of the
instance feature vector.

5 Evaluation

In order to evaluate the performance of the proposed hybrid ranking and re-
gression approach to the algorithm selection problem, we make use of the ASlib
benchmark [1]. This benchmark contains several AS scenarios, which are collec-
tions of performance data of algorithms achieved on several problem instances.
As we consider runtime as a selection criterion in the scope of this paper, we
evaluated our approach using scenarios from the algorithmic problem domains
of Boolean satisfiability (SAT), mixed integer programming (MIP), constraint
satiscation (CSP), and container pre-marshalling (CPMP).

5.1 Performance Metrics

For assessing the performance achieved by the proposed approaches, we consider
both ranking measures as well as specific algorithm selection measures. Rank-
ing measures quantify how well the ranking over algorithms according to their
predicted performance corresponds to the ranking implied by their true perfor-
mance. We represent a ranking of the algorithms {A1, . . . , AK} in terms of a
mapping π : [K]→ [K], such that π(k) is the position of the algorithm Ak in the
ranking — allowing for ties1, we may have π(i) = π(j) for i 6= j. One prominent
measure is the rank correlation coefficient Kendall’s tau [10]. Given a ground
truth ranking π and a predicted ranking π̂, Kendall’s τ is defined as

τ(π, π̂) =
C −D√

(C +D + Tπ) · (C +D + Tπ̂)
, (11)

where C is the number of correctly ordered pairs ((π(i)−π(j))(π̂(i)− π̂(j)) > 0),
D is the number of incorrectly ordered pairs ((π(i) − π(j))(π̂(i) − π̂(j)) < 0),

1 Ties are mainly caused by timeouts in the “ground truth” data but rarely occur in
the predicted performances.

Hybrid Ranking and Regression for Algorithm Selection 9

and Tπ and Tπ̂ are the number of ties in ranking π and π̂, respectively. Kendall’s
τ takes values in [−1, 1], where τ(π, π̂) = 1 means that the rankings π̂ and π are
in perfect agreement and τ(π, π̂) = −1 the exact opposite (one of them is the
reversal of the other one).

A widespread performance measure in the field of AS with respect to runtime
is the penalized average runtime with a penalty factor of 10 (PAR10). Typically,
the algorithms for the problem domains considered in this paper are not run
for an indefinite amount of time until they eventually terminate, but are rather
aborted after a predefined timeout is exceeded. The PAR10 score simply aver-
ages the runtime achieved by the selected algorithms for all problem instances
of a scenario and accounts for timed out runs with 10 times the timeout as
their runtime. We ignore feature costs, i.e., the runtime of the feature extraction
function f , when computing PAR10 scores, as not all of the considered scenarios
provide this information.

5.2 Evaluation Setup

The experimental results were obtained by conducting a 10-fold cross valida-
tion. In each fold, a fraction of 90% of a scenario’s problem instances and the
corresponding algorithm performances was used for training the algorithm se-
lector, and the remaining 10% were used as a test set. For each scenario, we
used the full set of features provided by ASLib [1]. Missing feature values were
imputed with the feature’s mean. Afterwards, feature values were standardized
before training the models. Algorithm runtimes are given in terms of the PAR10
format, i.e., timed out runs are accounted for with 10-times the timeout. As the
set of pairwise preferences Pn grows quadratically in the number of candidate
algorithms, we approximate it by a sample P̂n containing at most 5 pairwise al-
gorithm comparisons for each instance. Should this number of comparisons not
be available, we sample the maximum number of possible comparisons.

To evaluate the influence of the hyperparameter λ on the predictive perfor-
mance, we conducted the experiments for λ ∈ {0.0, 0.1, . . . , 1.0}. For training
the linear and quadratic models, we set the regularization parameter γ = 10−3

and ran the L-BFGS-B [2, 26] algorithm for at most 100 iterations in order to
minimize the loss functions. For the neural network-based approaches, we used
the Adam [12] optimizer with a learning rate of η = 10−3 for minimizing the loss
functions and a batch size of 128. The architecture consists of a single hidden
layer with 32 nodes, each using the sigmoid activation function t 7→ 1

1+e−t . For
early stopping, a fraction of 0.3 of the original training data is used as a vali-
dation set. We compute the loss on this validation set every 8 epochs and stop
the training procedure if it increases for 8 consecutive checks. After the training,
the model weights are set to the values for which the best validation loss was
observed. If early stopping does not apply, the training procedure is stopped
after a maximum number of 1,000 epochs. We evaluated the performance met-
rics for six independent runs on different random seeds and aggregated them by
averaging the results.

10 J. Hanselle et al.

The implementation of the proposed approaches including a documentation
is provided on GitHub2.

5.3 Results

In the following, we discuss the results obtained by the experimental evaluation
for all considered approaches, i.e., the two ranking loss functions in combina-
tion with the mean squared error as regression loss: the linear models (PL-LM,
Hinge-LM), the quadratic models (PL-QM, Hinge-QM), and the neural networks
(PL-NN, Hinge-NN). Figure 2 shows the average Kendall’s τ rank correlation
achieved by each of the proposed approaches for several values of λ. Recall
that lower values of λ correspond to emphasizing the regression objective while
higher values correspond to emphasizing the ranking objective. At first glance,
we observe a tendency that larger values for λ lead to better rankings. Notably,
however, in various cases the peak performance is not achieved for λ = 1, but
rather for a proper compromise between ranking and regression. Consider for
example the MIP-2016, SAT11-RAND or SAT11-HAND scenario, for which sev-
eral of the proposed approaches achieve their peak performance for intermediate
λ values.

0.0 0.5 1.0
0.350

0.375

0.400

0.425

Ke
nd

al
l

SAT11-RAND

0.0 0.5 1.0

0.05

0.10

0.15

Ke
nd

al
l

SAT11-INDU

0.0 0.5 1.0

0.25

0.30

0.35

Ke
nd

al
l

SAT11-HAND

0.0 0.5 1.0
0.4

0.6

Ke
nd

al
l

CSP-2010

0.0 0.5 1.0

0.4

0.5

0.6

Ke
nd

al
l

MIP-2016

0.0 0.5 1.0

0.25

0.30

0.35

0.40

Ke
nd

al
l

CPMP-2015

PL-LM PL-QM PL-NN Hinge-LM Hinge-QM Hinge-NN

Fig. 2. Average Kendall’s τ rank correlation coefficient achieved by the proposed ap-
proaches for different values of λ on a variety of AS scenarios. In multiple cases, an
intermediate setting of λ ∈ (0, 1) achieves a better rank correlation than pure regression
(λ = 0) or pure ranking (λ = 1).

2 https://github.com/JonasHanselle/CoRRAS

Hybrid Ranking and Regression for Algorithm Selection 11

Figure 3 shows the PAR10 scores achieved by the proposed approaches.
Again, we observe that neither pure regression nor pure ranking achieve the
best performance consistently. Instead, a combination of the two appears to be
favorable for most of the AS scenarios. Especially in the CSP-2010 and the MIP-
2016 scenarios, the best performances, i.e. lowest PAR10 scores, are achieved for
most of the proposed models when considering a hybrid ranking and regression
loss.

0.0 0.5 1.0

1.2

1.3

1.4

PA
R

10

1e4 SAT11-RAND

0.0 0.5 1.0

1.5

1.6
PA

R
10

1e4 SAT11-INDU

0.0 0.5 1.0
2.0

2.2

2.4

PA
R

10

1e4 SAT11-HAND

0.0 0.5 1.0

6.6

6.8

PA
R

10

1e3 CSP-2010

0.0 0.5 1.0

4

6

PA
R

10

1e3 MIP-2016

0.0 0.5 1.0

5.0

5.5

6.0

PA
R

10

1e3 CPMP-2015

PL-LM PL-QM PL-NN Hinge-LM Hinge-QM Hinge-NN

Fig. 3. Penalized average runtime achieved by selecting the top ranked algorithm pre-
dicted by the proposed models for each problem instance of the considered AS scenario.

Table 1 shows the number of scenarios for which a pure regression approach
(λ = 0), a pure ranking approach (λ = 1), or a hybrid ranking and regres-
sion approach (λ ∈ {0.1, . . . , 0.9}) achieves the best performances according to
Kendall’s τ and the PAR10 score. Regarding the rank correlation, unsurprisingly
none of the proposed models achieved the best performance with the pure re-
gression setting. The hybrid ranking and regression results are either on par with
pure label ranking results or ahead of them. With respect to the PAR10 scores,
hybrid regression and ranking performs the best for all model-loss combinations.
Overall, for the majority of model-scenario combinations, a hybrid regression
and ranking approach performs the best. While setting the hyperparameter λ to
an intermediate value yields promising results, we could not reliably identify an
optimal default value for this parameter. Instead, as can be seen in the plots in
Figures 2 and 3, the value for which the best performance is achieved depends
both on the model and the scenario at hand.

12 J. Hanselle et al.

Table 1. Number of scenarios for which each configuration achieved the best (average)
performance according to Kendall’s τ coefficient resp. PAR10 score. Recall that λ = 0
means pure regression, λ ∈ (0, 1) a hybrid approach, and λ = 1 pure ranking.

Model
τ PAR10

λ = 0 λ ∈ (0, 1) λ = 1 λ = 0 λ ∈ (0, 1) λ = 1

PL-LM 0 6 0 0 5 1
PL-QM 0 3 3 1 3 2
PL-NN 0 4 2 1 5 0

Hinge-LM 0 4 2 1 4 1
Hinge-QM 0 3 3 1 3 2
Hinge-NN 0 5 1 1 4 1

6 Conclusion

In this paper, we advocated the use of hybrid ranking and regression for the
algorithm selection problem, mainly with the objective to tackle the “right”
problem — which is selection, or, more generally, ranking — while not losing po-
tentially useful numerical information about observed performances (runtimes).
The proposed framework is built upon optimizing combined loss functions that
take both regression and ranking criteria into account. We investigated three
classes of models for estimating algorithm performances, namely linear models,
quadratic models, and non-linear models in the form of neural networks. The
results obtained by our experimental evaluation confirm that considering both
ranking and regression objectives often leads to better algorithm choices than
solely relying on one of the two objectives.

The proposed approaches rely on minimizing a convex combination of a rank-
ing and a regression loss function. We investigated the squared hinge ranking
loss and a ranking loss based on the Plackett-Luce model in combination with
the mean squared error as a regression loss. In future work, we plan to further
elaborate on suitable hybrid losses and to investigate the performance of other
combinations. Of particular interest are regression methods for censored data, as
these allow for modeling timeouts in a theoretically sound way. Another impor-
tant question concerns the influence of the hyperparameter λ, which balances
the regression and the ranking objectives. As we did not observe a suitable de-
fault value, it would be interesting to identify properties of algorithm selection
scenarios that seem to influence the optimal choice of this parameter, i.e., which
allow for deciding which of the two objectives, regression or ranking, should be
emphasized more.

Acknowledgements. This work was supported by the German Federal Min-
istry of Economic Affairs and Energy (BMWi) within the “Innovationswet-
tbewerb Künstliche Intelligenz” and the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901/3
project no. 160364472). The authors also gratefully acknowledge support of this
project through computing time provided by the Paderborn Center for Parallel
Computing (PC2).

Hybrid Ranking and Regression for Algorithm Selection 13

References

1. Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A.,
Hoos, H.H., Hutter, F., Leyton-Brown, K., Tierney, K., Vanschoren, J.: Aslib: A
benchmark library for algorithm selection. Artif. Intell. 237, 41–58 (2016)

2. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound
constrained optimization. SIAM J. Scientific Computing 16(5), 1190–1208 (1995)

3. Cheng, W., Dembczynski, K., Hüllermeier, E.: Label ranking methods based on the
plackett-luce model. In: Proceedings of the 27th International Conference on Ma-
chine Learning (ICML-10), June 21-24, 2010, Haifa, Israel. pp. 215–222. Omnipress
(2010)

4. Collautti, M., Malitsky, Y., Mehta, D., O’Sullivan, B.: SNNAP: solver-based near-
est neighbor for algorithm portfolios. In: Machine Learning and Knowledge Dis-
covery in Databases - European Conference, ECML PKDD 2013, Prague, Czech
Republic, September 23-27, 2013, Proceedings, Part III. pp. 435–450 (2013)

5. Friedman, J.H.: Multivariate adaptive regression splines. The annals of statistics
pp. 1–67 (1991)

6. Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques.
In: Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings. Lecture
Notes in Computer Science, vol. 5584, pp. 312–325. Springer (2009)

7. Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques.
In: International Conference on Theory and Applications of Satisfiability Testing.
pp. 312–325. Springer (2009)

8. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
Methods & evaluation. Artif. Intell. 206, 79–111 (2014)

9. Kanda, J., Soares, C., Hruschka, E.R., de Leon Ferreira de Carvalho, A.C.P.: A
meta-learning approach to select meta-heuristics for the traveling salesman prob-
lem using mlp-based label ranking. In: Neural Information Processing - 19th Inter-
national Conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceed-
ings, Part III. Lecture Notes in Computer Science, vol. 7665, pp. 488–495. Springer
(2012)

10. Kendall, M.G.: The Treatment of Ties in Ranking Problems. Biometrika 33(3),
239–251 (1945)

11. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: Survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings (2015)

13. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness
of optimization problems: The case of combinatorial auctions. In: Principles and
Practice of Constraint Programming - CP 2002, 8th International Conference, CP
2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings. Lecture Notes in Com-
puter Science, vol. 2470, pp. 556–572. Springer (2002)

14. Luce, R.D.: Individual choice behavior. Individual choice behavior., John Wiley,
Oxford, England (1959)

15. Oentaryo, R.J., Handoko, S.D., Lau, H.C.: Algorithm selection via ranking. In: Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA. pp. 1826–1832 (2015)

14 J. Hanselle et al.

16. Pihera, J., Musliu, N.: Application of machine learning to algorithm selection for
TSP. In: 26th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2014, Limassol, Cyprus, November 10-12, 2014. pp. 47–54. IEEE Computer
Society (2014)

17. Plackett, R.L.: The Analysis of Permutations. Journal of the Royal Statistical
Society. Series C (Applied Statistics) 24(2), 193–202 (1975)

18. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

19. de Sá, C.R., Soares, C., Knobbe, A.J., Cortez, P.: Label ranking forests. Expert
Systems 34(1) (2017)

20. Schäfer, D., Hüllermeier, E.: Dyad ranking using plackett-luce models based
on joint feature representations. Mach. Learn. 107(5), 903–941 (2018).
https://doi.org/10.1007/s10994-017-5694-9, https://doi.org/10.1007/s10994-017-
5694-9

21. Sculley, D.: Combined regression and ranking. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010. pp. 979–988 (2010)

22. Tornede, A., Wever, M., Hüllermeier, E.: Algorithm selection as recommendation:
From collaborative filtering to dyad ranking. In: CI Workshop, Dortmund (2019)

23. Tornede, A., Wever, M., Hüllermeier, E.: Extreme algorithm selection with dyadic
feature representation. CoRR abs/2001.10741 (2020)

24. Vembu, S., Gärtner, T.: Label ranking algorithms: A survey. In: Preference Learn-
ing, pp. 45–64. Springer (2010)

25. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

26. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran sub-
routines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.
23(4), 550–560 (1997)

