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B Explainable artificial intelligence (XAl) techniques crucial in unraveling the inner

workings of opaque machine learning models [1]
B XAl measures could also be used to explain how a model evolves during training

B How do the explanations of XAl methods change as the approximation uncertainty

of a model is reduced?

B Study feature attribution methods as a function of training time!
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Backpropagation-Based XAl Approaches: LRP and Grad-CAM
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Methodology

B Model training: Train different models on FashionMNIST and CIFAR10
B Compute feature attributions: separate dataset of seen and unseen images
B Summarize: compute summary measures
e Frobenius norm: ||A|lr = /2.7 ZJ’-’|3,2J-\
e Shannon entropy: H(X) = — 3, cx p(x) log p(x)
B Analyze: descriptive and correlation analysis

e Spearman’s p
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Descriptive Analysis Results

norm entropy norm entropy

(a) FashionMNIST (good fit) (b) CIFARI10 (slight overfit)

Figure 1: Trend of the summary measures of the pos. LRP values and the model performance on
FashionMNIST (a) and CIFAR10 (b).
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Descriptive Analysis Results

norm entropy norm entropy

(a) FashionMNIST (good fit) (b) CIFAR10 (slight overfit)

Figure 2: Trend of the summary measures of the pos. Grad-CAM values and the model
performance on FashionMNIST (a) and CIFAR10 (b).
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Correlation Analysis Results

AL

dataset FashionMNIST CIFARI10
model fit good fit slight overfit overfit strong overfit
summary | norm entropy | norm entropy | norm entropy | norm entropy

test loss ‘-0.875 0.806 ‘0.226 -0.141 ‘-0.363 0.391 ‘0.345 -0.296

train loss | -0.657 0.591 | -0.836 0.783 |-0.832 0.808 | -0.940 0.884
Figure 3: Correlation coefficients using LRP.
dataset FashionMNIST CIFARI10

strong overfit
norm entropy

model fit good fit
summary | norm entropy

test loss | 0.040 0.118 ‘0.158 0.022 | -0.086  0.055 ‘ 0.035  -0.022

slight overfit overfit
norm entropy | norm entropy

train loss | 0.129  0.075 | 0.261  0.198 | -0.108  0.050 |-0.031 -0.020

Figure 4: Correlation coefficients using Grad-CAM.
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Conclusion and Future Work

B uncertainty regarding the attribution values decreases during training

B evolution of the norm and entropy is independent of the generalization
capabilities of the neural network

B correlation coefficients differ depending on whether the model is overfitting
B Grad-CAM values are very volatile and do not yield significant results
Future Work
B evaluate this behavior across model architectures, datasets, and training times

B possibly exploring the double descent phenomenon
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Thank you for your attention!
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