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Uncertainty Estimation of Lake Ice Cover Maps

From a Random Forest Classifier Using
MODIS TOA Reflectance Data

Nastaran Saberi
K Andrea Scott

Abstract—This article presents a method to improve the usability
of lake ice cover (LIC) maps generated from moderate resolu-
tion imaging spectroradiometer (MODIS) top-of-atmosphere re-
flectance data by providing estimates of aleatoric and epistemic
uncertainty. We used a random forest (RF) classifier, which has
been shown to have superior performance in classifying lake ice,
open water, and clouds, to generate daily LIC maps with inherent
(aleatoric) and model (epistemic) uncertainties. RF allows for the
learning of different hypotheses (trees), producing diverse pre-
dictions that can be utilized to quantify aleatoric and epistemic
uncertainty. We use a decomposition of Shannon entropy to quan-
tify these uncertainties and apply pixel-based uncertainty estima-
tion. Our results show that using uncertainty values to reject the
classification of uncertain pixels significantly improves recall and
precision. The method presented herein is under consideration for
integration into the processing chain implemented for the produc-
tion of daily LIC maps as part of the European Space Agency’s
Climate Change Initiative (CCI+) Lakes project.

Index Terms—Lake ice, random forest (RF), remote sensing,
uncertainty.

1. INTRODUCTION

CCORDING to the global climate observing system

(GCOS), lake ice cover (LIC) is created as a thematic
product of lakes as an essential climate variable (ECV) required
for climate monitoring [1]. It is also a significant product of
interest for improving numerical weather forecasting in northern
high latitudes [2]. In recent years, a considerable number of
studies have been conducted on the use of satellite-derived
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LIC and ice phenology (dates associated with freeze-up and
breakup, and ice cover duration) records for documenting the
response of northern lakes as well as lakes on the Tibetan
Plateau to climate variability [3] and change [4], [5], [6], [7].
Observations from both active microwave and passive (optical
and microwave) sensors have been used to map and monitor LIC
(e.g., [8]). While synthetic aperture radar (SAR) sensors provide
all-weather and day/night acquisitions, optical sensors collecting
data in the visible to thermal infrared parts of the electro-
magnetic spectrum are the main instruments for environmental
monitoring, especially in the context of climate change stud-
ies, which require extensive time series with global coverage.
The moderate resolution imaging spectroradiometer (MODIS)
aboard both NASA’s Terra and Aqua satellite missions is espe-
cially relevant for this purpose, as it has been providing more
than twice daily acquisitions at northern latitudes for over 20
years.

Together with the availability of a longer time series of
MODIS data, there has also been an increase in the application
of machine learning (ML) for lake ice classification from optical
imagery [1], [2], [9], [10]. This shift of attention toward the use of
ML techniques is primarily supported by the better performance
in accuracy metrics compared to previous threshold-based ap-
proaches for lake ice mapping [10]. While meaningful uncer-
tainties can enhance the explainibility of ML predictions, there
is generally a gap in providing uncertainties from ML-generated
outputs. Such is the case for the LIC thematic product generated
for the European Space Agency Climate Change Initiative (ESA
CCI) Lakes project (https://climate.esa.int/en/projects/lakes/)
that is delivering multidecadal satellite-based products (lake
surface water temperature, ice cover, water-leaving reflectance,
water level, and extent) on a common ca. 1-km grid over more
than 2000 lakes for climate monitoring and to serve the climate
modeling community [11]. The LIC product delivered to the
ESA CCI Lakes project currently only contains information on
overall classification accuracies obtained with a random forest
(RF) classifier for its main categories (open water, ice cover, and
cloud cover). Pixel-based quantification of uncertainty is much
needed for users of the product.

Recently, uncertainty estimation has been found an essential
add-on in different ML research fields such as computer vi-
sion, and natural language processing (NLP), as well as classic
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ML problems such as regression and classification [12]. In
satellite remote sensing, there is often an insufficient emphasis
on the quantification of uncertainties associated with the derived
products or maps. While these uncertainties are significant for
the reliability and application of such products, there is limited
literature that addresses this challenge. Notably, there are a
few pioneering works in ice mapping using SAR that focus on
uncertainty decomposition [13] as well as uncertainty estimation
using probabilistic approaches [14]. This is particularly true
when an ML approach is applied for classifying the images,
whereby only basic accuracy metrics are calculated (e.g., overall
classification accuracy, errors of omission, and commission) and
not uncertainties. This includes the significance of differenti-
ating two types of uncertainties often referred to as aleatoric
and epistemic uncertainty. While aleatoric uncertainty refers to
the randomness in the data-generating process, epistemic uncer-
tainty is caused by the learner’s lack of knowledge about the best
prediction [12]. Thus, the latter could in principle be reduced
through further information (e.g., more training data), whereas
the former is irreducible and implies an unavoidable prediction
error. The primary motivation for decomposing uncertainty into
epistemic and aleatoric components is to enhance our under-
standing of model performance and the inherent randomness
within the data. This, in turn, facilitates the planning for the
fusion of various models, aiming to create a reliable lake ice map
product.

In this article, we present an approach to measure the aleatoric
and epistemic uncertainties in the prediction of LIC from an RF
classifier applied to optical remote sensing observations. RF is
chosen not only due to its efficiency and predictive performance
in the same classification problem as indicated by previous
research [10], but also for its ability to measure and quantify pre-
dictive uncertainty. As will be explained in more detail later on,
this is essentially due to the added information that is provided
by an entire collection of predictions produced an ensemble
technique such as RF, compared to just a single prediction
obtained from a conventional classifier. Roughly speaking, the
idea is that epistemic uncertainty should be reflected by the
agreement or disagreement of the ensemble members: If all
of them agree on more or less the same prediction, then this
is a sign of low epistemic uncertainty. On the other side, a
strong disagreement between the predictions can be taken as an
indicator of high epistemic uncertainty. Similarly, information
about aleatoric uncertainty can be extracted from the collection
of predictions. This article describes the methodology for cal-
culating uncertainties and outlines a strategy for generating lake
ice maps for each observation. Using optical sensors with high
revisit rates provides observations at a location with overlapping
swaths. The lake ice map product can result from the fusion
of multiple maps and the fusion can be done at the data or
model level with aleatoric or epistemic uncertainties as the main
criteria.

The rest of this article is organized as follows. Section I
describes the introduction. Section Il begins with an overview of
the study area and datasets employed in our research. Section III
introduce the methodology for the classification of pixels and the
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Fig. 1. False color RGB composite (R: band 2, G: band 2, B: band 1) of
MODIS Terra on 2014/01/14 covering our study area, Lake Erie.

quantification of both aleatoric and epistemic uncertainties for
such classifications. Sections IV and V analyze the results at
both the pixel and window patch levels, followed by rejection
criteria analysis. Finally, Section VI concludes this article.

II. DATA AND STUDY AREA

MODIS Terra Level 1B calibrated radiances product
(MODQ02), Collection 6.1 (top-of-atmosphere reflectance) was
utilized for mapping lake ice, water, and cloud and uncer-
tainty. MODO02QKM bands 1-2 with a 250 m pixel spacing and
MODO2HKM bands 3-7 with a 500 m pixel spacing were used.
We applied methods proposed by [15] and [10] for resampling
to 250 m pixels and for the optimal combination of bands,
respectively.

We selected three winters (2014, 2016, and 2018) from Lake
Erie, one of the Laurentian Great Lakes of North America (see
Fig. 1), for analysis. Lake Erie covers an area of 25 655 kmZ2,
with an average depth of 19 m. Lake Erie is an exception to the
other four Great Lakes (Huron, Michigan, Ontario, Superior)
as it sometimes completely freezes over during winter due
to its shallow depth. Winter 2014 is one of those instances
whereby the Great Lakes experienced their second-largest ice
coverage since 1973, due to persistent low air temperatures
(NOAA/GLERL NOAA Great Lakes Environmental Research
Laboratory—Historical Ice Cover. Available online: https:/
www.glerl.noaa.gov/data/ice/historical). MODIS images were
filtered to select the ones with less than 50% cloud coverage
for further uncertainty analysis and to minimize the imbalanced
impact of the number of pixels in each class. From January
to April of 2014,' 2016,% and 2018?, 12, 10, and 19 images
were selected, respectively. To train, validate, and test the RF
model, extensive data labels are collected to maintain spatial and
temporal independence. Additional independent labels collected
in the study area are for uncertainty rejection analysis. The
information on data labels is provided in Section IV-A.

12014/01/03, 2014/01/09, 2014/01/14, 2014/01/29, 2014/02/12, 2014/03/07,
2014/03/13, 2014/03/30, 2014/03/18, 2014/04/06, 2014/04/12, and 2014/04/17.

22016/01/19, 2016/01/24, 2016/01/28, 2016/02/05, 2016/03/17, 2016/04/27,
2016/01/24, 2016/02/01, 2016/02/06, and 2016/04/17.

32018/01/04, 2018/01/13, 2018/01/28, 2018/02/26, 2018/03/19, 2018/01/05,
2018/01/19, 2018/02/12, 2018/03/02, 2018/03/25, 2018/01/06, 2018/01/20,
2018/02/13,2018/03/15, 2018/04/23,2018/01/09, 2018/01/26, 2018/02/14, and
2018/03/18.
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III. METHODOLOGY

In this section, we briefly recall the ML and uncertainty
quantification methodology we build on. We describe the for-
malization of the predictive modeling task as a problem of
supervised learning, its instantiation with RFs as an ensemble-
based learning algorithm, and the quantification of uncertainty
in terms of appropriate numerical measures. Our approach is
largely based on the work by [16].

A. ML for Predictive Modeling

Consider a standard supervised learning (classification) set-
ting, in which a learner is given access to a set of training data

D{(mi i)}y CX XY (1)

where X is an instance space and ) a finite set of K possible
class labels that can be associated with an instance. In our study,
the set of class labels is given by

Y= {ywatera Yice, ycloud} 2)

and each instance x € is a feature vector representing a pixel (cf.
Section II). Assuming that the training examples are generated
(independently) according to an underlying joint probability
distribution P on X’ x ), i.e., that each (x;, y,) is a realization
of (X,Y) ~ P, the task of predictive modeling is to learn the
marginal P(Y | X). More specifically, we seek a mapping

h:X —P(Y) 3)

that associates with each x € X a predicted probability
P(Y | X = ), which is an accurate approximation of the true
marginal — the quality of the approximation is specified in terms
of a so-called loss function. If ) is finite, then P(Y | X =)
can be represented as a probability vector h(x) = (p1, .. .,PK),
where py, is the probability predicted by A for the kth class label.

In addition to the training data D, the learning algorithm is
given a hypothesis space H, from which a predictor (hypothesis)
h can be chosen. In our case, H consists of all predictors
X — P(Y) that can be represented by a decision tree. The
learner’s selection of a specific predictor h is guided by an
appropriate induction principle. The construction of decision
trees, for example, is guided by the idea of uncertainty (entropy)
reduction.

B. Uncertainty Quantification

Suppose a predictor h has been trained. How can we quantify
the uncertainty of a prediction h(x) for a specific instance x?
The goal of uncertainty quantification is to provide numerical
measures of the overall (total) uncertainty as well as the aleatoric
and epistemic uncertainty of the prediction.

As a prediction h(x) in the form of a probability distribution
on Y can only capture aleatoric uncertainty, the representation
of epistemic uncertainty requires the learner to go beyond the
induction of a single predictor k. In one way or the other, it needs
to represent its uncertainty about (the predictions produced by)
h. In the Bayesian approach to ML, this is accomplished by
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a (second-order) probability distribution ) on the hypothesis
space H. Thus, instead of inducing a single predictor, a Bayesian
learner maintains a probability distribution over the entire hy-
pothesis space, and learning essentially consists of replacing
a prior on this space by a posterior distribution. The more
concentrated this distribution becomes, the less (epistemically)
uncertain the learner is.

On the basis of the learner’s “belief” (2, uncertainty measures
can be derived in various ways. The most common approach
in ML relies on Shannon entropy as an established measure of
(total) uncertainty, and leverages the information-theoretic result
that entropy can be expressed as the sum of conditional entropy
and mutual information [17]. Thus, the total uncertainty of the
prediction h(x) is the entropy

K
TU(w) = H[p] =~ _ px - log, by )
k=1

where H denotes Shannon entropy and the posterior predictive
distribution p = (p1, ..., Px) is obtained through (Bayesian)
model averaging, i.e., averaging the probability predictions p =
h(x) made by the individual models h € H, weighted by their
posterior probability

p= /H h(z)dQ(h). 5)

As fixing a single model 2 means committing to a single predic-
tive distribution and hence removing all epistemic uncertainty,
the entropy of such a distribution is a suitable measure of
aleatoric uncertainty. The conditional entropy is the expectation
of this measure with regard to @

AU(z) = /H H (@) dQ(h). ©)

Epistemic uncertainty can then be computed as the difference
EU(z) = TU(x) — AU(«). Thus defined, it coincides with the
mutual information of the predictor ~ and outcome y (both
considered as random variables). Intuitively, this appears to be
plausible: epistemic uncertainty represents the (expected) reduc-
tion of uncertainty that is achieved by revealing the (uncertain)
predictor A [12].

For complex model classes, the above approach is com-
putationally intractable, due to the need for integrating over
‘H. In practice, ensemble methods are commonly used as an
approximation [18]. Such methods train a set of M different
predictors hy,...,hy € H, which are considered as a repre-
sentative sample from the true distribution @). In our case, we
instantiate this approach with decision trees as the model class,
i.e., each ensemble members h,,, is a decision tree.

Given a trained ensemble, the posterior predictive distribution
as well as the uncertainty measures can be obtained through
arithmetic averaging instead of integration: For a query instance
x, let p,, = (P1.m, ..., PK,m) denote the probability distribu-
tion predicted for by the mth ensemble member h,,,. The pos-
terior predictive distribution is then given by p = (p1, ..., k),
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where

1 M
k=57 X_jlpk,m. )

Moreover, total, aleatoric, and epistemic uncertainty are given
as follows:

TU(x) = H [p] ®)
1 M

AU(z) = == )  H[p,] ©)
TP

(10)

C. Implementation With RFs

The approach outlined above has been realized for the RF clas-
sifier [19] as an ensemble method and implemented in Python.
An RF is comprised of a collection of decision trees [20]. The
primary objective of a decision tree is to predict the target vari-
able by learning decision rules derived from the data features.
In this context, each inner node within a tree is associated with
a specific attribute or feature of the training data. The branches
emanating from the node delineate potential outcomes or values
of that feature, guiding the traversal to subsequent nodes until
a final decision is ascertained at the terminal nodes, commonly
referred to as leave nodes. In the classification setting, to derive
the predicted probability distribution, one can utilize the relative
frequency of the samples of each class within the leaf node.

To introduce diversity in the ensemble, RF trains each de-
cision tree on a bootstrap, which involves randomly selecting
data points from the original dataset with replacement [21].
Additional variability is injected into the training of decision
trees by randomly choosing a subset of features as candidates
for defining a split at an inner node of the tree, thereby ensuring
greater diversity among the trees. Finally, the output of an RF
is an aggregation of the outputs from the set of grown trees.
In the classification setting, this aggregation typically involves
computing the average (1) over the probability distributions from
the individual trees, and this is the approach adopted in the
present study.

IV. RESULTS
A. Experimental Protocol

RF hyperparameters to be defined are the number of variables
and the number of trees that are set to develop independent
classifiers. In our RF classifier, MODIS TOA reflectance bands
correspond to the predictor variables. The range of suitable
hyperparameter values is provided by [10] based on analyzing
gained accuracy. The RF model was trained and tested on an
extensive, yet independent dataset collected from MODIS on
several lakes worldwide above 40° latitude, during the years
2010-2020 with 1048575 labels. This independent dataset en-
sures that the model is generalized and not biased toward specific
test lakes, such as Lake Erie. Before fine-tuning the hyperparam-
eters, 20% of the data, equivalent to 209715 data points, was
set aside. Then, a 70%—30% train-validation split was applied
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to build the RF classifier using the aforementioned parameters.
The hyperparameter values were sampled and tested to find the
optimal settings, resulting in maximum classification accuracy.
Ultimately, the hyperparameters were set to a maximum depth
of 30, a maximum of three features, and 1000 estimators. Fig. 2
shows the data processing chain to map lake ice and uncertainties
using TOA observation from MODIS sensor. We only used
scenes with lake coverage to avoid mosaicing and to simplify
the preprocessing steps.

To evaluate uncertainty, we created a new set of labels in Lake
Erie and used this dataset for accuracy rejection analysis. Sep-
arating the datasets for this experiment helps ensure robustness
by evaluating the model on new data, providing a more accurate
assessment of its generalization performance.

B. RF Maps and Uncertainty Analysis

The RF model achieved a high accuracy score of 97% on the
test set, which comprised 209 715 labels that were kept unseen
during the hyperparameter fine-tuning step. The F-scores for the
classification of ice, water, and cloud classes were 0.94, 0.97,
and 0.98, respectively. Total, aleatoric, and epistemic uncertainty
for each pixel was calculated using the methodology outlined in
Section III. These uncertainties were then mapped in the same
coordinate system as MODIS observations for further visual
and statistical analysis. An example of the produced LIC map
and corresponding uncertainties on 2014/01/03 are presented in
Fig. 3. Noteworthy, as the uncertainty is calculated using entropy,
it translates to the range of uncertainties as the minimum and
maximum of entropy for probability distributions. The range of
the uncertainty in RF is then defined as [0, log2(K)] with K
being the number of classes. Therefore, in our experiments, the
maximum uncertainty is log2(3) = 1.58. The mean and variance
of values of uncertainties for each year are reported in Table 1.
During the years of study, average cloud coverage in selected
scenes was at a minimum in the winter of 2014. This year was
marked as a unique winter season when the lake experienced
complete ice coverage, as confirmed by other remotely sensed
observations such as SAR [22], [23], it had the least average ice
coverage compared to other selected years.

Visual inspections of satellite imagery across various dates
reveal how the physical properties of lakes influence pixel clas-
sification. The observed differences in coverage indicate that
assessments based on imbalanced class coverage are unreliable.
For instance, the year with the lowest coverage exhibited the
highest total uncertainty in RF classification. Noticeable ex-
amples are cloud in 2014 and water classes in 2016, which
show the highest uncertainties while having the least coverage
among other classes of the same winter season. On the other
hand, the average epistemic uncertainties are lower than aleatoric
uncertainties, so total uncertainty is mainly affected by aleatoric
uncertainties. Interestingly, visual inspections of over 30 days
show that patterns of both aleatoric and epistemic uncertainties
are similar within a small-scale area of the lake’s coverage, as
can be seen in Fig. 3. The discrepancies between aleatoric and
epistemic uncertainties become noticeable at smaller scales as
explained in the next Subsection.
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MODO02-TOA, Bands 1-7
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Sample annotated data
(Cloud, Water, Ice)

(max_¢lepth=30, max_features=3, n_estimators=1000)

Mask and store calibrated

bands; GetGeoinfo

Lake coverage Yes—p|

Reshape to 1D to use for
RF predictions and
uncertainty estimations

RandomForestClassifier

Epistemic and Aleatoric
Uncertainty Model

Final maps

Aureyaoun [0

Aureuaoun ywarsida

Fig. 2. General flowchart of data processing steps from extracting TOA bands of MODIS based on lake coverage to RF and uncertainty maps.
(b)
()
Fig. 3. (a) RF LIC map of 2014/01/03. (b) Total uncertainty. (c) Aleatoric uncertainty. (d) Epistemic uncertainty.

TABLE I
AVERAGE UNCERTAINTIES CALCULATED FOR EACH CLASSIFIED PIXEL DURING WINTERS OF 2014, 2016, AND 2018 (AVERAGE IS APPLIED TO ALL PIXELS FOR
EACH CLASS IN ALL SELECTED SCENES OF EACH YEAR)

Coverage % Total Uncertainty | Epistemic Uncertainty | Aleatoric Uncertainty
Mean | Variance | Mean | Variance Mean | Variance
2014 | Water | 61.7 0.38 0.38 0.16 0.19 0.22 0.21
Ice 24.9 0.36 0.38 0.17 0.21 0.18 0.19
Cloud | 124 0.61 0.49 0.27 0.24 0.33 0.26
Coverage % Total Uncertainty Epistemic Uncertainty | Aleatoric Uncertainty
Mean | Variance | Mean Mean | Variance
2016 | Water | 0.5 0.92 0.42 0.42 0.23 0.5 0.21
Ice 62.6 0.24 0.34 0.11 0.17 0.13 0.17
Cloud | 33.4 0.28 0.41 0.13 0.21 0.15 0.21
Coverage % Total Uncertainty | Epistemic Uncertainty | Aleatoric Uncertainty
Mean | Variance | Mean | Variance Mean | Variance
2018 | Water | 42.6 0.30 0.38 0.17 0.18 0.18 0.20
Ice 35.7 0.37 0.42 0.17 0.21 0.20 0.22
Cloud | 20.2 0.39 0.48 0.12 0.22 0.22 0.26

C. Neighborhood Analysis

Consistent variances of epistemic uncertainties tell us that the
classification model is not out-performing or miss-performing
in classifying any specific class. In general, these average un-
certainty values cannot infer specificity on class performance as
differences in values are not significant. Furthermore, uncertain-
ties in each pixel reported in Table I do not include any spatial
context. To take spatial variability into account, we studied
window-based statistics with a 5 by 5 moving window to analyze

how variability in surrounding pixels impacts uncertainties. The
histograms of each class’s pixel counts based on grouping into
intervals of 10 were analyzed and it was observed that em-
ploying a natural breaks classification with intervals of 10 and
20 effectively reduces variance within classes and maximizes
variance between classes. Consequently, for the window-based
statistical analysis of uncertainties within a 5x5 window, three
groups of pixel counts—namely 10, 10-20, and 20-25—have
been selected.
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Fig. 4. Density histograms of uncertainty are plotted for selected scenes, categorizing each RF class in the center of a 5 by 5 window based on the total number

of instances of that class within the window. (a), (b), and (c) show total, epistemic, and aleatoric uncertainties for the ice class, whereas (d), (c), and (f) maps out
uncertainties for the water class, and (g), (h), and (i) represent uncertainties for the cloud class in the same order. The peak for pixel counts less than 10 in the
lowest uncertainty bin indicates relatively isolated pixels of a given class surrounded by a majority of another class.

Uncertainties were calculated for three groups (<10, 10-20,
>20) of classified ice, water, and cloud pixels within 5 by 5
windows, and their density histograms are plotted in Fig. 4.
As can be seen, the uncertainties of classified ice, water, and
cloud decrease when there is more homogeneity of the same
class within 5 by 5 windows. A similar pattern can be seen in
all classes for aleatoric and epistemic uncertainties, and there is
no obvious difference between uncertainties’ dispersion with
pixel counts with less than 10 or 10 to 20 counts. In other
words, as long as there are less than 20 pixels of the same
class within a 5 by 5 window, the uncertainties are normally
distributed and the mean is much higher than in cases where
more than 20 pixels of the same class are mapped. The high
density of the first bin of histograms in all three classes for
both aleatoric and the epistemic uncertainties with less than 10
counts of the class of interest, can be explained by the presence
of regions, where a low number of counts of a specific class in
the center exists and a large number of the same class of another
class is present. For instance, in the case of plot Fig. 4(d), we
have a large number of windows with a small fraction of water
pixels surrounded by clouds or ice with more than 20 pixels
and as a result, the first bin with the lowest total uncertainty

values has a high frequency of occurrence. This highlights the
importance of spatial variability, as both aleatoric and epistemic
uncertainties are found to be higher in windows where a small
pixel count of the class of interest is surrounded by other
classes.

D. Accuracy Rejection Experiment

To assess the effectiveness of uncertainty quantification,
accuracy-rejection curves are plotted. Here, we arrange our RF
predictions by their uncertainty values and progressively discard
the uncertain ones while monitoring the accuracy of the remain-
ing predictions. The underlying concept is that if the uncertainty
quantification reliably distinguishes highly uncertain predictions
(likely incorrect) from highly certain ones (mostly correct), the
model’s accuracy will improve as more uncertain predictions are
rejected. Conversely, if predictions are rejected randomly, there
will be no impact on accuracy.

Accuracy—rejection curves for a specific scene with balanced
coverage of ice and water (with cloud coverage of only 0.35% in
the scene) are shown in Fig. 5. These plots depict the F1-accuracy
of classifying ice and water, with respect to rejection, on the
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Fig.5. Rejection analysis based on aleatoric, epistemic, and total uncertainties
for ice and water classification.

left y-axis, correlated with rejected pixels exhibiting higher
uncertainties, encompassing total, epistemic, and aleatoric un-
certainties. The uncertainty values are represented by dashed
lines in alignment with the right y-axis. As anticipated, there
is an increase in accuracy performance for all three types of
uncertainty rejections—total, epistemic, and aleatoric—while
random rejection stays unchanged. According to these plots,
epistemic uncertainty demonstrates the most effective rejection
performance. This suggests that by rejecting fewer predictions,
we can achieve the same level of accuracy as with total or
aleatoric uncertainty, which will make more rejections. This dis-
covery also validates the utility of decomposing total uncertainty
into epistemic and aleatoric components when determining LIC
maps.

V. DISCUSSION

Visual inspections of the classified maps and correspond-
ing uncertainty maps reveal that the highest uncertainties are
present along edges/transitions between water, ice, and cloud
cover. In addition, based on our prior knowledge of Lake Erie’s
ice coverage [23], high uncertainty was also found in areas
with thin ice cover, which are present in the western basin
of Lake Erie. These findings can help feed more informative
annotations for RF training to gain more accurate classification
maps. Misidentification of surface types under conditions of
variable cloud cover was another noteworthy observation. These
cases frequently result in the incorrect classification of other

5925

surface features. An example of this is observed on January
21, when ice was mistakenly identified as cloud cover. The
uncertainty values for this date were markedly higher compared
to those of adjacent dates with correct classifications, under-
scoring the utility of uncertainty analysis. Another significant
application would be using uncertainty maps as label uncer-
tainties while training an ML-based model. The outcome of
such an application would contributes to mapping at scale with
minimal resources for annotations, similar to weakly supervised
approaches.

To better understand the spatial pattern of the uncertainties,
rather than only inferring statistics based on a pixel-based av-
eraging in the mapped area, we used window-based statistics
to estimate uncertainties of classes in each window while con-
sidering class variabilities in each window. Results indicate that
spatial variability is one of the main drivers of higher uncertainty
in both epistemic and aleatoric forms. This work can be applied
in the collective classification technique [24], where the pixel
to be classified is compared with its neighbors iteratively. By
incorporating uncertainties in collective classification and taking
into account the spatial context within a region, the accuracy of
classification could be improved.

This investigation represents a significant shift from previous
methodologies in the domain of lake and sea ice mapping, which
predominantly utilized convolutional neural networks (CNNs)
and employed approaches such as modified loss functions [23],
[25], uncertainty decomposition [13], or calibrated probabili-
ties [26]. In contrast, the use of RF in this study for analyzing
multispectral data introduces a methodologically rigorous and
principled approach that is adaptable to other research scenarios
involving similar data types. This strategy enhances the ro-
bustness of uncertainty quantification, facilitating more reliable
classification outcomes and offering potential frameworks for
future applications.

VI. CONCLUSION

Mapping of LIC using optical spaceborne sensors has a
long history, however, quantification of how reliable are those
retrievals at the pixel level is lacking. Uncertainty estimates
expand the lake ice map product usability by making researchers
aware of aleatoric and epistemic uncertainty for incorporating
ice fractions in numerical models, such as lake and weather
forecasting models. Quantifying both aleatoric and epistemic
uncertainties are crucial for improving the reliability and ro-
bustness of model predictions. Aleatoric uncertainties, which
represent the inherent variability and randomness within the
data or system being modeled, remain irreducible regardless
of the amount of information available. Epistemic uncertainties
are essential for comprehending a model’s performance and are
integral to the fusion of disparate models for generating a specific
product. Uncertainty incorporation can be done in the form of
direct integration of observation error variance or as a quality
control flag. To expand the application of the presented work,
efforts are underway to integrate this methodology within the
existing processing chain of daily LIC product generation of
ESA’s CCI Lakes project. This integration will include the use
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of uncertainty as an informative tool to identify problematic
classifications, both spatially and temporally, within the LIC
product. Such integration will not only extend the current work,
but also address data limitations, thereby providing a foundation
for global lake ice mapping. The availability of uncertainty data
will facilitate the development of data fusion methods, lever-
aging discrepancies within classifications or lakes and across
different dates to enhance the overall product quality.
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