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Abstract. Pairwise difference learning (PDL) has recently been intro-
duced as a new meta-learning technique for regression. Instead of learn-
ing a mapping from instances to outcomes in the standard way, the key
idea is to learn a function that takes two instances as input and predicts
the difference between the respective outcomes. Given a function of this
kind, predictions for a query instance are derived from every training
example and then averaged. This paper extends PDL toward the task
of classification and proposes a meta-learning technique for inducing a
PDL classifier by solving a suitably defined (binary) classification prob-
lem on a paired version of the original training data. We analyze the
performance of the PDL classifier in a large-scale empirical study and
find that it outperforms state-of-the-art methods in terms of prediction
performance. Last but not least, we provide an easy-to-use and publicly
available implementation of PDL in a Python package.

Keywords: Supervised learning · Multiclass classification · Meta-learning.

1 Introduction

Pairwise difference learning (PDL) has recently been introduced independently
by Tynes et al. [19] and Wetzel et al. [22] as a meta-learning technique for
regression, which transforms the original task of learning to predict outcomes
for individual inputs into the task of learning to predict differences between the
outcomes of input pairs: Noting that the value of a function f at a point x can
be written “from the perspective” of any other point x′ as f(x) = f(x′)+∆(x, x′)
with ∆(x, x′) = f(x)−f(x′), the simple idea of PDL is to train an approximation
∆̃ of the difference function ∆ and obtain predictions of new outcomes y = f(x)
by averaging over the predicted differences to the outcomes in the training data:

y ≈ 1

N

N∑
i=1

yi + ∆̃(x, xi) (1)

One of the main motivations of PDL is the quadratic increase of the training
data: If the original training data contains N data points (x1, y1), . . . , (xN , yN ),
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the difference function can be trained on potentially O(N2) training examples
of the form ((xi, xj), yi − yj). This increase might be specifically useful in the
“small data” regime (even if the transformed examples are of course no longer
independent of each other). Moreover, note that the prediction (1) benefits from
a statistically useful averaging effect.

Building on the basic idea of PDL, we make the following contributions. We
extend the idea of PDL toward the task of classification and propose the PDL
classifier, a meta-learning approach that transforms any multiclass classification
problem into a single binary problem. This innovative method leverages the con-
cept of learning inter-class differences, leading to demonstrably improved average
prediction accuracy (Section 3). We introduce the “pairwise difference learning
library” (pdll) on PyPI, which incorporates our implementation of the PDL clas-
sifier and ensures compatibility with any Sklearn ML model (Section 3.5). We
conduct a large-scale experimental analysis of PDL and compare the results to
state-of-the-art ML estimators (Section 4). We discuss the architecture of PDL
and how it can lead to an improvement of the accuracy (Section 5).

2 Related Work

Tynes et al. introduced pairwise difference regressor [19], a novel meta-learner
for chemical tasks that enhances prediction performance, compared to random
forest and provides robust uncertainty quantification. In computational chem-
istry, estimating differences between data points helps mitigate systematic errors
[19]. In parallel, Wetzel et al. used twin neural network architectures for semi-
supervised regression tasks, focusing on predicting differences between target
values of distinct data points [22]. The approach of Wetzel et al. enabled training
on unlabelled data points when paired with labeled anchor data points. By en-
sembling predicted differences between target values, the method achieved high
prediction performance for regression problems. While conceptually similar to
the pairwise difference regressor in emphasizing differences between data points,
it is specialized to neural network architectures for semi-supervised regression
tasks [23].

The pairwise difference learning (PDL) literature has since then, evolved into
diverse methodologies and applications. Spiers et al. measured sample similarity
in chemistry, emphasizing spectral shape differences using metrics like Euclidean
and Mahalanobis distances. They extended the approach by calculating a Z-score
which offers insights into prediction accuracy, facilitating outlier detection and
model adaptation [18]. PDL was developed mainly for regression tasks. It can
also be adapted to targets that might be known or only bounded. Example
of target annotations could be y = 5.3, y < 2.1, or y > 6.5. Predicting an
increase/decrease between a pair is a possible solution [8]. PDL regressor with its
variants has demonstrated efficacy in various applications, including regression
with image input [11], learning chemical properties [7], quantum mechanical
reactions [5], and drug activity ranking [21].
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3 PDL Classification

Consider a standard setting of supervised (classification) learning: Given a set
of training data

D = {(xi, yi)}Ni=1 ⊂ Rd × Y ,

comprised of training instances in the form of feature vectors xi ∈ Rd together
with observed discrete labels y ∈ Y = {1, . . . ,K}, and assumed to be generated
i.i.d. according to an underlying (unknown) joint probability measure P , the
task is to learn a predictor PDC : Rd → Y with low risk (expected loss). The
PDL classifier transforms the original training data D into the new data

Dpair =
{
(zi,j , yi,j) | 1 ≤ i, j ≤ N

}
, (2)

where zi,j = ϕ(xi, xj) is a joint feature representation of the instance pair (xi, xj)
and

yi,j =

{
0 for yi ̸= yj ,

1 for yi = yj
. (3)

Thus, we seek a binary classifier γ : Rd × Rd → [0, 1] that, given two instances
x and x′ as input, predicts whether or not the respective classes y and y′ are
the same. More specifically, we assume γ to be a probabilistic classifier, so that
γ(x, x′) ∈ [0, 1] is the probability that y = y′. Deterministic classifiers that return
a binary label as a prediction are treated as degenerate {0, 1}-valued probabilistic
classifiers. Leveraging the joint feature representation, γ is of the form γ(x, x′) =
h(ϕ(x, x′)), where h is trained on the transformed data (2). To this end, any
binary classification method can be used. Note, however, that the binary problem
might be quite imbalanced, as the transformation (3) will produce much more
negative (unequal) than positive (equal) examples. One can solve this issue by
introducing class weights [13] to equalize the loss function of the classifier γ. As
for the joint feature representation, the original proposal was to define zi,j as a
concatenation of xi and xj . It turned out, however, that expanding this vector
by the difference xi − xj has a positive influence on performance [19], wherefore
we also adopted this representation in our work.

Since (class) equality is a symmetric relation, γ is naturally expected to be
symmetric in the sense that γ(xi, xj) = γ(xj , xi). By adding both (ϕ(xi, xj), yi,j)
and (ϕ(xj , xi), yj,i) to Dpair, this symmetry can also be reflected in the train-
ing data. But even then, however, γ is not necessarily guaranteed to preserve
symmetry. Therefore, we additionally “symmetrize” the predictor as follows:

γsym(xi, xj) =
γ(xi, xj) + γ(xj , xi)

2
(4)

Given a query xq, we finally estimate the probability of class labels y ∈ Y as
follows: Considering each training example (xi, yi) as a piece of evidence for the
unknown class yq, the semantics of the above prediction suggests that the prob-
ability of the event yq = yi is given by (4). More formally, P (E) = γsym(xq, xi),
where E denotes the event yq = yi (and hence P (¬E) = 1 − γsym(xq, xi)). Let
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Fig. 1. Illustration of the PDL classifier.

p denote the prior distribution on the class labels Y (which can easily be es-
timated by relative frequencies on the training data). This distribution is then
updated by conditioning it on the (uncertain) event E, which yields the following
posterior suggested by (xi, yi):

ppost,i(y) =


γsym(xq, xi) if y = yi

p(y) · (1− γsym(xq, xi))

1− p(yi)
otherwise

(5)

Thus, the (posterior) probability of yi is fixed to γsym(xq, xi), and all other
probabilities are rescaled in a proportional way, to guarantee that the sum of
posterior probabilities adds to 1. Finally, we average over the evidences from all
training examples to obtain

ppost(y) =
1

N

N∑
i=1

ppost,i(y) . (6)

In case a deterministic prediction is sought, the class with the highest (estimated)
probability is chosen:

ŷq = argmax
y∈Y

ppost(y) (7)

3.1 Uncertainty Quantification

Interestingly, the PDL approach also offers a natural approach to uncertainty
quantification, a topic that has received increasing attention in the recent ma-
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chine learning literature. In particular, recent research has focused on the dis-
tinction between so-called aleatoric uncertainty (caused by inherent random-
ness in the data) and epistemic uncertainty (caused by the learner’s incomplete
knowledge of the true data-generating process)— we refer to [12] for a detailed
exposition of this topic.

Within the Bayesian approach, these two types of uncertainty can be cap-
tured by properties of the posterior predictive distribution, which in turn can
be approximated through ensemble learning [15]. In a sense, PDL parallels this
approach, with each anchor playing the role of an ensemble member, and (6)
mimicking Bayesian model averaging. This suggests the following quantification
of aleatoric (AU), epistemic (EU), and total uncertainty (TU) of a prediction,
with H denoting Shannon entropy.:

TU = H(ppost(y)) = H

(
N∑
i=1

ppost,i(y)

)

AU =
1

N

N∑
i=1

H(ppost,i(y))

EU = TU − AU

Theoretically, these measures are justified based on a well-known result from
information theory, according to which entropy additively decomposes into con-
ditional entropy and mutual information [6]. Broadly speaking, the more uniform
the (averaged) distribution ppost, the higher the total uncertainty, and the more
diverse the individual predictions ppost,i, the higher the epistemic uncertainty.

3.2 Illustration

Thanks to its novel structure, the PDL classifier can solve a multiclass classifi-
cation task by training exactly one instance of a base learner on a binary task.
Fig. 1 illustrates the PDL classifier algorithm, showcasing both the training and
prediction phases on a simple multiclass task. Fig. 1.a shows a traditional mul-
ticlass classifier g that maps each of the N training data points to their assigned
unique class label (star, square, or circle). In Fig. 1.b, PDL classifier transforms
the data by creating N2 pairs of data points. During training, a binary classifier
γ learns to distinguish between pairs that belong to the same class (positive
label) from pairs of different classes (negative label). In Fig. 1.c, given one query
input, the PDL classifier pairs it with each of the N training data points. For
each pair, the classifier predicts a probability of similarity (belonging to the same
class). Predicted probabilities are mapped to the column corresponding to the
initial label of each training point. Missing posterior probabilities, in grey, are
estimated by updating the prior probabilities, assuming a uniform distribution
in this example. Finally, averaging across all training points yields the predicted
probabilities for each class. The class with the highest predicted probability is
chosen as the final class label for the query point (e.g., Class 3).
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Fig. 2. Comparing learned patterns using PDL classifiers and baseline models.

Fig. 2 illustrates the patterns learned by nine baseline models across three
2D datasets. The baseline 3-Nearest-Neighbor (3-NN) classifier can only predict
four probabilities: 0, 1

3 ,
2
3 , and 1. This is evident in the figure, where each dataset

shows only four discrete regions. In contrast, when using PDL on top of 3-NN,
the predicted probability is derived from the averaging over N discrete predic-
tions. This results in more refined and precise probability estimates. Despite
the simplicity of some estimators, PDL leverages more complex patterns. The
contrast between DecisionTree with and without PDL clearly illustrates PDL’s
capability to learn non-linear patterns. The underfitting observed when incom-
patible base models learn corrupted patterns underscores the critical role of the
choice of base learners.

3.3 Choice of Base Learners

As already said, PDL can theoretically be implemented with any (probabilistic)
binary classifier as a base learner — or, stated differently, it can be used as a
wrapper for any (binary or multinomial) classifier. Practically, however, some
classifiers might be more suitable as base learners and others less.

One thing one should keep in mind is that even if the original data D is
i.i.d., independence will be lost for Dpair as soon as the same instance xi is
paired with various other instances. This is very similar to the setting of metric
learning, where models are also trained on pairs of data points [2]. In practice,
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although many machine learning algorithms turn out to be quite robust against
violations of the i.i.d. assumption [14], some methods may be concerned more
than others.

Another important aspect is the joint feature representation z = ϕ(x, x′). For
example, by defining z as a concatenation of x, x′, and the difference x−x′, one
obviously introduces (perfect) multicollinearity. Again, while this is problematic
for some machine learning methods, notably linear models [19, p.8], others can
deal with this property more easily.

While an in-depth analysis of the suitability of different base learners is be-
yond the scope of this paper, we generally found that non-parametric methods
are more robust and tend to show better performance than parametric ones. In
our experimental evaluation, we will therefore mainly use tree-based methods,
which have the additional advantage of being fast to train.

3.4 Complexity

Looking at the complexity of PDL, suppose the complexity of a base learner to be
O(p(N,M,F,K)), where p(·) is polynomial in the number of training points (N),
the number of test points (M), the number of input features (F ), and the number
of output classes (K). The complexity of PDL is then O(p(N2, 2MA, 3F, 2)):
The training points are scaled to N2 pairs; the features are scaled to 3F (F
features of point xi, F features of point xj , and F features of the difference
xi−xj . This feature construction technique for PDL has demonstrated previously
improved results [19]); Each test point is paired with the A anchor points. Pairs
are duplicated twice to obtain their symmetry. Thus, M test predictions of PDL
require 2MA predictions using the base learner. The number of output classes
K shrinks to 2 since the model is asked to predict whether the pair of points has
a similar class.

3.5 PDL Library

Our library4 includes a Python implementation of the PDL classifier, adher-
ing to the Scikit-learn standards. Consequently, integrating the PDL classifier
into existing codebases is straightforward, requiring minimal modifications. As
demonstrated in the example below, only two additional lines of code are needed:
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into existing codebases is straightforward, requiring minimal modifications. As
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1 !pip install pdll
2 from pdll import PairwiseDifferenceClassifier # Added
3 X, y = load_data()
4 model = RandomForestClassifier()
5 model = PairwiseDifferenceClassifier(model) # Added
6 model.fit(X, y)
7 ...

4 Link: https://github.com/Karim-53/pdll4 Link: https://github.com/Karim-53/pdll

https://github.com/Karim-53/pdll
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4 Evaluation

In this section, we test PDC on various public datasets from OpenML [20] and
compare it to 7 Scikit-learn state-of-the-art learners.

4.1 Data

OpenML provides a diverse range of datasets, many of which are small, with 37%
having less than 600 data points. This study focuses on small datasets, for which
the pairwise learning approach is presumably most effective. We applied grid
search CV for parameter tuning, leveraging the search space from TPOT [16].
To accommodate our grid search setup, we subsampled the search space to 1,000
parameter combinations per estimator. Following dataset selection constraints
similar to the OpenML-CC18 benchmark [3], we randomly selected 99 datasets
(see summary statistics in Fig. 3). Although these datasets are relatively small,
the effective data size for PDC is quadrupled due to the pairing, reaching 360000
data points. We also monitored class imbalance using the “minority class” meta-
data, which represents the percentage of the minority class relative to the total
size of each dataset. Considering the 7 baseline models, we performed 5 times
5-fold CV with an inner 3-fold grid search CV, totaling 66 528 000 train-test
runs and 3 weeks wall-time on an HPC.

Fig. 3. Distribution of key characteristics of the 99 OpenML classification datasets
(minimum, mean, maximum).

4.2 Data Processing Pipeline

Using scikit-learn [17], we implemented a common data processing pipeline for all
runs, with standardization for numeric features, one-hot encoding for nominal
features, and ordinal encoding for ordinal features. Since PDL needs the pair
difference xi − xj as additional inputs, processed features are all treated as
numeric when applying the difference.
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4.3 Performance Measures

We measure performance in terms of the (macro) F1 score, which is arguably
more meaningful than the standard misclassification rate in the case of imbal-
anced data. In binary classification, the F1 score is defined as the harmonic mean
of precision and recall. For multinomial problems, the macro version of this score
is the (unweighted) mean of the F1 scores for the individual class:

MacroF1 =
1

K

K∑
i=1

F1i ,

where F1i is the F1 score on the ith class (treating test examples of this class as
positive and all others as negative). We also report the improvement of PDL over
the base learner in terms of the difference ∆F1 = MacroF1PDC −MacroF1base.
We aggregate the results using the mean ± standard error.

To aggregate the results of all data sets, we count the number of wins/losses
by comparing the average performance of models over 25 runs (5 times 5-fold
CV) per dataset. A win is counted when PDC’s average score is higher than the
baseline; a loss is counted otherwise. To determine the number of significant win-
s/losses, a Student’s t-test is conducted for each dataset to assess the statistical
significance of the difference in performance. A significant win/loss is recorded
when the p-value of the t-test is below a predetermined threshold α = 0.05. In
some cases, there may be a tie in the average scores, leading to instances where
the number of wins and losses does not sum to 99, which is the total number of
datasets benchmarked.

As an alternative to counting wins and losses, and despite being aware of the
questionable nature of this statistic, we also average performance over data sets.
Average performance may provide a first overall impression, although we agree
that it should always be interpreted in a cautious way.

4.4 Results

First, the PDL classifier, on top of ExtraTrees, obtained the best average Macro
F1 score over the 99 datasets, outperforming all baselines, see Fig. 4. In Tab. 1,
the ratio of significant wins demonstrates an advantage for the PDL classifier,
suggesting that, in a one-to-one comparison, PDL is more likely to outperform
its equivalent baseline.

The PDL classifier can be viewed as a method to simplify the trained model.
As shown in Fig. 4, the test performance of PDC(DecisionTree) is equivalent
to or better than that of the seven benchmarked state-of-the-art estimators.
This indicates that, with the help of PDL, training a single tree can compete
with ensemble methods that typically train around 100 trees. In this context,
explaining a single tree may provide a more straightforward solution.

Analyzing the unique contribution. While PDL classifiers have high probabilities
of outperforming baseline models in a one-to-one comparison, the ultimate goal
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Fig. 4. Comparing average Macro F1 score of optimized baseline classifiers and PDL
classifiers.

of a data scientist is to obtain the best performance on each dataset. Before
introducing PDC, the maximum achievable Macro F1 score was 0.8112± 0.0035
averaged over the 99 datasets. With the help of PDC, we achieve higher scores
in 75 datasets, and the new record becomes 0.8243±0.0031. This advance show-
cases the unique contribution of PDC to the field of ML compared to existing
algorithms. Moreover, PDC offers not only an important unique contribution to
the record but also the highest contribution. Indeed, PDC’s leave-one-out con-
tribution to this record is 0.8243 − 0.8112 = 0.0131 while popular estimators
like HistGradientBoosting get no unique contribution, i.e., they are not able to
outperform all other estimators on any of the 99 datasets, see Tab. 2. PDC’s
contribution is even 32 times more important than the best baseline.

Analyzing the overfitting. PDL classifiers have the advantage of decreasing over-
fitting. Indeed, looking at the 199 cross-validation (CV) runs in which both the
baseline and PDL classifier obtain non-significant differences in train Macro F1
scores, we notice that PDL classifiers have a smaller train-test gap. A lower
overfitting is observed when grouping by base classifier, see Tab. 3. This even
remains true without conditioning on non-significantly different train scores.
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Table 1. Comparing baseline classifiers to PDC using 99 datasets.

Significant wins Wins Average Test Macro F1
Classifier base PDC base PDC base ± sem PDC ± sem
Bagging 3 26 27 70 0.7906 0.0035 0.8062 0.0034
DecisionTree 2 50 22 76 0.7694 0.0037 0.7982 0.0034
ExtraTree 1 61 9 90 0.7434 0.0037 0.7987 0.0035
ExtraTrees 6 24 21 77 0.7951 0.0036 0.8113 0.0035
GradientBoosting 9 23 25 72 0.7839 0.0037 0.7903 0.0039
HistGradientBoosting 2 32 15 82 0.7888 0.0037 0.8053 0.0035
RandomForest 5 27 22 73 0.7933 0.0035 0.8073 0.0034

Table 2. Unique contribution of each estimator to the average Macro F1 score using
the best optimized model on each dataset.

Estimator Unique contribution Wins
ExtraTree 0 0
HistGradientBoosting 0 0
RandomForest 0.00002 1
Bagging 0.00004 2
GradientBoosting 0.00006 2
DecisionTree 0.00020 10
ExtraTrees 0.00041 9
PDC 0.01312 75

5 Why Does PDL Yield Improved Performance?

The empirical results reveal that the PDL classifier significantly improves over
the baseline methods. In this section, we elaborate on possible reasons for this
improvement.

5.1 Combining Instance-based and Model-based Learning

A distinguishing feature of PDL is a unique combination of (local) instance-based
learning and (global) model-based learning. Like the well-known nearest-neighbor
principle, a prediction for a new query is produced by other instances from the
training set, namely the anchor points; yet, as opposed to NN, these instances are
not restricted to nearby cases but can be located anywhere in the instance space.
This becomes possible through the model-based component of PDL, namely the
classifier γ, which is a global model that generalizes over the entire instance
space. Broadly speaking, by constructing γ, the classifier learns how to transfer
class information from one data point to another.

Of course, there are other learning methods with similar characteristics. For
example, instead of using a predefined distance function, the nearest neighbor
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Table 3. Comparing test Macro F1 on the subset of runs where train scores are not
significantly different.

# CV Baseline Macro F1 PDC Macro F1 Test Test
Estimator runs Train Test Train Test ∆F1 p-value
Bagging 20 0.998 0.835 0.999 0.859 0.024 10−15

DecisionTree 14 0.950 0.884 0.955 0.895 0.011 10−05

ExtraTree 11 0.915 0.844 0.924 0.861 0.017 10−04

ExtraTrees 26 0.985 0.828 0.991 0.853 0.025 10−16

GradientBoosting 58 0.930 0.822 0.926 0.840 0.018 10−17

HistGradientBoosting 52 0.961 0.820 0.963 0.839 0.019 10−19

RandomForest 18 0.992 0.855 0.997 0.881 0.026 10−11

Total 199 0.958 0.832 0.960 0.852 0.020 10−74

method can be instantiated with a distance function δ that is learned on the
training data. Metric learning typically proceeds from sets of similar instances
(belonging to the same class) and dissimilar instances (belonging to different
classes), and seeks to learn a function δ that keeps the distance low for the
former while making it high for the latter [10,2]. In a sense, this is indeed quite
comparable to PDL, especially because both δ and γ are two-place functions
taking pairs of instances as input. Moreover, γ could indeed also be seen as
a kind of distance measure, if “distance” is defined in terms of “probability of
belonging to the same class”. Yet, PDL is arguably more flexible, because γ is
not required to satisfy properties of a distance or metric.

5.2 Simplification through Binary Reduction

Another advantage of PDL is simplicity : The original classification task is ef-
fectively reduced to a binary problem, namely, to decide whether or not two
instances share the same class label. This is comparable to binary decomposi-
tion techniques such as one-vs-rest and all-pairs [4, p.202], which reduce a single
multinomial classification problem to several binary problems. Instead, PDL con-
structs a single binary problem, although the total number of training examples
produced essentially coincides for all methods (it is roughly quadratic in the
size of the original data). In any case, binary problems are normally easier to
solve, which explains the improved classification accuracy commonly reported
for reduction techniques. In this regard, a decomposition can even be useful
for methods that are able to handle multinomial problems right away (such as
decision trees).

5.3 Error Reduction through Averaging

Last but not least, by instantiating the global model for every anchor and col-
lecting predictions from all of them, PDL benefits from a kind of ensemble effect



Pairwise Difference Learning for Classification 13

and reduces error through averaging. In particular, since prediction errors of in-
dividual anchors can be compensated by other anchors, PDL is able to reduce
the variance of the prediction error. Again, this is somewhat comparable to the
nearest-neighbor method. Given the model γ, the anchor predictions can even
be considered as independent5, which, under the simplified assumption of ho-
moscedasticity, means that the prediction error is reduced by a factor of 1/

√
A,

with A the number of anchors [23, p.4].
Even if these assumptions may not be completely satisfied, an expected im-

provement through averaging can clearly be observed in empirical studies. Fig. 5
represents four cases encountered with four different datasets and DecisionTree
as a baseline. We compare the loss of the baseline (baseline loss) with the actual
PDL loss, i.e., the loss given all available anchors. The empirical approxima-
tion curve is meant to show how the loss depends on the number of anchor
points. Its value at A is produced by averaging the performance over randomly
selected anchor subsets of size A. The curve goes from the average loss when only
one anchor is used (γ loss) until reaching the actual PDL loss. The theoretical
approximation curve is an optimal fit of a theoretical model to the empirical
approximation, namely, the decrease of the error under the ideal assumption of
independent prediction errors distributed normally with mean µ and standard
deviation σ. As can be seen, even if this assumption may not fully hold, the two
curves deviate but slightly.

In case (a), the loss of the PDC’s γ estimator is better than the loss of
the baseline model. As expected in this case, PDC is better than the baseline
with any number of anchors. In case (b), the baseline loss is between γ loss and
PDC’s loss. With the theoretical approximation, we estimate how many anchors
are enough to outperform the baseline. In case (c), the baseline model is better
than PDL. Nevertheless, the theoretical approximation allows us to estimate the
additional anchors needed to outperform the baseline and the best reachable loss.
It becomes less and less efficient to improve the score by adding more anchors.
It might become more interesting, starting from a certain size, to work more
on the base learner or the data quality. In case (d), the baseline model is even
better than the approximated asymptote because learning the dual problem is
more difficult. Adding more anchors is less likely to help.

6 Conclusion

Building on the concept of pairwise difference learning (PDL), we proposed the
PDL classifier (PDC), a meta-learner able to reduce a multiclass classification
problem into a binary problem. Our extensive empirical evaluation across 99
diverse datasets demonstrates that PDL consistently outperforms state-of-the-
art machine learning models, resulting in improved F1 scores in a majority of
cases. This highlights PDL’s effectiveness in enhancing performance over base-
line methods, facilitated through its straightforward integration via our Python
5 Of course, this independence is lost if the anchor points are also part of the data

used to train γ.
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Fig. 5. Effect of the anchor set size on PDC’s loss relative to the baseline.

package. To explain its strong performance, we also elaborated on several prop-
erties and features of PDC.

Future research directions include the exploration of instance (anchor) weight-
ing through regularization or Shapley data importance [9] and interaction [1].
Moreover, we plan to elaborate more closely on PDC’s potential to quantify
predictive uncertainty (cf. Section 3.1)

In conclusion, PDL emerges as a practical solution for improving ML models,
offering versatility and performance improvements across diverse applications.
Its adaptability and robust performance make it a valuable addition to the ML
toolkit, promising more accurate and reliable predictions in various domains.
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