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 a b s t r a c t

The Random Forest (RF) classifier is often claimed to be relatively well calibrated when compared with other 
machine learning methods. Moreover, the existing literature suggests that traditional calibration methods, such 
as isotonic regression, do not substantially enhance the calibration of RF probability estimates unless supplied 
with extensive calibration data sets, which can represent a significant obstacle in cases of limited data availabil-
ity. Nevertheless, there seems to be no comprehensive study validating such claims and systematically comparing 
state-of-the-art calibration methods specifically for RF. To close this gap, we investigate a broad spectrum of cali-
bration methods tailored to or at least applicable to RF, ranging from simple scaling techniques to more advanced 
algorithms. Our results based on synthetic as well as real-world data unravel the intricacies of RF probability 
estimates, scrutinize the impact of hyper-parameters, and compare calibration methods in a systematic way. We 
demonstrate that a well-optimized RF matches or outperforms state-of-the-art calibration methods. In particular, 
statistical tests on metrics such as accuracy, ECE, Brier score, and log-loss consistently place the optimized RF 
among the top-performing group.

1.  Introduction

The Random Forest (RF) classifier [1] is a versatile machine learning 
(ML) algorithm, which is easy to use and proved to be fast, robust, and 
extremely competitive across a broad range of applications.

Going beyond mere class assignments, it is also able to predict prob-
abilities on the basis of relative class frequencies in a rather natural 
way. Probabilistic predictions are particularly desirable in safety-critical 
applications, such as medical diagnoses [2], financial predictions [3], 
forecasting [4] and risk assessments [5,6], where information about the 
confidence in a prediction is of utmost importance.

The reliability of probability estimates, whether coming from an RF 
or any other ML algorithm, is becoming a subject of growing concern, 
however, and the question arises how trustworthy such estimates actu-
ally are. In machine learning, the notion of calibration is used to char-
acterize this trustworthiness: a predictor is called well-calibrated if its 
predicted probabilities align well with the ground-truth probabilities. 
The topic of calibration has attracted increasing attention in machine 
learning in the recent past, and various calibration methods have been 
proposed [7]. Typically, these methods seek to improve probability es-
timates in a post-processing step by learning a function that maps esti-
mates to “better” estimates.

RF is often claimed to be relatively well calibrated, especially 
compared to other machine learning methods. Moreover, the existing
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literature suggests that traditional calibration methods, such as isotonic 
regression, do not substantially enhance the calibration of RF probabil-
ity estimates unless supplied with extensive calibration data sets, which 
can represent a significant obstacle in cases of limited data availability. 
Nevertheless, there seems to be no comprehensive study validating such 
claims and systematically comparing state-of-the-art calibration meth-
ods specifically for RF. In this paper, we aim to address this gap. The 
key contributions of our work are as follows:

1. We conduct extensive experimental studies using synthetic data with 
known true probabilities. These studies aim to provide insights into 
the behavior of RF probability estimates with regard to instance-wise
and probability-wise calibration metrics.

2. We examine the influence of RF hyper-parameters on calibration 
performance, with the aim of improving theoretical understand-
ing and providing a comprehensive guide for researchers, data 
scientists, and machine learning practitioners working with RF 
calibration. In particular, we find that tuning tree depth has the 
most significant impact on the calibration performance of RF, as 
illustrated using synthetic data.

3. We conduct a systematic comparison of state-of-the-art calibration 
methods, covering a wide range from traditional techniques to 
recent proposals, including both model-agnostic approaches and 
methods specifically designed for Random Forests. Our evaluation 
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Fig. 1. This decision tree estimates the probability of the positive class as 1∕4 for all instances falling in either of the two leaf nodes shaded in grey. Class-wise 
calibration then requires that ℙ(𝑌 = +1 | 𝑥⃗ ∈ 𝐴 ∪ 𝐵) = 1∕4, where 𝐴,𝐵 ⊂  are the regions in the instance space associated with the two nodes, respectively. Note 
that this neither implies instance-wise calibration nor “leaf-wise” calibration (i.e., ℙ(𝑌 = +1 | 𝑥⃗ ∈ 𝐴) = 1∕4 and ℙ(𝑌 = +1 | 𝑥⃗ ∈ 𝐵) = 1∕4).

spans multiple calibration metrics and includes statistical tests, 
offering the most comprehensive comparison to date.

4. We compare calibration performance of RF with other ML algo-
rithms, both in terms of calibration metrics and also the run-time.

2.  Calibration

In the context of supervised learning, we consider a standard sce-
nario where a learner is provided with a set of training data denoted 
 ∶= {(𝑥⃗𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂  ×  , where  represents the instance space and 
 denotes the possible outcomes associated with each instance. Specifi-
cally, we focus on classification and let  = {1,… , 𝐾} denote a finite set 
of 𝐾 class labels, with binary classification (𝐾 = 2) being a notable spe-
cial case (for which we let  = {0, 1} instead of  = {1, 2}). The data  is 
commonly assumed to be generated according to an underlying (yet un-
known) probability distribution 𝑄 on  ×  , i.e., the data points (𝑥⃗𝑖, 𝑦𝑖)
are realization of random variables (𝑋⃗, 𝑌 ) ∼ 𝑄 sampled (independently) 
from 𝑄.

The joint distribution 𝑄 induces marginal distributions 𝑄  and 𝑄
on  and  , respectively, as well as different conditional distributions. 
Here, we are specifically interested in conditional distributions 𝑄(⋅ | 𝑥⃗)
on  , where 𝑄(𝑗 | 𝑥⃗) is the probability of class 𝑗 given 𝑥⃗. Since  is a 
finite set in our case, 𝑄(⋅ | 𝑥⃗) is a categorical distribution that can be 
represented in the form of a probability vector
𝑞(𝑥⃗) = (𝑞1(𝑥⃗),… , 𝑞𝐾 (𝑥⃗)) ∈ Δ𝐾 , (1)

where 𝑞𝑗 (𝑥⃗) = 𝑄(𝑗 | 𝑥⃗) and Δ𝐾 ⊂ [0, 1]𝐾 denotes the (𝐾 − 1)-simplex. In 
other words, with each instance 𝑥⃗ ∈  , we can associate a ground-truth 
probability distribution (1) on  . In the following, if clear from the con-
text, we will often omit the instance 𝑥⃗ and simply write 𝑞 = (𝑞1,… , 𝑞𝐾 )
for a ground-truth distribution of interest.

Distributions 𝑞(𝑥⃗) constitute the key targets in probabilistic machine 
learning. A predictor in the form of a class probability estimator is 
a function 𝑓 ∶  ⟶ Δ𝐾 that maps instances to probability distribu-
tions over outcomes. A prediction 𝑝 = (𝑝1,… , 𝑝𝐾 ) = 𝑓 (𝑥⃗) is considered 
as an estimate of the true (conditional) distribution 𝑞 = (𝑞1,… , 𝑞𝐾 ) =
𝑄(⋅ | 𝑥⃗). Ideally, the predictions 𝑓 (𝑥⃗) match well with the ground-truth 
probabilities 𝑞(𝑥⃗), i.e., 𝑓 (𝑥⃗) ≈ 𝑞(𝑥⃗) for all 𝑥⃗ ∈  . In that case, we say 
that the predictor 𝑓 is instance-wise calibrated or that calibration is
per-instance.

For statistical reasons, however, instance-wise calibration is very 
difficult to achieve in practice [8]. Therefore, the common notion of 

calibration, which originated in forecasting [9–11] and is now also 
adopted in machine learning [7], is less demanding. It refers to spe-
cific conditional distributions, specifying the probability of class ob-
servations given certain events (predictions produced by 𝑓 ). For these 
probabilities, which (for a fixed predictor 𝑓 ) all derive from the under-
lying data-generating process 𝑄, we will subsequently use the generic
notation ℙ.

Let (𝑓 ) ⊆ Δ𝐾 denote the set of all probability estimates 𝑝 =
(𝑝1,… , 𝑝𝐾 ) that can be produced by the predictor 𝑓 . The standard notion 
of calibration, also known as class-wise calibration, can then be defined 
as follows: A predictor 𝑓 is calibrated if the following equality holds for 
all 𝑗 ∈ {1,… , 𝐾} and all predictions 𝑝 = (𝑝1,… , 𝑝𝐾 ) ∈ (𝑓 ):

ℙ[𝑌 = 𝑗 |𝑃𝑗 = 𝑝𝑗 ] = 𝑝𝑗 . (2)

Two random variables are involved in this definition: 𝑌  is the observed 
class label and 𝑃𝑗 the predicted probability for class 𝑗 (both are indeed 
random, assuming that instances ⃗𝑥 are chosen at random). The condition 
(2) then means the following: Given that the predicted probability for 
class 𝑗 is 𝑝𝑗 , the probability that 𝑗 occurs is indeed 𝑝𝑗 .

Please note that, unlike instance-wise calibration, (2) does no longer 
condition on individual instances 𝑥⃗. Instead, class occurrences are con-
ditioned on predictions made by 𝑓 . Broadly speaking, all instances ⃗𝑥 for 
which 𝑓 predicts the same probability 𝑝𝑗 are “grouped” together, even 
if the true probabilities for class 𝑗 may differ. Then, (2) merely requires 
that the average probability of class 𝑗 within such a group is indeed 
𝑝𝑗 . For example, if probabilities are estimated through relative class fre-
quencies in the leaf nodes of a decision tree, then all instances falling 
in the same leaf node are grouped together, and possibly even instances 
from different nodes with the same probability (cf. Fig. 1). Since con-
ditioning is now done on (predicted) probabilities instead of instances 
𝑥⃗, we subsequently refer to this notion of calibration as probability-wise 
calibration.

Obviously, class-wise calibration is a relatively weak property. For 
example, a predictor that completely ignores context information pro-
vided by 𝑥⃗ and constantly predicts the marginal distribution on  (and 
hence puts all instances in a single group), i.e., 𝑓 (𝑥⃗) ≡ 𝑄 , is calibrated 
according to (2). Clearly, a predictor that always predicts, say, a 60% 
chance for a home win, regardless of the teams playing against each 
other, is not very useful, even if the home team is indeed winning in 
60% of the cases on average.

Although this is less important for the purpose of our study, 
let us mention that further definitions of calibration can be found 
in the literature. For example, so-called confidence-calibration [12] 
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Fig. 2. Illustration of loss decomposition for binary classification and a finite one-dimensional instance space  (the black points). The numbers at the bottom 
indicate the true probabilities of the positive class. The blue arrow indicates a split of the data into two groups, leading to probability estimates 𝑝(𝑥) = (0.8, 0.2) for 
the left and ⃗𝑝(𝑥) = (0.2, 0.8) for the right group, based on the given training data (positive and negative class indicated by red crosses and black circles, respectively).

merely requires calibration (in the above sense) for the top-label, 
i.e., the class with the highest predicted probability. This has been 
generalized by Gupta and Ramdas[13] to top-label calibration, which, 
broadly speaking, requires confidence-calibration for each class label
separately.

A slightly more stringent version of probability-wise calibration is 
multiclass calibration, which considers all class probabilities and their 
predictions simultaneously: A predictor 𝑓 is calibrated if, for all 𝑗 ∈
{1,… , 𝐾} and all predictions 𝑝 ∈ (𝑓 ),

ℙ[𝑌 = 𝑗 |𝑃 = 𝑝] = 𝑝𝑗 . (3)

Technically, the difference is that (3) conditions on the entire vector of 
predicted probabilities (the random variable 𝑃 ), whereas (2) only con-
ditions on its 𝑗th component. Obviously, multiclass calibration implies 
class-wise calibration, but not the other way around. An exception is the 
case of binary classification, where both definitions coincide.

3.  Evaluation metrics of calibration

In accordance with the distinction between per-instance and 
probability-wise calibration as discussed in the previous section, two 
types of measures for evaluating calibration performance can be 
found in the literature. In this section, we give an overview of com-
monly used measures of that kind, starting with the per-instance
case.

As observational data only provides class labels as outcomes, but 
no (true) probabilities, predicted probabilities 𝑝 ∈ Δ𝐾 are often com-
pared to the observed classes directly. The latter are then typically 
treated as degenerate distributions, assigning probability 1 to the ob-
served class and 0 to all others. In the following, we denote by 
𝑞𝑦 = (𝑞𝑦1 ,… , 𝑞𝑦𝐾 ) ∈ {0, 1}𝐾 the (degenerate) probability vector associated 
with an observed class 𝑦, where the 𝑗th entry 𝑞𝑦𝑗  is 1 if 𝑦 = 𝑗 and 0
otherwise.

3.1.  Instance-wise metrics

The true calibration error (TCE) measures the calibration of a pre-
dicted probability 𝑝 = (𝑝1,… , 𝑝𝐾 ) in terms of its deviation from the true 
distribution 𝑞. To this end, any metric or measure of divergence be-
tween probability distributions can in principle be used, such as the 
mean squared error (MSE):

TCE(𝑝, 𝑞) =
𝐾
∑

𝑗=1
(𝑝𝑗 − 𝑞𝑗 )2 . (4)

Note that TCE normally cannot be computed in practice, as it requires 
knowledge of the true distribution 𝑞. This information might be avail-
able for synthetic data but not for empirical data.

Replacing the true distribution 𝑞 ∈ Δ𝐾 by an observed class label 𝑦
(or the associated distribution 𝑞𝑦) yields the Brier score [14]:

BS(𝑝, 𝑦) = BS(𝑝, 𝑞𝑦) =
𝐾
∑

𝑗=1
(𝑝𝑗 − 𝑞𝑦𝑗 )

2 . (5)

Another common measure for comparing a predicted distribution with 
an observed class label is the logistic loss (log-loss) or cross-entropy 

loss [15]:
LL(𝑝, 𝑦) = LL(𝑝, 𝑞𝑦) = − log(𝑝𝑦) . (6)

Both the log-loss and the Brier score are special cases of (strictly) 
proper scoring rules. Consider a loss function 𝜙 ∶ Δ𝐾 ×  ⟶ ℝ and de-
note the expected loss of a prediction 𝑝 with respect to a (ground-truth) 
distribution 𝑞 by

𝑠(𝑝, 𝑞) ∶= 𝔼𝑌∼𝑞𝜙(𝑝, 𝑌 ) =
𝐾
∑

𝑗=1
𝜙
(

𝑝, 𝑗
)

𝑞𝑗 .

The scoring rule 𝜙 is called proper if 𝑝 ↦ 𝑠(𝑝, 𝑞) is minimized for 𝑝 = 𝑞
and strictly proper if the minimizer is unique for all 𝑞 ∈ Δ𝐾 . In other 
words, a (strictly) proper scoring rule urges a risk-minimizing learner to 
predicting the true probabilities.

The irreducible part (IL) of the (expected) loss, 𝑒(𝑞) = 𝑠(𝑞, 𝑞) is also 
called the entropy of 𝑞, whereas 𝑑(𝑝, 𝑞) = 𝑠(𝑝, 𝑞) − 𝑠(𝑞, 𝑞) is called the di-
vergence of ⃗𝑝 from ⃗𝑞. For the log-loss, 𝑑 is KL-divergence and 𝑒 is Shannon 
entropy, whereas for Brier score, 𝑑 is mean squared difference and 𝑒 is 
the Gini index. Interestingly, for any strictly proper scoring rule, the di-
vergence can be further decomposed into a calibration loss (CL) and a 
grouping loss (GL) Kull and Flach[16]:1

𝔼𝑄[ 𝑑(𝑝(𝑥⃗), 𝑦) ] = 𝔼𝑄
[ 𝑑(𝑝(𝑥⃗), 𝑐(𝑥⃗)) ]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
CL

+ 𝔼𝑄
[ 𝑑(𝑐(𝑥⃗), 𝑞(𝑥⃗))]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
GL

+𝔼𝑄[ 𝑑(𝑞(𝑥⃗), 𝑦) ]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝑒(𝑞)

,
(7)

where 𝑐 is the vector of calibrated probabilities (3), i.e., the entries of 
which are given by the class probabilities conditioned on the prediction 
𝑝 = 𝑝(𝑥⃗).

See Fig. 2 for an illustration with a finite one-dimensional instance 
space  (the black points) and a small data set consisting of a few 
positive (red crosses) and a few negative (black circles) examples. The 
true probabilities of the positive class are shown at the bottom (e.g., 
𝑞(𝑥) = (0.9, 0.1) for the left-most point). Now, imagine that the data is 
split into two parts (blue arrow in the moddle), say, by a decision tree 
learner, and probabilities for the two groups thus created are estimated 
by relative frequencies. Thus, 𝑝(𝑥) = (0.8, 0.2) for all points on the left 
and ⃗𝑝(𝑥) = (0.2, 0.8) for all points on the right. Assuming a uniform distri-
bution on  , the calibrated distributions are given by 𝑐(𝑥) = (0.25, 0.75)
and 𝑐(𝑥) = (0.75, 0.25) for the group on the left and on the right, re-
spectively. For the Brier score as a loss, (7) yields the decomposition 
0.38 = 0.005 + 0.025 + 0.35 of the expected loss into CL, GL, and entropy 
(in this case Gini).

Note that the above decomposition is particularly interesting from a 
decision tree (and hence RF) learning point of view. According to (7), 
minimizing the expected loss comes down to minimizing the sum of 
calibration and grouping loss (as entropy only depends on the ground-
truth 𝑞 and thus cannot be influenced by the prediction ⃗𝑝). The grouping 
loss compares 𝑐 with 𝑞. Obviously, the more fine-granular the partition 
of  , the smaller this loss tends to be, because the better the “aver-
age” probability 𝑐 within a group (leaf node of a tree) approximates 

1 Note that 𝑑(𝑝, 𝑦) = 𝑑(𝑝, 𝑞𝑦) = 𝑠(𝑝, 𝑞𝑦), because 𝑠(𝑞𝑦, 𝑞𝑦) = 0.
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the probabilities 𝑞(𝑥⃗) for the instances 𝑥⃗ in the group. Thus, minimizing 
GL requires sufficiently large tress with enough leaf nodes. The calibra-
tion loss, on the other side, compares 𝑝 and 𝑐, and tends to be lower 
for coarse partitions: 𝑝 estimates ⃗𝑐 through relative frequencies, and the 
more observations are available, the better this estimate will be. Over-
all, this means that loss minimization comes down to finding an optimal 
balance between CL and GL, which, for the case of decision trees, trans-
lates into finding the right complexity of the tree. In our example, the 
simplest tree, which consists of a single node and puts all instances in 
the same group, has a CL of 0 (the calibrated probability 𝑐 = (0.5, 0.5) is 
exactly reflected in the training data), but a high GL of 0.15, yielding an 
overall expected loss of 0.5. A complex tree that is split to purity may 
induce the partition indicated by the additional dashed arrows in Fig. 2. 
In this case, GL is 0.12 and CL increases to 0.29, giving an even higher 
overall expected loss of 0.75.

As an interesting side remark, note that increasing the size of a tree 
does not necessarily lead to a refinement of the grouping induced by the 
corresponding predictor 𝑓 , i.e., an increase of |(𝑓 )|. As already said, 
a group does not necessarily correspond to a leaf node of a tree (or, 
more precisely, the region in the instance space associated with that 
leaf node). Instead, it consists of the union of all leaf nodes with the 
same predicted probability (cf. Fig. 1), and the smaller the nodes become 
(in terms of the number of training examples covered), the higher the 
chance that these probabilities coincide.2 In the last example above, 
only extreme probabilities of 0 and 1 are predicted, whence we again 
end up with only two groups (which, in particular due to the negative 
“outlier” on the right, are even much worse than those obtained with a 
single split).

3.2.  Probability-wise metrics

As already said, probability-wise metrics directly lend themselves 
to the definition of calibration as introduced in Section 2. A natural 
way to check the condition (3) empirically on given set of (validation) 
data is to group all data points for which the predictor estimates the 
same probability 𝑝, and to compare this 𝑝 with the relative frequency 
distribution in this group. If the predictor is calibrated, the divergence 
between these two distributions should be low. However, an obvious 
problem of this approach is the possibly small size of the groups if this 
condition is checked for all 𝑝 ∈ (𝑓 ) separately. The relative frequency 
distribution may then constitute a poor estimate of the true conditional 
probability (3).

A possible way out is to follow the same idea that underlies the ap-
proximation of a density function in terms of a histogram, namely, to 
replace points by intervals or bins. This leads to the well-known expected 
calibration error (ECE), which proceeds from a binning  of the unit in-
terval [17]. The latter is a finite collection of 𝑀 = || bins 𝐵, each asso-
ciated with an interval 𝐼𝐵 ⊂ [0, 1], so that {𝐼𝐵 |𝐵 ∈ } forms a partition 
of [0, 1]. Given a set  of 𝑁 data points and predictor 𝑓 , let 𝑝𝑗 (𝑥⃗𝑖) be 
the probability predicted by 𝑓 for a fixed class 𝑗. Then, this points falls 
into bin 𝐵 ∈ , i.e., index 𝑖 is added to bin 𝐵, if 𝑝𝑗 (𝑥⃗𝑖) ∈ 𝐼𝐵 . The ECE for 
class 𝑗 is then defined as follows:

ECE𝑗 (, 𝑓 ) =
∑

𝐵∈

|𝐵|
𝑁

|𝑝̄𝑗,𝐵 − 𝑝𝑗,𝐵|, (8)

where 𝑝̄𝑗,𝐵 denotes the relative frequency of class 𝑗 in bin 𝐵, and 𝑝𝑗,𝐵
the average predicted probability:

𝑝̄𝑗,𝐵 = 1
|𝐵|

⋅ |{𝑖 ∈ 𝐵 | 𝑦𝑖 = 𝑗}|

𝑝̄𝑗,𝐵 = 1
|𝐵|

∑

𝑖∈𝐵
𝑝𝑗 (𝑥⃗𝑖) .

2 This chance is lowered if probabilities are estimated with Laplace correction, 
which effectively means that leaf nodes are not only grouped based on class 
frequencies but the number of examples covered.

The overall ECE is then defined by averaging over classes:

ECE(, 𝑓 ) = 1
𝐾

𝐾
∑

𝑗=1
ECE𝑗 (, 𝑓 ) . (9)

Note that the computation of ECE involves another grouping of data 
points. According to the definition of calibration, instances 𝑥⃗ and 𝑥⃗′ are 
grouped if being mapped to the same probability by the predictor 𝑓 . 
Now, they are not only grouped in the case of exact equality of predic-
tions, but as soon as the predicted probabilities are sufficiently similar 
in the sense of falling into the same bin.

The ECE is known to be quite sensitive with regard to the number of 
bins 𝑀 [18]. For example, if 𝑀 is too high, the number of instances per 
bin might be very low, resulting in poor estimates 𝑝̄𝑗,𝐵 . Additionally, 
an experiment by Gruber and Buettner[19] shows the impact of data 
size on the value of ECE for a synthetic version of three models that are 
representations for a perfect, mediocre, and poorly calibrated model. 
Surprisingly, under low data size, the perfectly calibrated model can 
have higher calibration error than the mediocre model.

Let us conclude this section with a note on the classification rate as 
a standard measure of accuracy. The classification rate of a machine 
learning model may not directly indicate a well-calibrated model. In-
deed, a model can perform well in terms of classification rate while pro-
ducing over-confident probability distributions. The other way around, 
a predictor can be well calibrated while performing poorly as a classi-
fier (e.g., a predictor that always forecasts the true class prior is per-
fectly calibrated but degenerates to the majority classifier). Therefore, 
to have a comprehensive view, we opt for considering the classification 
rate of a machine learning model in addition to its calibration perfor-
mance, especially in the case of probability-wise evaluation metrics such 
as ECE. Ideally, a high classification rate and small calibration loss can 
be achieved at the same time.

4.  Random forest

RF as introduced by Breiman[1] is an ensemble method based on 
decision trees. It improves upon earlier work by Ho[20] by combining 
two types of randomization, namely, bootstrapping [21] and random 
feature selection by Amit and Geman[22]:

• Each member of the ensemble is trained on a bootstrap sample of the 
original training data , which is obtained by sampling 𝑁 = || data 
points from  with replacement [21]. The use of bagging appears to 
improve accuracy particularly when random features are introduced.

• At each node of a decision tree, the best split if found, not among all 
features, but only among a randomly chosen subset of features [22].

Using these randomization techniques, a diverse set of trees is produced, 
which, for a given data point, can produce different predictions. A sim-
plified version of the algorithm for constructing a RF is provided in Pseu-
docode 1.

A single decision tree can be used for both deterministic and prob-
abilistic prediction—we speak of a classifier tree (CT) in the first and 
of a probability estimation trees (PET) in the second case. In the case of 
PET, the probability distribution 𝑝(𝑥⃗) predicted for a query instance ⃗𝑥 is 
normally given by the relative frequency distribution of class labels in 
the leaf node that 𝑥⃗ is assigned to. In the case of CT, the prediction is a 
degenerate distribution that assigned probability 1 to the most frequent 
class label and 0 to all others. In either case, the prediction produced by 
the entire ensemble is obtained by averaging over the predictions of all 
trees:

𝑔(𝑥⃗) = 1
𝑇

𝑇
∑

𝑗=1
𝑝𝑗 (𝑥⃗), (10)

where 𝑇  denotes the number of trees and ⃗𝑝𝑗 (𝑥⃗) the distribution predicted 
by the 𝑗th tree.

RF has different (hyper-)parameters that may strongly influence the 
learning process:
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• Number of estimators: The number of decision trees (ensemble 
size), which has an influence on the model performance. Increasing 
it will make the model more powerful and complex, and decreasing 
it will make the model simpler.

• Split criterion: A measure of information gain used to find the op-
timal split in a decision node.

• Max depth: The maximum depth of each decision tree, after which 
no further splitting is allowed. Increasing it can make the model more 
expressive but also comes with a risk of over-fitting.

• Max features: The number of features to consider when choosing 
the best feature to split on. Increasing it will increase the chance of 
finding a better split but at the same time decrease diversity between 
trees in the RF.

• Min samples leaf: The minimum number of samples required in a 
leaf node.

• Minimum samples split: The minimum number of samples required 
to split an internal node.

• Laplace correction: If activated, the probability estimates based on 
relative frequencies are regularized by adding a pseudo-count of 1 
for each class label.

Thanks to the use of bootstrapping, RF can benefit from out-of-bag 
(OOB) data. OOB data refers to the data that is not included in a single 
bootstrap sample (recall that sampling is done without replacement). 
Thus, for the tree trained on that sample, the OOD data is out-of-sample 
and can be used for purposes that require “clean” data, such as valida-
tion. In the following sections, we will elucidate the advantageous of 
OOB data in the calibration performance of an RF.

5.  Related work

Zadrozny and Elkan[23] identify two key issues with probability es-
timates in decision trees: (1) a bias towards extreme probabilities (0 or 
1), caused by the search for pure leaf nodes, and (2) high variance from 
fragmentation, where low sample counts in leaf nodes lead to unstable 
estimates.

To address these issues, pruning [24] has been proposed to mitigate 
variance. To overcome pruning’s shortcomings on imbalanced data, cur-
tailment [23] has been proposed. Curtailment prunes leaf nodes with 
insufficient training samples to improve calibration [23]. Another strat-
egy is smoothing, such as Laplace correction or m-estimation [25], 
which reduces extreme probability estimates. Empirical studies suggest 
that combining curtailment with smoothing is especially effective, with 
bagged curtailment (similar to RF) yielding the best results. However, 
Boström[26] observed that both Laplace and m-estimation can nega-
tively impact RF accuracy, AUC, and Brier score.

A number of key questions regarding RF calibration have been previ-
ously addressed in the literature. For example, Boström[27] compared 
classification trees (CT) and probability estimation trees (PET) as base 
learners in RFs, concluding that CTs lead to better calibration (in terms 
of Brier score), while PETs yield better accuracy and AUC. The ques-
tion of whether to calibrate individual trees or the ensemble as a whole 
has also been studied. Wu and Gales[28] and Rahaman and Thiéry[29] 
showed that calibrating individual trees before aggregation generally 
worsens ensemble calibration.

Another consideration is the data used for calibration. There are sev-
eral approaches to calibration in machine learning models. One option 
is to use the training data itself, which is the simplest choice, but this 
can introduce bias since the same data is used for both training and cali-
bration. Another approach is to reserve a separate calibration set, where 
part of the training data is set aside for calibration. This method avoids 
bias but reduces the amount of data available for both training and cali-
bration. Cross-validation is a more resource-intensive option that allows 
each example to be calibrated using an independent classifier. Lastly, 
bootstrap resampling can be used to generate out-of-bag (OOB) data, 
which provides a way to calibrate models without introducing bias.

Algorithm 1 RF algorithm.
1: procedure RandomForest(TrainingData,NumTrees,NumFeatures)
2:  Forest ← ∅
3:  for 𝑖 ← 1 to NumTrees do
4:  BootstrapSample← CreateBootstrapSample(TrainingData)
5:  Tree← BuildDecisionTree(BootstrapSample,NumFeatures)
6:  Forest← Forest ∪ Tree
7:  end for
8:  return Forest
9: end procedure
10: procedure CreateBootstrapSample(Data)
11:  SampleSize ← length(Data)
12:  BootstrapSample ← ∅
13:  for 𝑖 ← 1 to SampleSize do
14:  RandomIndex ← RandomInteger(1, SampleSize)
15:  BootstrapSample ← BootstrapSample ∪ Data[RandomIndex]
16:  end for
17:  return BootstrapSample
18: end procedure
19: procedure BuildDecisionTree(Data,NumFeatures)
20:  if StoppingCriteriaMet(Data) then
21:  return CreateLeafNode(Data)
22:  end if
23:  FeatureSubset← RandomSubset(NumFeatures)
24:  SplitFeature, SplitValue ← FindBestSplit(Data, FeatureSubset)
25:  DataLeft,DataRight ← SplitData(Data, SplitFeature, SplitValue)
26:  LeftChild← BuildDecisionTree(DataLeft,NumFeatures)
27:  RightChild← BuildDecisionTree(DataRight,NumFeatures)
28:  return CreateDecisionNode(SplitFeature, SplitValue, LeftChild,

RightChild)
29: end procedure

Johansson et al. [30] compared using a separate calibration set ver-
sus OOB data and found that OOB data generally outperformed the in-
dependent calibration set across experiments, despite being limited to 
only four calibration methods.

While the mentioned studies have answered foundational questions 
about RF calibration, there remains a lack of systematic empirical anal-
ysis across a broad range of calibration techniques, RF configurations, 
and evaluation metrics. Existing comparisons are often limited in scale 
or method diversity.

In this work, we fill this gap by conducting a comprehensive empir-
ical study of calibration in RF classifiers. We evaluate a diverse set of 
calibration methods—including classical techniques (Platt scaling [31], 
isotonic regression [32]) and more recent ones (Beta calibration [33], 
Venn-Abers [34])—across multiple synthetic and real-world datasets. 
Additionally, we investigate the effect of hyperparameters such as tree 
depth on calibration performance. Our goal is to provide actionable in-
sights and practical guidance on RF calibration across typical use cases.

6.  Calibration methods

Calibration is commonly understood as a post-processing method 
in which a mapping is sought from predicted scores to well-calibrated 
probabilities. It is motivated by the observation that many machine 
learning models yield biased predictions in the first place, for example, 
predictions that are overly confident or systematically over- or underes-
timate probabilities.

As a starting point, calibration methods proceed from a trained pre-
dictor 𝑓 and a set of calibration data 𝑐𝑎𝑙 ⊂  ×  . In the following, 
we consider the case of binary classification with  = {0, 1}, which 
is assumed by most calibration methods (although extensions to the 
multinomial case are normally possible). In this case, 𝑓 is a scoring 
classifier  ⟶ ℝ, where the value 𝑓 (𝑥⃗) is an indicator of the posi-
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tive class. In many cases, including our case of RF, the scores are al-
ready normalized to [0, 1] and can be interpreted as (pseudo-)probabil-
ities, but this is not required. What is assumed, however, is that higher 
scores 𝑓 (𝑥⃗) indicate a higher propensity for the positive class. There-
fore, score-to-probability mappings induced by calibration methods are 
guaranteed to be monotonic. Subsequently, without loss of generality, 
we assume the calibration data (𝑥⃗1, 𝑦1), (𝑥⃗2, 𝑦2),… , (𝑥⃗𝑀 , 𝑦𝑀 ) to be or-
dered such that 𝑓 (𝑥⃗1) ≤ 𝑓 (𝑥⃗2) ≤ … ≤ 𝑓 (𝑥⃗𝑀 ). For brevity, we denote the
score 𝑓 (𝑥⃗𝑚) by 𝑠𝑚.

6.1.  Platt scaling and beta calibration

Platt scaling [31] was among the first calibration methods used in 
machine learning, It has originally been devised for calibrating support 
vector machines (where scores are signed distances from the decision 
boundary), but can be applied for binary classification in general. It pro-
ceeds from the assumption that class-conditional distributions of scores 
are normal with equal variance. This assumption justifies the following 
logistic calibration map:

𝑝Platt ∶ ℝ ⟶ [0, 1], 𝑠 ↦ 1
1 + 𝑒𝛾⋅𝑠+𝛿

. (11)

The parameters 𝛾 ≥ 0 and 𝛿 ∈ ℝ, which specify the sigmoidal shape of 
the function, are fit to the calibration data by minimizing log-loss
𝑀
∑

𝑚=1
−𝑦𝑚 log

(

𝑝Platt(𝑠𝑚)
)

−
(

1 − 𝑦𝑚
)

log
(

1 − 𝑝Platt(𝑠𝑚)
)

(12)

of the predicted probabilities 𝑝𝑚 = 𝑝Platt(𝑠𝑚) on the calibration data. 
While this can be done quite efficiently using gradient-based optimiza-
tion, the effectiveness of Platt scaling strongly hinges on the underlying 
assumption on the distribution of scores. In particular, (11) does not ap-
pear suitable if scores 𝑠𝑚 are bounded by 0 and 1. Also note that (11) 
cannot reproduce the identity 𝑠 ↦ 𝑠, which would be needed if the scores 
are already well-calibrated.

More recently, beta calibration has therefore been introduced as an 
alternative [33]. As the name suggests, this method assumes class-wise 
scores to follow a beta (instead of a normal) distribution.

It comes down to fitting a calibration function that has three pa-
rameters 𝑎, 𝑏 ≥ 0, 𝑐 ∈ ℝ and, therefore, is slightly more flexible than the 
logistic calibration map:3

𝑝beta ∶ [0, 1] ⟶ [0, 1], 𝑠 ↦ 1

1 + 1∕
(

exp(𝑐) 𝑠𝑎
(1−𝑠)𝑏

) . (13)

Again, this model is fitted by minimizing log-loss on the calibration 
data, which can be done using any appropriate optimization method. 
Using a suitable parameterization, Kull et al. [33] show that the problem 
can also be reduced to fitting a bivariate logistic regression model.

6.2.  Isotonic regression and Venn-Abers calibration

Platt scaling and beta calibration are parametric methods, both com-
ing with (more or less restrictive) assumptions about the distribution 
of scores. A non-parametric alternative is provided by isotonic regres-
sion [35], which has first been used for calibration by Zadrozny and 
Elkan[32]. It fits a piece-wise constant function 𝑝𝑖𝑠𝑜 ∶ ℝ ⟶ [0, 1] with 
steps around the scores 𝑠𝑚 in the calibration data. The corresponding 
step sizes 𝑝𝑖 are determined by minimizing the squared error loss 
𝑀
∑

𝑚=1
(𝑝𝑚 − 𝑦𝑚)2 s.t. 𝑝1 ≤ 𝑝2 ≤ … ≤ 𝑝𝑀 . (14)

This is a constrained (convex) optimization problem that can be solved 
quite efficiently in linear time, e.g., using the pool-adjacent violators 
(PAV) algorithm [36].

3 Logistic calibration (11) is obtained as a special case of beta calibration for 
𝑎 = 𝑏.

Isotonic regression comes with an automatic binning of scores that 
are mapped to the same probability, i.e., segments 𝑠𝑖, 𝑠𝑖+1,… , 𝑠𝑗 in the 
calibration data such that 𝑝𝑖 = 𝑝𝑖+1 = … = 𝑝𝑗 . Apart from compliance 
with the monotonicity constraint, it allows for fitting the calibration 
data in a very flexible manner. As for non-parametric methods in gen-
eral, this can be an advantage and disadvantage at the same time: it 
avoids any bias due to incorrect model assumptions but increases the 
risk of over-fitting the (calibration) data.

The Venn-Abers predictor [34] uses isotonic regression, too, albeit 
in a slightly different way. Venn-Abers is a specific type of Venn pre-
dictor [37], which in turn is rooted in conformal prediction, a statis-
tical framework for set-valued prediction [38]. Instead of producing a 
point prediction in the form of a single probability degree 𝑝, Venn-Abers 
constructs an interval [𝑝0, 𝑝1] that comes with a certain guarantee of va-
lidity. Broadly speaking, under certain technical assumptions, the inter-
val (which is a random object as it depends on the data) is guaranteed 
to contain the true probability in expectation; in other words, the true 
probability is contained in [𝔼(𝑃0),𝔼(𝑃1)], where 𝑃0 and 𝑃1 denote the 
(random) lower and upper bounds of the interval, and the expectation 
is taken over the data-generating process.

Given a query point ⃗𝑥, Venn–Abers produces a prediction interval by 
doing isotonic regression twice, first on the calibration data augmented 
by 𝑥⃗ hypothetically labeled negative, and then on the calibration data 
augmented by 𝑥⃗ hypothetically labeled positive. The lower bound 𝑝0 is 
taken from the first isotonic function and the upper bound 𝑝1 from the 
second one. If a single point-prediction is needed, the following proba-
bility can be motivated by an argument based on the minimax principle:

𝑝VA =
𝑝0 + 𝑝1

2
+
(

𝑝1 − 𝑝0
)

(

1
2
−

𝑝0 + 𝑝1
2

)

,

Algorithm 2 shows Venn–Abers in pseudo-code. Obviously, this algo-
rithm is computationally more demanding, as it requires repeated exe-
cution of isotonic regression.

Algorithm 2 Venn-Abers predictor.
  Inputs:
   calibration data (𝑥⃗1, 𝑦1),… , (𝑥⃗𝑀 , 𝑦𝑀 ), query 𝑥⃗
  Outputs:
   multiprobabilistic prediction (𝑝0, 𝑝1)
1: for 𝑦 ∈ {0, 1} do
2:  set 𝑠𝑦 to the scoring function for (𝑥⃗1, 𝑦1),… , (𝑥⃗𝑀 , 𝑦𝑀 ), (𝑥⃗, 0)
3:  set 𝑔𝑦 to the isotonic calibrator for (𝑠𝑦(𝑥⃗1), 𝑦1),… ,

(𝑠𝑦(𝑥⃗𝑀 ), 𝑦𝑀 ), (𝑠𝑦(𝑥⃗), 0)
4:  set 𝑝𝑦 to 𝑔𝑦(𝑠𝑦(𝑥⃗))
5: end for

6.3.  PPA calibration

Boström[27] found that RF using classification trees as base learners 
tends to outperform RF using probability estimation trees in terms of the 
Brier score, whereas the latter exhibits superior performance in terms of 
classification accuracy and AUC. Upon closer inspection, averaging the 
probabilities predicted by PETs seems to bias the estimates toward the 
uniform distribution.

To counter this effect, Boström[27] introduced Parameterized Prob-
ability Adjustment (PPA), which increases the estimated probability for 
the most probable class and decreases the others: 
𝑝PPA = 𝑟 𝑝0 + (1 − 𝑟) 𝑝, (15)

where 𝑝 is the probability originally predicted and 𝑝0 the distribution 
in which the mass of 1 is uniformly distributed among the labels with 
highest probability in 𝑝 (setting the probability to 0 for all others). The 
parameter 𝑟 is optimized on the calibration data with the objective of 
minimizing the Brier score.
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Obviously, this approach leaves the class prediction, and hence the 
classification accuracy, unchanged. By retaining the high accuracy ob-
tained with PETs while simultaneously achieving a low Brier score 
with CTs (indicating better calibration performance), it combines the 
strengths of both PETs and CTs as base learners in RF.

6.4.  Curtailment

Zadrozny and Elkan[23] emphasize two main issues with tree prob-
ability estimates: high bias due to purification of leaf nodes, and high 
variance due to fragmentation and estimation based on low sample size. 
Obviously, both problems can be countered by pruning, although stan-
dard pruning techniques may yield suboptimal results in the case of class 
imbalance.

Zadrozny and Elkan[23] propose to set a threshold parameter 𝑣 and 
to ensure that any leaf node must contain at least 𝑣 samples to make 
probabilistic predictions. They call this approach curtailment, The com-
plexity of this approach depends on how the threshold 𝑣 is determined, 
by means of a simple heuristic or by fitting it to the calibration data 
(e.g., using cross-validation).

Applying curtailment to individual trees within RF can enhance cal-
ibration. Nonetheless, one drawback of this method, as highlighted by 
Wu and Gales[28], is that aggregating calibrated probabilities from in-
dividual trees through averaging could potentially undo the calibration 
achieved. This notion will become clearer in the next section, wherein 
the calibration methods are compared based on different calibration 
metrics.

6.5.  RF rank calibrator

An interesting observation is that isotonic regression (like other non-
parametric methods) is invariant against strictly monotonic transforma-
tion of the (calibration) scores 𝑠𝑚. Consequently, the underlying learner 
producing these scores can be very uncalibrated, as long as it makes 
sure that the scores are well ordered: if 𝑥⃗𝑖 is assigned score 𝑠𝑖 and 𝑥⃗𝑗 is 
assigned scores 𝑠𝑗 , then 𝑠𝑖 > 𝑠𝑗 implies that the probability for 𝑥⃗𝑖 is in-
deed higher than the probability for ⃗𝑥𝑗 . Indeed, due to the monotonicity 
constraint, an incorrect ranking 𝑠𝑖 < 𝑠𝑗 cannot be repaired by isotonic 
regression.

From this, one may conclude that, in the first place, the underly-
ing learner should be a strong ranker. With this idea in mind, Menon 
et al. [39] propose a calibration method for neural networks that op-
timizes a ranking loss first and applies isotonic regression thereafter, 
and indeed find improved calibration performance. Therefore, we are 
interested in applying the same approach with RF.

The initial step in this approach is to rank instances using individual 
trees. This problem was studied by Hüllermeier and Vanderlooy[40], 
who show that diversifying scores and resolving ties improves ranking 
(though not necessarily classification) performance. They recommend 
using unpruned trees with Laplace correction for probability estimation 
and ranking instances according to these estimates. We adopt the same 
approach in our experimental study.

Extending this approach from trees to forests requires the aggrega-
tion of the rankings coming from the individual trees. To this end, any 
rank aggregation procedure can be used. Here, we apply a score-based 
approach, which is in line with the so-called Borda aggregation [41] and 
comes down to scoring an instance 𝑥⃗ as follows:

𝑠(𝑥⃗) =
𝑇
∑

𝑗=1

𝑀
∑

𝑖=1
𝟏{𝑝𝑗 (𝑥⃗) > 𝑝𝑗 (𝑥⃗𝑖)} +

1
2
𝟏{𝑝𝑗 (𝑥⃗) = 𝑝𝑗 (𝑥⃗𝑖)}, (16)

where 𝑝𝑗 (𝑥⃗) is the probability (of the positive class) predicted for 𝑥⃗ by 
the 𝑗th tree, and 𝑥⃗1,… , 𝑥⃗𝑀  is the calibration data. Eventually, a cal-
ibrated probability estimate for a query instance 𝑥⃗ is hence obtained 
as follows: Scores 𝑠1,… , 𝑠𝑀  with 𝑠𝑖 = 𝑠(𝑥⃗𝑖) are obtained from (16) for 
the calibration data, a calibration map 𝑝𝑟𝑎𝑛𝑘 ∶ ℝ ⟶ [0, 1] is constructed 

Fig. 3. Synthetic two dimensional binary dataset generated from two overlap-
ping Gaussian’s with the same covariance matrix but different means. The axis 
on the plot shows the two features of this dataset.

by applying isotonic regression to these scores, and this map is used to 
produce the estimate 𝑝𝑟𝑎𝑛𝑘(𝑠(𝑥⃗)).

We conclude this section by noting the work of Dankowski and 
Ziegler[42], who propose a method that improves calibration by trans-
forming each tree in the forest into a logistic regression model. However, 
as their approach is specifically designed to address calibration under 
distributional shifts—a setting that differs from the focus of this paper—
we do not include it in our empirical comparison.

7.  Experiments

The objectives of this section can be summarized as follows: (i) 
Gaining insights into RF probability estimation using synthetic datasets. 
(ii) Examining the impact of RF hyper-parameters on calibration per-
formance. (iii) Comparing post-calibration methods applicable to RF 
and investigating their influence on calibration performance on real 
datasets. (iv) The effect of Laplace correction and Out of Bag data on 
calibration performance. (v) Comparing the calibration performance of 
RF with that of other ML algorithms.

We begin with an explanation of the experimental setup used to eval-
uate different post-calibration methods on a RF model. Given that cer-
tain calibration methods introduced in 6 are specifically designed for the 
binary classification context, our experiments in this paper are confined 
to a binary classification setting. All the codes, experimental setups, and 
datasets used in this work are available in our Github4 project link.

7.1.  Simple synthetic data

To assess the calibration error of the probability distributions pre-
dicted by RF, we use a synthetic binary classification dataset specifically 
designed to provide known true probabilities for each instance.

For this purpose, two multi-variate Gaussian distributions were sam-
pled. The dimensionality of the distribution corresponds to the number 
of features (which in this case is two). Sampling from the first Gaussian 
distribution yields samples for the positive class, while sampling from 
the second Gaussian distribution yields samples for the negative class. 
With known mean and covariance parameters of the distribution, we can 
calculate the true probability for each sample using the Bayes role. To 
maintain a balanced dataset, both distributions were sampled equally; 
with a dataset size of 1000, each distribution was sampled 500 times. 
This data is visualized in Fig. 3. For more details please see Appendix A.

In Fig. 4, we contrast a default RF from the scikit-learn package5 
(of probability estimation trees) with Support Vector Machine (SVM) 

4 https://anonymous.4open.science/r/RFC-BDC6/README.md
5 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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Fig. 4. The reliability diagram of comparison between SVM classifier on the left, RF (in the middle) and logistic regression (on the right). All the hyper-parameters 
of the three models are set to default values of the scikit-learn library. To facilitate the comparison, the light points serve as an overlay of the RF outputs.

Fig. 5. The effect of setting max-depth of trees in an RF on calibration performance on synthetic data. The reliability diagram represents RF with low (left), optimal 
(middle), and high (right) value for parameter max-depth. This experiment clearly demonstrates the impact of selecting an optimal tree depth on improving calibration 
performance.

Fig. 6. The effect of the number of trees in an RF on calibration represented as a reliability diagram along with the TCE of each forest. From left to right, the number 
of trees are set to 5, 50, and 500. As evident, increasing the number of trees improves calibration performance.

using probabilities from Platt scaling, along with logistic regression (LR) 
classifiers.

The plot displays the true probability on the 𝑥-axis and the predicted 
probability on the 𝑦-axis. In this reliability diagram, the dashed diagonal 
line represents the ideal scenario, indicating perfect calibration where 
the predicted probability equals the true probability. Among all models, 
LR exhibits the closest alignment with the diagonal.

One should note, however, that the model assumptions underlying 
LR are indeed exactly fulfilled by the data-generating process. As can be 
seen in the second row of Fig. 4, when the Gaussians generating the data 
have different covariance matrices (the first distribution’s covariance 

diagonal matrix consists of values uniformly drawn between 4 and 5), 
LR yields biased probability predictions.

Interestingly, the reliability diagram of the SVM model has a curva-
ture, suggesting that the model tends to be under-confident on instances 
with high predictive probabilities and over-confident in cases with low 
predictive probabilities.

As shown by these examples, methods relying on specific model as-
sumptions are likely to yield biased probability estimates as soon as 
these assumptions are violated. RF, for which such a bias is not visi-
ble, appears to be more robust in this regard. Yet, the distribution pro-
duced by RF looks more scattered and noisy. This observation motivates 
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Fig. 7. A 2D t-SNE visualization of the 10-dimensional synthetic data, depicting the variation in overlap between the two classes.

a closer examination of how various hyper-parameters on RF influence 
the probability predictions.

7.2.  Effect of RF hyper-parameters on calibration

In this section we demonstrate that variations in the hyper-
parameters of RF significantly influence it’s calibration performance. 
Thus, conducting hyper-parameter optimization seems to be a promis-
ing approach for enhancing RF calibration.

7.2.1.  Maximum depth
The most important factor of each tree within a forest is its maximal 

depth. Increasing the maximum depth of a tree does not necessarily 
lead to improved performance. With higher values of this parameter, the 
risk of over-fitting the training data increases. Additionally, performing 
more splits will influence the calibration performance.

To analyze the effect of Maximum Depth on calibration performance 
we generate a synthetic dataset consisting of samples from two overlap-
ping Gaussian distributions (as detailed and visualized in the previous 
section). Fig. 5 shows the reliability diagram of three RFs trained on the 
same synthetic dataset with max-depth set to 2, 4, and 8, respectively. 
As we can see, there is an optimal depth that will result in the best cal-
ibration performance, which is 4 for this particular example; any value 
higher or lower than the optimal depth results in an ill-trained model or 
more noise in the reliability diagram, hence, higher calibration error.

This behavior can be understood by recalling the decomposition of 
proper scoring rules (Section 3). IL is driven by irreducible aleatoric 
uncertainty in the data. CL typically increases with node splits, as es-
timating probabilities for smaller sample sizes in successor nodes be-
comes harder. In contrast, GL decreases since the groups assigned the 
same probability estimates shrink. The net effect can be positive or 

negative. Initially, further splits improve performance, but past a cer-
tain threshold, CL dominates, increasing the overall loss. This aligns 
with the observation that optimal calibration occurs at intermediate tree
depths.

7.2.2.  Number of trees
A forest consists of multiple decision trees, and the number of trees 

is another important hyper-parameter. As mentioned in RF, each tree 
is trained on a bootstrapped version of the original training data, along 
with a subset of the features selected at random. Performing the boot-
strap ensures diversity between the trees in a forest, and more trees lead 
to more diversity, which should improve the overall performance.

This is confirmed by Fig. 6, which shows three RFs side by side 
trained on the same synthetic data shown in Fig. 3 with 5, 50, and 500 
trees, respectively. We can see the reduction in noise around the diag-
onal calibration line as we increase the number of trees. Both visually 
and regarding the true calibration error value shown in the plots, it is 
clear that more trees yield a better calibrated forest.

7.3.  Data manipulation with synthetic data

In this section, we would like to get a deeper understanding of how 
different post-calibration methods perform under changes to the under-
lying synthetic data.

In addition to the post-calibration methods in 6, we included three 
RF models as benchmarks: RF_d, a RF with default scikit-learn param-
eters; RF_opt, an optimized version using randomized grid search with 
5-fold cross-validation, with the same number of trees as RF_d for fair 
comparison; and RF_large, which has five times more trees than RF_d.

For RF_opt we have chosen the hyper-parameters that result in the 
most significant changes in the output probability distributions of RF. 
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Fig. 8. The impact of varying the overlap between two Gaussian distributions on the performance of calibration methods, analyzed using synthetic data of increasing 
dimensions. The results are presented in columns corresponding to each dimensionality -2, 5, 10, and 20- from left to right, while the performance metrics -Accuracy, 
Brier score, TCE, CL+GL, ECE, and IL- are displayed in rows from top to bottom.
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Fig. 9. Synthetic binary dataset generated from a mixture of 4 Gaussian distri-
butions per class. The axes of the plot represent the two features of this dataset.

The details of these hyper-parameters are provided in Appendix B. We 
demonstrated that variations in the hyper-parameters significantly in-
fluence the calibration performance. Thus, conducting hyper-parameter 
optimization seems to be a promising approach for enhancing RF cali-
bration.

7.3.1.  Overlapping distributions
Let’s explore how the overlap between class-wise distributions in 

synthetic data impacts calibration performance. Initially, two Gaus-
sian distributions with identical mean vectors and covariance matri-
ces were generated, then the mean vectors were progressively adjusted 
to increase separation. This experiment was conducted using synthetic 
datasets of increasing dimensionality (2, 5, 10, and 20 dimensions, each 
with 1000 samples) to ensure consistency across dimensions.

Fig. 7 shows a 2D t-SNE visualization of the 10-dimensional synthetic 
data, depicting four scenarios ranging from no overlap (top left) to com-
plete overlap (bottom right) between the two classes. For more details 
on data generation please see Appendix A.1.

The Gaussian overlap experiment was conducted five times, with 
average performance shown in Fig. 8. The key takeaway is that 
calibration—or proper tuning of RF hyper-parameters—proves bene-
ficial in the "high overlap" regime, where probabilities are less ex-
treme and tend toward a uniform distribution, particularly for low-
dimensional data. In this regime, all calibration methods outperform 
RF_d and RF_large, which are prone to overfitting and generating overly 
extreme probabilities. Calibration shifts these probabilities toward the 
middle, a result that can also be achieved through hyper-parameter tun-
ing (e.g., with full overlap, the optimal tree has no splits and a depth 
of 1). However, as data dimensionality increases, more diverse trees are 
learned, reducing the issue of extreme probabilities in the high-overlap 
regime. This is notable since the high-overlap scenario is rare in practi-
cal applications.

Clearly, calibration is easier if ground-truth probabilities are extreme 
and more difficult for close-to-uniform distributions, which is why we 
see a small deterioration of TCE in the middle. When analyzing datasets 
with different dimensionalities, we find that instance-wise calibration 
error increases in the mid-overlap region as the number of dimensions 
rises. This is also confirmed by the CL+GL curves, which first increase 
and then decrease again.

However, ECE plots show a different trend compared to TCE. Inter-
estingly, ECE tends to be lowest in the mid-overlap region but shows 
higher error in low-overlap settings with fewer dimensions. Since we do 
not have access to the true probability-wise calibration error, we cannot 
directly confirm ECE’s performance.

Note that Brier score is monotonically increasing, due to the increase 
in irreducible uncertainty. For example, in the case of full overlap, even 

the best prediction (the uniform distribution) has an expected Brier score 
of 1∕4.

7.3.2.  Calibration set size
One of the important factors in each post-calibration method is 

the amount of data required to train the calibrator to output prop-
erly calibrated probability distribution. Since we are working with syn-
thetic datasets for this experiment, we can fix the training and test set 
size and, by manipulating the size of the calibration set, observe the
differences between each post-calibration method’s performance in 
terms of TCE.

To make the synthetic dataset more challenging, we used a mixture 
of Gaussian distributions with 4 clusters per class and doubled the sam-
ple size, which allows us to allocate a calibration dataset matching the 
size of the training set used for training the RF. Fig. 9 depicts the syn-
thetic dataset generated from the mixture of Gaussian distributions.

The mixture of Gaussian distributions is defined as follows: For the 
specified number of clusters per class, we generate a multivariate Gaus-
sian distribution. The mean values are sampled from a uniform distri-
bution between 0 and 20, while the diagonal values of the covariance 
matrix are uniformly drawn from a range between 1 and 5.

Fig. 10 illustrates how adjusting the calibration set size affects the 
performance of post-calibration methods for accuracy, TCE, Brier score, 
and ECE with 20 bins of equal width. We also included the additional 
three RF variants as baselines. The calibration set size is represented as 
a percentage of the training data, varying from 2 to 100 percent. The 
experiment is run 100 times and the average performance is reported. 
As expected, the calibration error decreases when increasing the data 
available for calibration.

Interestingly, even with a calibration set matching the training data 
size, no calibration method achieves a TCE as low as RF_opt (top right 
plot in Fig. 10). This reaffirms the importance of optimizing hyper-
parameters, such as max-depth.

Furthermore, we can rank the calibration methods based on the 
amount of data needed to achieve a stable low calibration error. The 
ranking from most to least data-efficient based on the TCE metric is 
as follows: PPA, Beta, Platt, Venn–Abers, ISO, and Rank method. This 
ranking reflects the parametric vs. non-parametric nature of these meth-
ods: Simple parametric methods such as PPA can be trained effectively 
with only a small portion of the calibration set, whereas non-parametric 
methods such as isotonic regression demand a much larger dataset. On 
the other side, as already said, parametric methods may produce biased 
results if their model assumptions are not satisfied. Indeed, the results 
also reflect this bias-variance tradeoff: Compared to its competitors, ISO 
under-performs in the beginning (with little calibration data) but per-
forms strongly in the end (with more calibration data).

The results for ECE may look surprising at first sight. One has to be 
a bit careful with the interpretation of this metric, however, because 
the (expected) ECE can be strongly influenced by the distribution of 
data points into bins: The more imbalanced this distribution, the higher 
becomes the average number of data points on which a prediction is 
based, and hence the better the predictions tend to be. In the extreme 
case, a method may always predict more or less the same probability 
and hence put all probabilities into the same bin— the true expectation 
for this bin can then be estimated in a statistically stable way, and much 
more precisely than the expectation of bins with only a few data points. 
To give a rough idea, Table 1 shows the entropy of the distribution 
over bins per method (the lower, the more imbalanced), averaged over 
the different experiments. These numbers are quite coherent with the 
performance in terms of ECE.

7.4.  Assessing calibration performance on real datasets

In this section, we evaluate various calibration methods on real 
datasets. We utilize 30 openly available datasets from the UCI and 
PROMISE repositories, detailed in Table 2. The datasets encompass a 
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Fig. 10. The impact of adjusting the calibration set size on the performance of post-calibration methods in terms of Accuracy, TCE, ECE, and Brier score. As expected, 
increasing the calibration set size improves performance; however, even with a large calibration set, RF_opt outperforms all other calibration methods.

Fig. 11. Critical difference diagram for accuracy across 30 real datasets using the Nemenyi-Friedman statistical significance test. Methods that are not statistically 
distinguishable are connected by a horizontal line, with RF_large and RF_opt included in the top-performing group.

Table 1 
Average entropy of the predicted probability distributions from all calibra-
tion methods in the calibration set size experiment.

 RF_d  RF_opt  RF_large  Platt  ISO  Beta  VA  CT  PPA  Rank
 Entropy  5.60  6.50  6.29  6.54  3.30  6.54  4.22  5.61  6.54  3.27

wide range of sample sizes and feature counts, from small to relatively 
large.

We employ a 10-fold stratified cross-validation schema, setting aside 
one fold as a test set, while one fold serves as the calibration set, de-
pending on the experiment type. The remaining folds are used to train 
the RF classifier. Each cross-validation experiment is repeated five times 
with different random seeds, and average results are reported. Since true 
probability distributions are unavailable for real datasets, the evaluation 
metrics are limited to accuracy, Brier score, log-loss, and ECE with 20 
equal-width bins.

Table 3 summarizes the accuracy performance across all 30 datasets, 
comparing the performance of the calibration methods and the three RF 
variants: RF_d, RF_opt, and RF_large. Additionally, the mean6 perfor-
mance and ranking for each method are presented in the last two rows. 
RF_large achieves the best average rank, indicating that increasing the 
number of trees yields stronger classification performance. Notably, cal-
ibration methods do not significantly improve accuracy compared to the 
raw RF variants.

Table 4 reports Brier scores for each method. Both RF_large and 
RF_opt rank among the best-performing methods, outperforming classi-
cal calibration techniques such as Platt scaling and isotonic regression. 
The superior performance of these RF variants suggests that appropri-

6 We include the mean performance of all the datasets for comparison pur-
poses, as it is also reported in related works. Theoretically, averaging perfor-
mance over datasets is clearly debatable.
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Fig. 12. Critical difference diagram of 30 real datasets on Brier score using the Nemenyi-Friedman statistical significance test. Methods that are not statistically 
distinguishable are connected by a horizontal line, with RF_large and RF_opt included in the top-performing group.

Fig. 13. Critical difference diagram of 30 real datasets on log-loss using the Nemenyi-Friedman statistical significance test. Methods that are not statistically 
distinguishable are connected by a horizontal line, with RF_large and RF_opt included in the top-performing group.

Fig. 14. Critical difference diagram of 30 real datasets on ECE using the Nemenyi-Friedman statistical significance test. Methods that are not statistically distin-
guishable are connected by a horizontal line, with RF_opt included in the top-performing group.

ate hyperparameter tuning can improve both accuracy and calibration 
quality without additional post-processing.

Table 5 presents the log-loss performance of each method. Lower log-
loss values reflect higher confidence in correct predictions. RF_large and 
Platt scaling achieve the best results, closely followed by RF_opt. This 
shows that while traditional post-hoc methods like Platt scaling remain 
competitive under this metric, optimized and deeper RFs are equally 
effective without explicit calibration.

Table 6 displays the ECE values on all methods. VA clearly outper-
forms all other methods, followed by RF_opt and CT. This indicates that 
while VA may not consistently improve accuracy or Brier score, it excels 
at producing well-calibrated probability estimates according to the ECE 
metric. However, based on our experiments with synthetic datasets, ECE 
should be interpreted with caution.

We also evaluated the performance differences between calibration 
methods using the Nemenyi-Friedman test for statistical significance 
[43], with a significance level of 0.05. This test inherently corrects for 
multiple hypothesis testing through the use of the standardized range 

distribution. This analysis was conducted on rankings derived from 30 
real-world datasets, reflecting the frequency with which each method 
outperformed the others. The null hypothesis assumes no statistically 
significant differences between the methods. A critical difference dia-
gram is used to visualize the results in Figs. 11–14—corresponding to 
Accuracy, Brier score, log-loss, and ECE—highlighting groups of meth-
ods for which the null hypothesis cannot be rejected.

The top-performing group varies by metric. For example, the top 
group for the Brier score includes RF_large, RF_opt, RF_d, CT, and PPA. 
In contrast, the top group for ECE comprises VA, RF_opt, and CT. The 
ECE plot indicates that calibration methods are closely clustered, sug-
gesting minimal significant statistical differences among most methods 
regarding ECE. This highlights that ECE may not be the most accurate 
approximation of the probability-wise calibration error.

Notably, RF_opt consistently appears in the top-performing group 
across all four metrics, supporting the conclusion that tuning tree depth 
leads to better or equal calibration performance compared to post-hoc 
calibration methods.
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Fig. 15. Critical difference diagram of ML learners on 30 real datasets for accuracy using the Nemenyi-Friedman statistical significance test. Learners that are not 
statistically distinguishable are connected by a horizontal line, with RF_large and RF_opt included in the top-performing group.

Table 2 
Information of 30 Real datasets from UCI and PROMISE Repositories used in 
this work.
 #  Name  Instances  Features  % of majority class
 1  datatrieve  130  8  91.5
 2  kc1_class_level_defectiveornot  145  94  58.6
 3  parkinsons  195  22  75.4
 4  Sonar_Mine_Rock_Data  208  60  53.4
 5  spect  267  22  79.4
 6  spectf  267  44  79.4
 7  HRCompetencyScores  300  9  53.0
 8  heart  303  13  54.5
 9  vertebral  310  6  67.7
 10  ionosphere  351  34  64.1
 11  kc3  458  39  90.6
 12  cm1  498  21  90.2
 13  kc2  522  21  79.5
 14  wdbc  569  30  62.7
 15  breast  569  30  62.7
 16  diabetes  768  8  65.1
 17  QSAR  1055  41  66.3
 18  pc1  1109  21  93.1
 19  hillvalley  1212  100  50.0
 20  bank  1372  4  55.5
 21  pc4  1458  37  87.8
 22  SPF  1941  33  65.3
 23  kc1  2109  21  84.5
 24  scene  2407  299  82.1
 25  Customer_Churn  3150  13  84.3
 26  spambase  4601  57  60.6
 27  wilt  4839  5  94.6
 28  phoneme  5404  5  70.7
 29  jm1  10,880  21  80.7
 30  eeg  14,980  14  55.1

7.4.1.  The effect of laplace correction on RF calibration
In this section we evaluate the impact of Laplace correction on all 

calibration methods across various evaluation metrics. We conducted 
pairwise T-tests followed by Holm’s step-down correction to compare 
calibration methods with and without Laplace correction, with a signif-
icance level (alpha) set to 0.05. Each calibration method was trained 
twice on the 30 real datasets with the same settings as the previous 
experiment, once with and once without Laplace correction applied to 
the final RF prediction. Results in Table 7 indicate a positive impact of 
Laplace correction (as confirmed by the pairwise T-test) with a check-
mark and a detrimental effect with a cross.

Upon examining the outcomes, we observe that the results are in 
agreement with the findings of Boström[26], who reported a negative 
impact of Laplace correction on both accuracy and Brier score. When 
evaluating calibration performance using log-loss, the inclusion of the 
Laplace correction generally yields positive results. Consequently, the 
degree of performance enhancement is contingent upon the selected 
evaluation metric and calibration approach.

7.4.2.  The benefit of out of bag data on RF calibration
Each data point in the original training data is only used by a subset 

of the trees in the forest— for the remaining trees, it is “out of bag” 
(OOB), i.e., not contained in the bootstrap sample. Therefore, this latter 
subset can be used to produce unbiased predictions for the data point, 
and hence can be used for calibration. This effectively eliminates the 
need to set aside a portion of the training data as a calibration. The 
OOB predictions for any given sample from the training set represent 
the average probability distribution derived from the subset of trees that 
were not trained on that specific sample.

The primary concern with OOB predictions is that only about one-
third of the trees in the RF contribute to each individual OOB prediction. 
However, since a different subset of trees is used for each data point in 
the training dataset, the entire forest is indirectly utilized when consid-
ering all OOB predictions across the training dataset.

The results of our experiments on the 30 real datasets is similar to 
the findings by Johansson et al. [30] with a more limited set of cali-
bration methods. An investigation of the comparison between using a 
calibration set and OOB data in terms of statistical difference in the 
pairwise T-test followed by Holm correction with a significance level of 
0.05, shown in Table 8, also confirms the beneficial effect of OOB data 
for almost all calibration methods, except for Rank calibration. Keep in 
mind that no calibration is performed on RF_d, RF_opt, and RF_large.
Therefore, in training them, there is no need to set aside a calibration 
set, and therefore no need for OOB data.

7.4.3.  Calibration performance of RF vs. other ML algorithms
So far, we have examined the calibration performance of RF un-

der various conditions using both synthetic and real datasets. We have 
also compared all the introduced post-calibration methods suitable for 
RF. In this final part of the experiments, we aim to compare the cali-
bration performance of RF with other machine learning methods. This
experiment seeks to determine whether RF can compete with or even 
outdo other machine learning models in terms of calibration perfor-
mance.

In this experiment, we use the baseline RF_d, RF_opt and RF_large 
to represent different calibrated versions of RF and we compare with 
two of the state of the art ensemble models that is Deep Neural Network
ensembles (DNN_ens) of size 10 and XGBoost forest (XGB) with 100 
trees. Additionally, we trained Decision Trees (DT), Logistic Regression 
(LR), SVM, Deep Neural Network (DNN), and Gaussian Naive Bayes 
(GNB) models. Similar to the previous experiment, we used the 30 
real datasets introduced in Table 2 and performed a 10-fold strati-
fied cross-validation five times with different random seeds, to report 
the average results. To ensure a fair comparison, all machine learning 
models, except RF_large and DNN_ens (due to high runtime), under-
went hyper-parameter optimization. We conducted a randomized grid 
search with 50 iterations for each learner to maintain consistency in the 
comparison. Please see Appendix B for hyper-parameter search space
details.
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Table 3 
Accuracy of calibration methods applied on RF trained on 30 real datasets. RF_large achieves the best average rank across datasets, suggesting 
the benefit of using more trees. Calibration methods have generally a slight negative effect on prediction accuracy.
 Data  RF_d  RF_opt  RF_large  Platt  ISO  Beta  VA  CT  PPA  Rank
 cm1  0.89400  0.90123  0.89401  0.89842  0.89475  0.89721  0.88352  0.90083  0.90044  0.88512
 datatrieve  0.90154  0.89846  0.90462  0.90154  0.90615  0.87692  0.86615  0.91077  0.90462  0.91077
 kc1_class_level_defectiveornot  0.74486  0.73610  0.74210  0.71733  0.72543  0.73390  0.72533  0.73200  0.73771  0.72162
 kc1  0.86003  0.85633  0.86325  0.85567  0.85596  0.85548  0.85615  0.84960  0.85510  0.84988
 kc2  0.83401  0.83668  0.83513  0.83485  0.82988  0.83059  0.82870  0.83939  0.83480  0.82750
 kc3  0.89782  0.89824  0.89651  0.89912  0.89389  0.89738  0.88822  0.89345  0.89913  0.90527
 pc1  0.93815  0.93545  0.93851  0.93671  0.93310  0.93436  0.93707  0.93527  0.93671  0.93292
 spect  0.82339  0.83761  0.82493  0.81946  0.80900  0.82108  0.81578  0.82556  0.83162  0.79860
 spectf  0.80980  0.80900  0.81504  0.80524  0.80536  0.80912  0.80917  0.81197  0.80094  0.80909
 vertebral  0.83677  0.83484  0.83677  0.82194  0.81226  0.82581  0.81806  0.83484  0.83355  0.82387
 wilt  0.98281  0.98545  0.98305  0.98367  0.98297  0.98392  0.98343  0.98260  0.98450  0.97644
 parkinsons  0.90784  0.86084  0.91195  0.86695  0.86274  0.87416  0.86184  0.84837  0.86821  0.85047
 heart  0.81865  0.81744  0.82062  0.81065  0.79295  0.80733  0.79753  0.83127  0.81665  0.79170
 wdbc  0.96135  0.96064  0.96310  0.95712  0.95504  0.95818  0.95327  0.96170  0.95678  0.94658
 bank  0.99388  0.99184  0.99359  0.99199  0.99111  0.99184  0.98704  0.99257  0.99228  0.98557
 ionosphere  0.93281  0.93792  0.93224  0.92883  0.92083  0.92425  0.91968  0.93508  0.93170  0.92537
 HRCompetencyScores  0.93467  0.92533  0.93200  0.92000  0.91400  0.91600  0.91267  0.92267  0.92067  0.91333
 spambase  0.95444  0.95331  0.95518  0.95136  0.94940  0.95088  0.95005  0.95249  0.95201  0.94001
 QSAR  0.86864  0.86940  0.87320  0.86466  0.86198  0.86351  0.86426  0.86599  0.86751  0.85271
 diabetes  0.76219  0.76686  0.77001  0.76062  0.75672  0.76040  0.75699  0.76478  0.76166  0.75621
 breast  0.96135  0.96064  0.96310  0.95712  0.95504  0.95818  0.95327  0.96170  0.95678  0.94658
 SPF  0.99433  1.00000  0.99464  1.00000  1.00000  1.00000  1.00000  0.99206  1.00000  1.00000
 hillvalley  0.57606  0.55002  0.57969  0.53033  0.54668  0.53859  0.54767  0.50827  0.54833  0.49653
 pc4  0.90837  0.90906  0.90974  0.90604  0.90069  0.90480  0.90303  0.90645  0.91084  0.89671
 scene  0.91325  0.98288  0.91591  0.98363  0.98380  0.98397  0.98247  0.90918  0.98255  0.97133
 Sonar_Mine_Rock_Data  0.83257  0.81057  0.84219  0.79910  0.78510  0.80490  0.79648  0.77581  0.80286  0.78467
 Customer_Churn  0.95810  0.95689  0.95879  0.95543  0.95517  0.95733  0.95594  0.95721  0.95625  0.93733
 jm1  0.81954  0.81426  0.82044  0.81259  0.81268  0.81318  0.81204  0.81362  0.81410  0.80768
 eeg  0.93402  0.72413  0.93653  0.72987  0.73202  0.73019  0.73167  0.81760  0.72327  0.60364
 phoneme  0.91225  0.90899  0.91336  0.90537  0.90259  0.90466  0.90307  0.90714  0.90489  0.88239
 Mean  0.88225  0.87435  0.88401  0.87019  0.86758  0.87027  0.86668  0.87134  0.87288  0.85766
 Rank  3.56667  3.81667  2.61667  5.98333  7.36667  5.83333  7.46667  5.00000  4.76667  8.58333

Table 4 
Brier score performance of calibration methods applied on RF trained on 30 real datasets. Lower values indicate better calibration performance, 
with RF_large and RF_opt achieving the best rankings on this metric.
 Data  RF_d  RF_opt  RF_large  Platt  ISO  Beta  VA  CT  PPA  Rank
 cm1  0.08772  0.08415  0.08697  0.08692  0.09169  0.08646  0.09234  0.08583  0.08512  0.10037
 datatrieve  0.08241  0.08213  0.08199  0.08942  0.09485  0.11338  0.10440  0.07744  0.08447  0.08642
 kc1_class_level_defectiveornot  0.17060  0.16960  0.16966  0.17295  0.21164  0.19406  0.18457  0.17263  0.17405  0.21012
 kc1  0.10302  0.10629  0.10221  0.10843  0.10906  0.10741  0.10808  0.10951  0.10681  0.11414
 kc2  0.11961  0.11421  0.11950  0.11796  0.12495  0.11895  0.12063  0.11824  0.11766  0.12925
 kc3  0.07452  0.07338  0.07315  0.07791  0.08709  0.07895  0.08048  0.07406  0.07661  0.08256
 pc1  0.04985  0.05030  0.04961  0.05299  0.05519  0.05345  0.05474  0.05095  0.05146  0.06098
 spect  0.13076  0.12109  0.13013  0.12743  0.13828  0.12942  0.13313  0.12123  0.12135  0.14518
 spectf  0.12580  0.12408  0.12364  0.12917  0.14178  0.13209  0.12980  0.12357  0.12885  0.14079
 vertebral  0.10675  0.10802  0.10499  0.11611  0.12214  0.11690  0.12260  0.10590  0.11095  0.14082
 wilt  0.01277  0.01139  0.01261  0.01274  0.01313  0.01251  0.01330  0.01297  0.01193  0.02079
 parkinsons  0.06961  0.09297  0.06952  0.09419  0.10153  0.10410  0.11116  0.09413  0.09316  0.11486
 heart  0.12904  0.12965  0.12644  0.13360  0.15038  0.13942  0.14492  0.12226  0.13241  0.14953
 wdbc  0.03121  0.03055  0.03018  0.03165  0.03592  0.03509  0.04009  0.03121  0.03216  0.04198
 bank  0.00563  0.00587  0.00555  0.00597  0.00704  0.00751  0.01282  0.00669  0.00638  0.01352
 ionosphere  0.05140  0.05338  0.05037  0.05539  0.06533  0.06246  0.07207  0.05249  0.05443  0.06144
 HRCompetencyScores  0.06117  0.06341  0.06077  0.07139  0.07991  0.07597  0.08721  0.06305  0.06727  0.07687
 spambase  0.03835  0.03956  0.03778  0.03691  0.03803  0.03728  0.03798  0.03975  0.03863  0.04779
 QSAR  0.09440  0.09413  0.09356  0.09563  0.10029  0.09627  0.09835  0.09525  0.09519  0.11328
 diabetes  0.16144  0.15750  0.16060  0.16203  0.16957  0.16282  0.16599  0.15868  0.16294  0.17020
 breast  0.03121  0.03055  0.03018  0.03165  0.03592  0.03509  0.04009  0.03121  0.03216  0.04198
 SPF  0.01779  0.00000  0.01735  0.00011  0.00000  0.00000  0.00022  0.01986  0.00000  0.00000
 hillvalley  0.25145  0.24703  0.24952  0.25059  0.25383  0.25036  0.24974  0.25095  0.24859  0.25234
 pc4  0.06180  0.06131  0.06136  0.06474  0.06551  0.06401  0.06426  0.06314  0.06184  0.07942
 scene  0.07103  0.01612  0.07025  0.01501  0.01523  0.01470  0.01819  0.06953  0.01604  0.02653
 Sonar_Mine_Rock_Data  0.12791  0.14001  0.12677  0.13495  0.15123  0.14146  0.14792  0.15311  0.14133  0.15156
 Customer_Churn  0.03185  0.03243  0.03156  0.03284  0.03310  0.03259  0.03314  0.03260  0.03292  0.04949
 jm1  0.13393  0.13624  0.13302  0.13742  0.13801  0.13674  0.13768  0.13764  0.13657  0.14552
 eeg  0.06812  0.19969  0.06710  0.17866  0.17760  0.17858  0.17756  0.13505  0.18721  0.22880
 phoneme  0.06717  0.06919  0.06646  0.07029  0.07186  0.07027  0.07177  0.06967  0.07081  0.08677
 Mean  0.08561  0.08814  0.08476  0.08984  0.09600  0.09294  0.09517  0.08929  0.08931  0.10278
 Rank  3.96667  3.00000  2.46667  5.33333  8.06667  5.86667  7.73333  4.70000  4.76667  9.10000
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Table 5 
Log-loss performance of calibration methods applied to RF trained on 30 real datasets. Lower values indicate better calibration, with RF_large 
and Platt achieving the top rankings, followed closely by RF_opt.
 Data  RF_d  RF_opt  RF_large  Platt  ISO  Beta  VA  CT  PPA  Rank
 cm1  0.34404  0.28584  0.30514  0.30657  0.84358  0.31160  0.31824  0.35050  0.30761  1.75981
 datatrieve  0.74000  0.39064  0.31912  0.33701  1.87272  1.23192  0.35884  0.58065  0.36249  1.94934
 kc1_class_level_defectiveornot  0.50759  0.50239  0.49964  0.51320  3.94946  1.07385  0.54777  0.50684  0.51582  3.84761
 kc1  0.51141  0.34364  0.44639  0.35419  0.53144  0.34710  0.35020  0.35548  0.34586  0.42856
 kc2  0.75841  0.38836  0.69166  0.38183  1.24538  0.42007  0.38902  0.49684  0.42097  1.91637
 kc3  0.35456  0.36265  0.30813  0.27202  1.28291  0.34250  0.27891  0.32928  0.41404  0.75595
 pc1  0.25835  0.19982  0.19813  0.20005  0.53042  0.21317  0.20315  0.21231  0.22193  0.28201
 spect  0.44787  0.38377  0.42046  0.40835  1.67646  0.43211  0.42312  0.38315  0.38867  1.68885
 spectf  0.38524  0.37898  0.37992  0.39931  1.89808  0.44280  0.40735  0.37466  0.38905  1.87045
 vertebral  0.33123  0.33112  0.32686  0.36733  1.22963  0.39304  0.39299  0.32641  0.40035  3.08194
 wilt  0.06635  0.05200  0.05575  0.05310  0.16454  0.05887  0.05086  0.06129  0.05949  0.25226
 parkinsons  0.23549  0.30034  0.23476  0.31524  1.54191  0.96759  0.37179  0.29582  0.29293  1.66942
 heart  0.40464  0.40565  0.39867  0.42222  1.92134  0.47250  0.45449  0.38696  0.41214  1.57580
 wdbc  0.18249  0.14528  0.14683  0.12824  0.66693  0.34707  0.16769  0.15778  0.14830  0.49223
 bank  0.02711  0.02814  0.02710  0.03282  0.13224  0.08354  0.06757  0.03104  0.03646  0.41225
 ionosphere  0.22357  0.21389  0.18485  0.21042  1.16134  0.45430  0.26662  0.22933  0.19415  1.20464
 HRCompetencyScores  0.34997  0.33550  0.28702  0.26170  1.40324  0.58260  0.31156  0.25400  0.39266  1.04220
 spambase  0.18099  0.15996  0.15204  0.13653  0.28678  0.15111  0.14171  0.17686  0.15101  0.23887
 QSAR  0.34198  0.34713  0.31701  0.31627  0.91980  0.33994  0.32699  0.33731  0.33151  0.62808
 diabetes  0.49559  0.47766  0.48513  0.49378  1.08301  0.49996  0.50304  0.48143  0.49279  0.88515
 breast  0.18249  0.14528  0.14683  0.12824  0.66693  0.34707  0.16769  0.15778  0.14830  0.49223
 SPF  0.10368  0.00001  0.10370  0.01008  0.00000  0.00000  0.01047  0.11040  0.00000  0.00000
 hillvalley  0.70298  0.68760  0.69778  0.69477  0.93638  0.69434  0.69355  0.69519  0.69095  0.73128
 pc4  0.19637  0.23117  0.19538  0.21326  0.46890  0.23660  0.20763  0.19902  0.23972  0.41385
 scene  0.25442  0.09200  0.25024  0.07206  0.18049  0.09835  0.08688  0.24034  0.09196  0.17579
 Sonar_Mine_Rock_Data  0.41125  0.44403  0.40972  0.41653  2.37837  0.82419  0.46170  0.47003  0.43811  1.40972
 Customer_Churn  0.13440  0.14098  0.11849  0.11923  0.30259  0.13393  0.12005  0.13278  0.13264  0.27842
 jm1  0.54955  0.43127  0.49348  0.43591  0.48262  0.43296  0.43538  0.43826  0.43241  0.47278
 eeg  0.25426  0.58559  0.25307  0.52957  0.55855  0.52912  0.52620  0.42866  0.55458  0.65237
 phoneme  0.25496  0.26020  0.23672  0.23749  0.35514  0.25779  0.24009  0.26491  0.26671  0.32920
 Mean  0.33971  0.30170  0.30300  0.29224  1.02237  0.42400  0.30939  0.31551  0.30912  1.03125
 Rank  5.96667  3.80000  3.33333  3.46667  9.23333  6.13333  4.73333  4.76667  4.73333  8.83333

Table 6 
ECE performance of calibration methods applied on RF trained on 30 real datasets. Lower values indicate better calibration, with VA achieving 
the top ranking, followed by RF_opt and RF_large.
 Data  RF_d  RF_opt  RF_large  Platt  ISO  Beta  VA  CT  PPA  Rank
 cm1  0.08585  0.06327  0.09443  0.06886  0.06949  0.05918  0.06823  0.07002  0.08052  0.15296
 datatrieve  0.09778  0.09100  0.10087  0.06250  0.06711  0.09234  0.08902  0.07833  0.09238  0.05357
 kc1_class_level_defectiveornot  0.15259  0.14115  0.15703  0.14451  0.12648  0.14699  0.11087  0.14771  0.13055  0.13007
 kc1  0.06695  0.05572  0.06734  0.08428  0.07030  0.06423  0.05078  0.05734  0.06237  0.04853
 kc2  0.11614  0.11684  0.12629  0.12415  0.11194  0.11977  0.07200  0.13700  0.11380  0.10309
 kc3  0.11268  0.09968  0.10412  0.11730  0.09674  0.10420  0.06992  0.11748  0.11349  0.05434
 pc1  0.10781  0.10413  0.10973  0.13300  0.08879  0.11414  0.06987  0.10612  0.10076  0.03035
 spect  0.12102  0.09684  0.11683  0.12539  0.09290  0.12300  0.08344  0.10285  0.10323  0.08558
 spectf  0.10431  0.11872  0.10414  0.13851  0.12114  0.15343  0.07969  0.11685  0.11656  0.13038
 vertebral  0.11566  0.11758  0.11352  0.13280  0.10383  0.14002  0.08328  0.11219  0.12282  0.13262
 wilt  0.08824  0.08965  0.08920  0.15046  0.07986  0.12104  0.06311  0.08926  0.09367  0.15664
 parkinsons  0.08764  0.11169  0.09584  0.12012  0.11238  0.12357  0.08278  0.10889  0.10681  0.09765
 heart  0.09520  0.09564  0.09333  0.11881  0.11324  0.13231  0.08548  0.08973  0.09692  0.08027
 wdbc  0.08561  0.08189  0.07581  0.10339  0.09845  0.11989  0.06328  0.08321  0.09043  0.07964
 bank  0.06301  0.05730  0.05993  0.08850  0.08251  0.04631  0.04812  0.06321  0.06612  0.06049
 ionosphere  0.08202  0.07852  0.08319  0.09363  0.08559  0.10942  0.06379  0.07851  0.08339  0.09023
 HRCompetencyScores  0.07438  0.07719  0.07401  0.09237  0.06913  0.09582  0.07555  0.08684  0.08835  0.08160
 spambase  0.03635  0.03435  0.03658  0.07979  0.05692  0.06818  0.05067  0.03498  0.03379  0.09354
 QSAR  0.06413  0.06933  0.06210  0.09233  0.07090  0.08957  0.05746  0.06939  0.06009  0.08850
 diabetes  0.07172  0.07209  0.06280  0.07207  0.06819  0.06827  0.06001  0.07222  0.07095  0.07677
 breast  0.08561  0.08189  0.07581  0.10339  0.09845  0.11989  0.06328  0.08321  0.09043  0.07964
 SPF  0.06359  0.00000  0.06234  0.00013  0.00000  0.00000  0.00294  0.06185  0.00000  0.00000
 hillvalley  0.08172  0.06646  0.08302  0.05593  0.10724  0.05924  0.07681  0.04198  0.06745  0.07332
 pc4  0.07553  0.08033  0.07833  0.12328  0.08939  0.10386  0.06528  0.07549  0.07927  0.11347
 scene  0.06871  0.05690  0.07451  0.07637  0.06376  0.08142  0.05244  0.07042  0.06497  0.17361
 Sonar_Mine_Rock_Data  0.08872  0.09252  0.08961  0.12026  0.08903  0.14568  0.08735  0.10250  0.08317  0.07194
 Customer_Churn  0.06237  0.06810  0.06468  0.12165  0.07005  0.09601  0.05371  0.06329  0.05981  0.15129
 jm1  0.03254  0.03025  0.03164  0.03244  0.03798  0.03094  0.03879  0.01399  0.03297  0.03940
 eeg  0.02636  0.03501  0.02744  0.00481  0.02276  0.00493  0.01717  0.01309  0.01617  0.02797
 phoneme  0.01688  0.01754  0.01729  0.03089  0.04140  0.02466  0.03874  0.01664  0.01994  0.06617
 Mean  0.08104  0.07672  0.08106  0.09373  0.08020  0.09194  0.06413  0.07882  0.07804  0.08745
 Rank  5.50000  4.86667  5.43333  7.76667  5.53333  7.10000  2.73333  5.10000  5.26667  5.70000
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Fig. 16. Critical difference diagram of ML learners on 30 real datasets for Brier score using the Nemenyi-Friedman statistical significance test. Learners that are not 
statistically distinguishable are connected by a horizontal line, with RF_large and RF_opt included in the top-performing group.

Fig. 17. Critical difference diagram of ML learners on 30 real datasets for log-loss using the Nemenyi-Friedman statistical significance test. Learners that are not 
statistically distinguishable are connected by a horizontal line, with RF_large and RF_opt included in the top-performing group.

Fig. 18. Critical difference diagram of ML learners on 30 real datasets for ECE using the Nemenyi-Friedman statistical significance test. Learners that are not 
statistically distinguishable are connected by a horizontal line, with RF_large and RF_opt included in the top-performing group.

Table 7 
Effectiveness of Laplace correction on calibration performance 
across 30 real datasets, assessed using pairwise t-tests. Statisti-
cally significant improvements are indicated by 3, while signifi-
cant declines are marked with 7.

 Accuracy  Brier score  log-loss  ECE
 Calibration methods
 RF_d  7  3  3
 RF_opt  7  3  3
 RF_large  7  7  3
 Platt  3
 ISO
 Beta  7  3
 VA  7  7
 CT  7  7  3  3
 PPA  7  3  3
 Rank  3

Tables 9–12 present the results of the model comparisons based on 
accuracy, Brier score, log-loss, and ECE, respectively. Correspondingly, 
Figs. 15–18 display critical difference diagrams from the Nemenyi-
Friedman test for these metrics. Conducted at a 0.05 significance level, 

Table 8 
Effectiveness of OOB in comparison with separate calibration set 
on 30 real datasets, assessed using pairwise t-tests. Statistically 
significant improvements are indicated by 3, while significant de-
clines are marked with 7.

 Accuracy  Brier score  log-loss  ECE
 Calibration methods
 Platt  3  3  3  7
 ISO  3  3  3  3
 Beta  3  3  3  3
 VA  3  3  3
 PPA  3  3  3
 Rank  3  7  7  7

the test highlights statistically significant differences among the ma-
chine learning models across 30 real datasets, with the null hypothesis 
assuming no statistical difference between any two models.

Across all metrics, the RF model consistently ranks among the top 
and best-performing groups of learners. Interestingly, based on the ECE 
metric, the DNN, which is known for overestimating its predictive prob-
ability distributions, ranks in the first and best-calibrated group.
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Table 9 
The accuracy of RF trained on 30 real datasets in comparison with other ML models. The RF_large achieves the highest ranking among all ML models.
 Data  RF_d  RF_opt  RF_large  DNN_ens  XGB_d  XGB_opt  DT_opt  LR_opt  SVM_opt  DNN_opt  GNB_opt
 cm1  0.89400  0.90123  0.89401  0.90123  0.89842  0.89962  0.89963  0.89162  0.90001  0.89922  0.89842
 datatrieve  0.90154  0.89846  0.90462  0.90923  0.90000  0.90308  0.89692  0.88462  0.91077  0.91231  0.90000
 kc1_class_level_defectiveornot  0.74486  0.73610  0.74210  0.72838  0.63410  0.68752  0.69705  0.70343  0.72867  0.69552  0.63410
 kc1  0.86003  0.85633  0.86325  0.84230  0.85074  0.85207  0.84808  0.85871  0.83282  0.84637  0.85074
 kc2  0.83401  0.83668  0.83513  0.78845  0.82303  0.84098  0.82298  0.83906  0.81914  0.79613  0.82303
 kc3  0.89782  0.89824  0.89651  0.89176  0.90174  0.89959  0.90389  0.90173  0.90306  0.90614  0.90174
 pc1  0.93815  0.93545  0.93851  0.93003  0.92986  0.93274  0.92895  0.93039  0.93184  0.93418  0.92986
 spect  0.82339  0.83761  0.82493  0.82057  0.71826  0.83299  0.80245  0.83772  0.82795  0.82937  0.71826
 spectf  0.80980  0.80900  0.81504  0.79182  0.68242  0.81513  0.76789  0.82479  0.81553  0.79205  0.68242
 vertebral  0.83677  0.83484  0.83677  0.80581  0.75548  0.83226  0.80387  0.85032  0.85032  0.80452  0.75548
 wilt  0.98281  0.98545  0.98305  0.97913  0.94606  0.98562  0.98186  0.96421  0.98392  0.97471  0.94606
 parkinsons  0.90784  0.86084  0.91195  0.80205  0.77621  0.89568  0.83589  0.85732  0.80126  0.79095  0.77621
 heart  0.81865  0.81744  0.82062  0.80662  0.80533  0.83325  0.77178  0.83112  0.79673  0.79551  0.80533
 wdbc  0.96135  0.96064  0.96310  0.92478  0.93919  0.96766  0.93496  0.96416  0.93710  0.92549  0.93919
 bank  0.99388  0.99184  0.99359  1.00000  0.84082  0.99679  0.98498  0.98834  1.00000  1.00000  0.84082
 ionosphere  0.93281  0.93792  0.93224  0.94413  0.89684  0.93222  0.87867  0.87116  0.94070  0.93962  0.89684
 HRCompetencyScores  0.93467  0.92533  0.93200  0.92067  0.91333  0.92800  0.89867  0.92467  0.92400  0.93000  0.91333
 spambase  0.95444  0.95331  0.95518  0.93367  0.85177  0.95305  0.91754  0.92797  0.84521  0.93627  0.85177
 QSAR  0.86864  0.86940  0.87320  0.87679  0.69192  0.87037  0.83356  0.86923  0.86126  0.85802  0.69192
 diabetes  0.76219  0.76686  0.77001  0.71349  0.75154  0.75283  0.73537  0.77235  0.75780  0.69737  0.75154
 breast  0.96135  0.96064  0.96310  0.92478  0.93919  0.96766  0.93496  0.96416  0.93710  0.92549  0.93919
 SPF  0.99433  1.00000  0.99464  0.63832  0.64874  1.00000  0.99866  0.99897  0.65048  0.65204  0.64874
 hillvalley  0.57606  0.55002  0.57969  0.75938  0.50824  0.54852  0.51933  0.95711  0.71321  0.62281  0.50824
 pc4  0.90837  0.90906  0.90974  0.87188  0.87257  0.90796  0.88655  0.91359  0.87765  0.87668  0.87257
 scene  0.91325  0.98288  0.91591  0.98438  0.87229  0.98372  0.97915  0.98646  0.98912  0.98363  0.87229
 Sonar_Mine_Rock_Data  0.83257  0.81057  0.84219  0.83705  0.69029  0.85000  0.70500  0.77624  0.63743  0.72695  0.69029
 Customer_Churn  0.95810  0.95689  0.95879  0.86190  0.84286  0.96089  0.93784  0.89156  0.85613  0.88933  0.84286
 jm1  0.81954  0.81426  0.82044  0.80259  0.80814  0.81311  0.80886  0.81327  0.79767  0.80915  0.80814
 eeg  0.93402  0.72413  0.93653  0.56154  0.44893  0.82077  0.55158  0.55120  0.55302  0.55113  0.44893
 phoneme  0.91225  0.90899  0.91336  0.89082  0.75518  0.90652  0.85300  0.75044  0.86684  0.90163  0.75518
 Mean  0.88225  0.87435  0.88401  0.84812  0.79645  0.87902  0.84400  0.86986  0.84156  0.84009  0.79645
 Rank  4.35000  4.26667  3.48333  6.71667  9.00000  3.88333  7.83333  4.98333  5.98333  6.50000  9.00000

Table 10 
Brier scores of RF model trained on 30 real datasets compared to other ML models. Lower values indicate better calibration. RF_large achieves the best 
overall rank, suggesting that increasing the number of trees improves calibration performance.
 Data  RF_d  RF_opt  RF_large  DNN_ens  XGB_d  XGB_opt  DT_opt  LR_opt  SVM_opt  DNN_opt  GNB_opt
 cm1  0.08772  0.08415  0.08697  0.09875  0.09190  0.08586  0.08791  0.08368  0.08956  0.08895  0.09190
 datatrieve  0.08241  0.08213  0.08199  0.08268  0.08806  0.07986  0.08973  0.08998  0.08236  0.08058  0.08806
 kc1_class_level_defectiveornot  0.17060  0.16960  0.16966  0.18738  0.23110  0.18605  0.19939  0.20242  0.18454  0.19430  0.23110
 kc1  0.10302  0.10629  0.10221  0.11524  0.12576  0.10857  0.11330  0.10649  0.12654  0.11453  0.12576
 kc2  0.11961  0.11421  0.11950  0.14438  0.16696  0.11851  0.12901  0.11753  0.13337  0.13158  0.16696
 kc3  0.07452  0.07338  0.07315  0.08876  0.08625  0.07460  0.08319  0.07797  0.08171  0.07945  0.08625
 pc1  0.04985  0.05030  0.04961  0.07075  0.06555  0.05371  0.06230  0.05879  0.06260  0.06050  0.06555
 spect  0.13076  0.12109  0.13013  0.13265  0.24668  0.12488  0.14288  0.11970  0.12204  0.12147  0.24668
 spectf  0.12580  0.12408  0.12364  0.13224  0.29950  0.12612  0.16120  0.11910  0.12296  0.14320  0.29950
 vertebral  0.10675  0.10802  0.10499  0.12076  0.16646  0.10919  0.13479  0.09946  0.10147  0.12532  0.16646
 wilt  0.01277  0.01139  0.01261  0.01546  0.05012  0.01121  0.01482  0.02482  0.01143  0.01940  0.05012
 parkinsons  0.06961  0.09297  0.06952  0.14952  0.17151  0.07539  0.12082  0.10892  0.14535  0.15381  0.17151
 heart  0.12904  0.12965  0.12644  0.14171  0.14460  0.12269  0.16345  0.12483  0.14524  0.14515  0.14460
 wdbc  0.03121  0.03055  0.03018  0.05259  0.05612  0.02360  0.05211  0.02770  0.04573  0.05651  0.05612
 bank  0.00563  0.00587  0.00555  0.00003  0.10496  0.00264  0.01359  0.00703  0.00009  0.00001  0.10496
 ionosphere  0.05140  0.05338  0.05037  0.04655  0.09328  0.05525  0.09978  0.09911  0.04409  0.04879  0.09328
 HRCompetencyScores  0.06117  0.06341  0.06077  0.05998  0.08260  0.06038  0.08265  0.05999  0.06143  0.05775  0.08260
 spambase  0.03835  0.03956  0.03778  0.05148  0.11457  0.03569  0.06655  0.05898  0.10883  0.05058  0.11457
 QSAR  0.09440  0.09413  0.09356  0.09389  0.20999  0.09204  0.12753  0.09863  0.10342  0.10558  0.20999
 diabetes  0.16144  0.15750  0.16060  0.19393  0.17464  0.16062  0.18037  0.15760  0.16363  0.20136  0.17464
 breast  0.03121  0.03055  0.03018  0.05259  0.05612  0.02360  0.05211  0.02770  0.04573  0.05651  0.05612
 SPF  0.01779  0.00000  0.01735  0.23802  0.22118  0.02862  0.00096  0.00208  0.22564  0.22791  0.22118
 hillvalley  0.25145  0.24703  0.24952  0.18358  0.39934  0.24856  0.25610  0.04293  0.18389  0.24316  0.39934
 pc4  0.06180  0.06131  0.06136  0.11005  0.11454  0.06034  0.08019  0.06544  0.10640  0.10278  0.11454
 scene  0.07103  0.01612  0.07025  0.01398  0.12587  0.01499  0.01986  0.01259  0.01065  0.01486  0.12587
 Sonar_Mine_Rock_Data  0.12791  0.14001  0.12677  0.12427  0.20313  0.11447  0.21366  0.16265  0.21443  0.19161  0.20313
 Customer_Churn  0.03185  0.03243  0.03156  0.09912  0.12122  0.02851  0.04712  0.06977  0.11074  0.08141  0.12122
 jm1  0.13393  0.13624  0.13302  0.15023  0.16375  0.13745  0.14270  0.14019  0.16392  0.14728  0.16375
 eeg  0.06812  0.19969  0.06710  0.24489  0.31479  0.16554  0.24724  0.24684  0.25008  0.24743  0.31479
 phoneme  0.06717  0.06919  0.06646  0.08024  0.15476  0.06805  0.11000  0.15806  0.09761  0.07628  0.15476
 Mean  0.08561  0.08814  0.08476  0.10919  0.15484  0.08657  0.10984  0.09237  0.11152  0.11227  0.15484
 Rank  4.40000  3.66667  3.10000  6.70000  9.70000  3.33333  7.73333  4.70000  6.40000  6.56667  9.70000
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Table 11 
The Log Loss of RF trained on 30 real datasets in comparison with other ML models. Lower values indicate better calibration. The XGB_d achieves the 
highest ranking among all ML models, followed by RF_opt.
 Data  RF_d  RF_opt  RF_large  DNN_ens  XGB_d  XGB_opt  DT_opt  LR_opt  SVM_opt  DNN_opt  GNB_opt
 cm1  0.34404  0.28584  0.30514  0.44681  0.41276  0.30143  0.69459  0.29882  0.34533  0.31967  0.41276
 datatrieve  0.74000  0.39064  0.31912  0.37264  0.41449  0.27973  1.20116  0.31675  0.35517  0.38126  0.41449
 kc1_class_level_defectiveornot  0.50759  0.50239  0.49964  1.11941  0.65186  0.55237  1.58172  0.71746  0.56170  0.57589  0.65186
 kc1  0.51141  0.34364  0.44639  0.37286  0.45253  0.35578  0.45643  0.36047  0.59598  0.36570  0.45253
 kc2  0.75841  0.38836  0.69166  0.56043  1.73512  0.38679  0.96272  0.39190  0.44661  0.41471  1.73512
 kc3  0.35456  0.36265  0.30813  0.41222  0.36397  0.26754  0.93353  0.29771  0.28759  0.27402  0.36397
 pc1  0.25835  0.19982  0.19813  0.37817  0.29047  0.20390  0.54296  0.22336  0.25214  0.27985  0.29047
 spect  0.44787  0.38377  0.42046  0.59101  1.62621  0.39752  1.55935  0.38292  0.39659  0.38968  1.62621
 spectf  0.38524  0.37898  0.37992  0.39631  4.49957  0.38503  1.63603  0.35630  0.37198  0.43798  4.49957
 vertebral  0.33123  0.33112  0.32686  0.35862  0.50048  0.33693  1.71634  0.30560  0.31436  0.38119  0.50048
 wilt  0.06635  0.05200  0.05575  0.05559  0.20082  0.04331  0.28349  0.08680  0.04140  0.07010  0.20082
 parkinsons  0.23549  0.30034  0.23476  0.48127  0.56079  0.24394  1.34141  0.34042  0.44961  0.49947  0.56079
 heart  0.40464  0.40565  0.39867  0.44041  0.49625  0.38678  1.72870  0.40052  0.45131  0.45611  0.49625
 wdbc  0.18249  0.14528  0.14683  0.17788  0.60946  0.08975  1.00428  0.11361  0.16345  0.20345  0.60946
 bank  0.02711  0.02814  0.02710  0.00102  0.31807  0.01518  0.39723  0.02238  0.00208  0.00036  0.31807
 ionosphere  0.22357  0.21389  0.18485  0.17769  1.00231  0.20413  2.21956  0.41472  0.15798  0.20799  1.00231
 HRCompetencyScores  0.34997  0.33550  0.28702  0.22406  0.76670  0.21816  1.50664  0.20809  0.21236  0.21079  0.76670
 spambase  0.18099  0.15996  0.15204  0.18824  0.76028  0.13125  1.11660  0.23260  0.35195  0.18839  0.76028
 QSAR  0.34198  0.34713  0.31701  0.39485  0.60997  0.30448  1.54867  0.33387  0.35113  0.40784  0.60997
 diabetes  0.49559  0.47766  0.48513  0.58536  0.58203  0.48470  1.10947  0.48597  0.49785  0.60225  0.58203
 breast  0.18249  0.14528  0.14683  0.17788  0.60946  0.08975  1.00428  0.11361  0.16345  0.20345  0.60946
 SPF  0.10368  0.00001  0.10370  1.18113  0.64225  0.17288  0.01307  0.03734  0.65038  0.64867  0.64225
 hillvalley  0.70298  0.68760  0.69778  0.56369  1.90916  0.69079  0.81839  0.90690  0.55075  1.74015  1.90916
 pc4  0.19637  0.23117  0.19538  0.46422  0.45053  0.18996  0.65377  0.23340  0.37316  0.34091  0.45053
 scene  0.25442  0.09200  0.25024  0.08180  3.56460  0.06919  0.50277  0.06107  0.05550  0.07549  3.56460
 Sonar_Mine_Rock_Data  0.41125  0.44403  0.40972  0.46980  0.59555  0.36404  2.47486  0.49811  0.61975  0.56668  0.59555
 Customer_Churn  0.13440  0.14098  0.11849  0.31892  0.38788  0.09815  0.79182  0.22437  0.36859  0.27040  0.38788
 jm1  0.54955  0.43127  0.49348  0.48032  0.53546  0.43583  0.47089  0.44750  0.66004  0.46364  0.53546
 eeg  0.25426  0.58559  0.25307  0.68300  0.83746  0.51486  0.68798  0.68904  0.81550  0.68891  0.83746
 phoneme  0.25496  0.26020  0.23672  0.26251  0.46562  0.22679  1.56563  0.47195  0.31852  0.29424  0.46562
 Mean  0.33971  0.30170  0.30300  0.41394  0.89507  0.28136  1.08414  0.33245  0.37274  0.39864  0.89507
 Rank  5.66667  3.66667  3.70000  6.43333  9.16667  2.56667  9.86667  4.26667  5.43333  6.06667  9.16667

Table 12 
The ECE of RF trained on 30 real datasets in comparison with other ML models. Lower values indicate better calibration. The RF_opt achieves the highest 
ranking among all ML models.
 Data  RF_d  RF_opt  RF_large  DNN_ens  XGB_d  XGB_opt  DT_opt  LR_opt  SVM_opt  DNN_opt  GNB_opt
 cm1  0.08585  0.06327  0.09443  0.03561  0.14952  0.05589  0.05602  0.12472  0.06122  0.02132  0.14952
 datatrieve  0.09778  0.09100  0.10087  0.06755  0.09814  0.07750  0.07506  0.10899  0.07732  0.04623  0.09814
 kc1_class_level_defectiveornot  0.15259  0.14115  0.15703  0.15481  0.14999  0.14002  0.11228  0.17591  0.15774  0.12621  0.14999
 kc1  0.06695  0.05572  0.06734  0.05686  0.20776  0.06051  0.04161  0.07765  0.04364  0.04261  0.20776
 kc2  0.11614  0.11684  0.12629  0.11961  0.16718  0.12637  0.07093  0.12769  0.15945  0.05764  0.16718
 kc3  0.11268  0.09968  0.10412  0.05774  0.18437  0.12575  0.08200  0.12314  0.09356  0.01455  0.18437
 pc1  0.10781  0.10413  0.10973  0.05260  0.14411  0.11174  0.05634  0.11240  0.07910  0.06090  0.14411
 spect  0.12102  0.09684  0.11683  0.16634  0.28492  0.11952  0.08172  0.10681  0.10854  0.11393  0.28492
 spectf  0.10431  0.11872  0.10414  0.11530  0.26194  0.15097  0.11455  0.12395  0.12895  0.10032  0.26194
 vertebral  0.11566  0.11758  0.11352  0.14897  0.06644  0.13213  0.12954  0.12550  0.11503  0.14533  0.06644
 wilt  0.08824  0.08965  0.08920  0.08524  0.00145  0.11183  0.09048  0.09972  0.12135  0.12228  0.00145
 parkinsons  0.08764  0.11169  0.09584  0.11771  0.17822  0.10877  0.08830  0.12274  0.11858  0.11183  0.17822
 heart  0.09520  0.09564  0.09333  0.09760  0.13583  0.10923  0.09834  0.10773  0.11186  0.11499  0.13583
 wdbc  0.08561  0.08189  0.07581  0.11176  0.12527  0.10244  0.08273  0.12388  0.10925  0.11250  0.12527
 bank  0.06301  0.05730  0.05993  0.00069  0.08573  0.04668  0.04552  0.10348  0.00293  0.00011  0.08573
 ionosphere  0.08202  0.07852  0.08319  0.10005  0.12614  0.09916  0.09282  0.10709  0.10542  0.10040  0.12614
 HRCompetencyScores  0.07438  0.07719  0.07401  0.09534  0.08505  0.08885  0.07830  0.09008  0.08646  0.08978  0.08505
 spambase  0.03635  0.03435  0.03658  0.03703  0.06604  0.06540  0.06338  0.03531  0.02028  0.05997  0.06604
 QSAR  0.06413  0.06933  0.06210  0.10513  0.05061  0.09415  0.07207  0.07428  0.06671  0.09421  0.05061
 diabetes  0.07172  0.07209  0.06280  0.07272  0.10416  0.07954  0.07260  0.07302  0.08046  0.07447  0.10416
 breast  0.08561  0.08189  0.07581  0.11176  0.12527  0.10244  0.08273  0.12388  0.10925  0.11250  0.12527
 SPF  0.06359  0.00000  0.06234  0.15374  0.08339  0.03440  0.00181  0.00913  0.04048  0.03979  0.08339
 hillvalley  0.08172  0.06646  0.08302  0.06166  0.21329  0.03591  0.11039  0.08205  0.08778  0.07857  0.21329
 pc4  0.07553  0.08033  0.07833  0.05951  0.17384  0.08737  0.08041  0.09379  0.03485  0.06537  0.17384
 scene  0.06871  0.05690  0.07451  0.07629  0.20868  0.07806  0.09517  0.06350  0.00250  0.09506  0.20868
 Sonar_Mine_Rock_Data  0.08872  0.09252  0.08961  0.13661  0.15346  0.11306  0.11038  0.11418  0.11293  0.10341  0.15346
 Customer_Churn  0.06237  0.06810  0.06468  0.05132  0.01782  0.09421  0.09730  0.05343  0.08739  0.07550  0.01782
 jm1  0.03254  0.03025  0.03164  0.05715  0.21604  0.03611  0.04463  0.04867  0.03345  0.03720  0.21604
 eeg  0.02636  0.03501  0.02744  0.04774  0.07053  0.05804  0.00450  0.04215  0.05879  0.03979  0.07053
 phoneme  0.01688  0.01754  0.01729  0.02034  0.02918  0.03000  0.04142  0.02199  0.01644  0.04385  0.02918
 Mean  0.08104  0.07672  0.08106  0.08583  0.13215  0.08920  0.07578  0.09323  0.08106  0.07669  0.13215
 Rank  4.36667  3.93333  4.53333  5.76667  8.73333  6.63333  4.70000  7.43333  5.70000  5.46667  8.73333
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Table 13 
Average run time of ML learners on 30 real datasets.

 RF_d  RF_opt  RF_large  DNN_ens  XGB_d  XGB_opt  DT_opt  LR_opt  SVM_opt  DNN_opt  GNB_opt
 Runtime  0.33  200.26  1.70  4.92  0.08  45.25  1.56  31.94  93.18  119.83  0.05

Lastly, we present the average run-time of each machine learning 
model across the 30 datasets in Table 13. While RF may not be the 
fastest, it ranks as the second fastest when considering RF_large. More-
over, it delivers top-tier calibration performance in significantly less 
time compared to logistic regression.

8.  Conclusion

This paper evaluates and compares various calibration methods for 
the RF classifier, including model-agnostic and tree-specific approaches. 
Our results indicate that the effectiveness of these methods varies based 
on the calibration metric used, revealing no single best approach.

Surprisingly, none of the calibration techniques consistently improve 
performance in instance-wise or probability-wise calibration. In fact, 
a hyperparameter-optimized RF (RF_opt) often matches or exceeds the 
performance of the best calibration methods.

Another effective strategy for enhancing RF calibration is increasing 
the ensemble size, referred to as RF_large. Both RF_opt and RF_large 
exhibit similar calibration performance across real datasets, with no 
significant differences. However, RF_large may underperform in low-
dimensional, high-overlap scenarios. The choice between these models 
should be based on data dimensionality, classification difficulty, and 
user needs: RF_opt requires longer training but offers faster predictions, 
while RF_large has the opposite characteristics.

Additionally, techniques like Laplace correction and out-of-bag data 
can improve calibration performance depending on the evaluation met-
ric. Contrary to previous studies suggesting Laplace correction is inef-
fective, our findings demonstrate its statistical significance, particularly 
regarding logistic loss and ECE.

While our study covers a wide range of calibration methods and RF 
configurations, it is limited to binary classification tasks and tabular 
datasets. Further research should assess whether our findings general-
ize to multiclass settings or to other data modalities such as images or 
time series. Additionally, our evaluation focuses on offline performance; 
future work could investigate the behavior of calibration methods un-
der distribution shift or in online learning scenarios. Finally, a promising 
direction for future work is the development of RF-specific calibration 
methods, grounded in a deeper understanding of how hyperparameters 
influence calibration performance and how noise affects their probabil-
ity predictions.
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Appendix A.  Synthetic data generation

The synthetic data utilized in this study was generated to produce a 
binary classification dataset with known true probabilities for each in-
stance. For this purpose, two multi-variate Gaussian distributions were 
sampled. The dimensionality of the distribution corresponds to the num-
ber of features. Sampling from the first Gaussian distribution yields sam-
ples for the positive class, while sampling from the second Gaussian dis-
tribution yields samples for the negative class. To maintain a balanced 
dataset, both distributions were sampled equally; with a dataset size of 
1000, each distribution was sampled 500 times.

The means of the Gaussian distributions are determined by two ar-
rays, each sized to correspond with the number of features (i.e., 2 for all 
experiments except Section 7.3.1). The values in these arrays are sam-
pled from a uniform distribution between 0 and 1 for the first Gaussian 
distribution, and between 1 and 3 for the second Gaussian distribution.

The covariance of the Gaussian distributions is represented by a di-
agonal matrix. For both Gaussian distributions, the values in this matrix 
are uniformly drawn between 1 and 2. However, for the experiment 
depicted in Fig. 4, where the covariances differ, the first distribution’s 
covariance diagonal matrix consists of values uniformly drawn between 
4 and 5.

A.1.  Overlapping distributions

To generate the synthetic dataset used in this experiment, we mod-
ified the described synthetic dataset as follows: a complete overlap be-
tween the classes is initially achieved by setting the mean vector for 
both distributions to a single vector sampled uniformly from values be-
tween 0 and 1. Over 20 steps, a constant value is incrementally added 
to all elements of the mean vector for class 1, gradually separating this 
distribution from class 0 until there is no overlap between the two distri-
butions. Since adding a constant value to the mean vector of a higher-
dimensional multivariate Gaussian distribution reduces overlap more 
significantly than in lower-dimensional distributions, we adjust the con-
stant value for each of the 2, 5, 10, and 20-dimensional datasets. This 
adjustment ensures that when the two distributions no longer overlap, 
the Bhattacharyya distance [44] reaches a value of 5.72.

Appendix B.  Hyperparameter values

The default Random Forest parameters utilized in the study are pre-
sented in Table B.14. These values are the default settings from the 
sklearn package.7

Furthermore, the search space for hyperparameter optimization 
on Random Forest, Decision Tree, SVM, Logistic Regression, Neu-
ral Network, XGBoost, and Gaussian Naive Bayes is detailed in
Tables B.15–B.21, respectively. The optimization was conducted using 
randomized grid search CV with 5 folds, and the number of optimization 
iterations was set to 50.

7 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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Table B.14 
The hyper-parameters used for the default 
random forest.
 hyper-parameter  Value
 Number of trees  100
 Criterion  gini
 Maximum depth  None
 Minimum samples split  2
 Minimum samples leaf  1
 Maximum features  sqrt
 Class Weight  None
 Bootstrap  True
 Laplace  False

Table B.15 
Random forest search space.
 Hyper-parameter  Values
 Number of trees  100
 Criterion  [gini, entropy]
 Maximum depth  [2, 3, …, 100]
 Minimum samples split  [2, 2, …, 10]
 Minimum samples leaf  [1, 2, …, 10]
 Maximum features  [sqrt, log2, None]
 Class Weight  [None, balanced, balanced_subsample]
 Bootstrap  True
 Laplace  [False, True]

Table B.16 
Decision tree search space.
 Hyper-parameter  Values
 Criterion  [gini, entropy, log_loss]
 Splitter  [best, random]
 Max_depth  [2, 3, …, 100]
 Min_samples_split  [2, 3, …, 10]
 Min_samples_leaf  [1, 2, …, 10]
 Max_features  [sqrt, log2, None]

Table B.17 
SVM search space.
 Hyper-parameter  Values
 kernel  [linear, poly, rbf, sigmoid]
 C  [0.1, 1, 10, 100]
 degree  [2, 3, 4]
 gamma  [scale, auto, 0.1, 1, 10]
 coef0  [0, 1, 2]
 shrinking  [True, False]
 class_weight  [None, balanced]
 max_iter  [1000, 5000, 10000]
 decision_function_shape  [ovo, ovr]
 tol  [1e-4, 1e-3, 1e-2]
 probability  True

Table B.18 
Logistic regression search space.
 Hyper-parameter  Values
 Penalty  [l2, None]
 C  [0.001, 1, 10, 100]
 Solver  [newton-cholesky, newton-cg, lbfgs, sag, saga]
 Max_iter  [100, 500, 1000]
 Intercept_scaling  [0.1, 1, 10]

Table B.19 
Deep neural network search space.
 Hyper-parameter Values

 Hidden_layer_sizes [(50, 25), (100, 50), (100, 50, 25), (100, 
100, 50), (100, 100, 100, 50)]

 Activation [relu, tanh]
 Solver [adam, sgd]
 Alpha [0.0001, 0.001, 0.01]
 Learning_rate [constant, invscaling, adaptive]
 Max_iter [200, 300, 500]
 early_stopping [False, True]

Table B.20 
XGBoost search space.
 Hyper-parameter  Values
 n_estimators  100
 max_depth  [2, 3, …, 100]
 learning_rate  [0.01, 0.05, 0.1, 0.2]
 subsample  [0.6, 0.7, 0.8, 0.9, 1.0]
 colsample_bytree  [0.6, 0.7, 0.8, 0.9, 1.0]
 gamma  [0, 0.1, 0.2, 0.3, 0.4]
 min_child_weight  [1, 2, 3, 4, 5]

Table B.21 
Gaussian naive bayes search space.
 Hyper-parameter  Values
 Var_smoothing  [1e−9, 1e−8, 1e−7, 1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1.0]
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