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Abstract
The accurate representation of epistemic uncertainty is a challenging yet essential task in 
machine learning. A widely used representation corresponds to convex sets of probabilistic 
predictors, also known as credal sets. One popular way of constructing these credal sets is 
via ensembling or specialized supervised learning methods, where the epistemic uncer-
tainty can be quantified through measures such as the set size or the disagreement among 
members. In principle, these sets should contain the true data-generating distribution. As 
a necessary condition for this validity, we adopt the strongest notion of calibration as a 
proxy. Concretely, we propose a novel statistical test to determine whether there is a convex 
combination of the set’s predictions that is calibrated in distribution. In contrast to pre-
vious methods, our framework allows the convex combination to be instance-dependent, 
recognizing that different ensemble members may be better calibrated in different regions 
of the input space. Moreover, we learn this combination via proper scoring rules, which 
inherently optimize for calibration. Building on differentiable, kernel-based estimators of 
calibration errors, we introduce a nonparametric testing procedure and demonstrate the 
benefits of capturing instance-level variability on synthetic and real-world experiments.

Keywords  Uncertainty estimation · Calibration · Ensembles · Credal sets · Epistemic 
uncertainty

1  Introduction

In supervised machine learning, it has become more and more important not only to have 
accurate predictors, but also to provide a reliable quantification of predictive uncertainty, 
i.e., the learner’s uncertainty in the outcome y ∈ Y given a query instance x ∈ X  for which 
a prediction is sought. Predictive uncertainty is often divided into aleatoric and epis-
temic uncertainty (Senge et  al., 2014; Hüllermeier & Waegeman, 2021; Kendall & Gal, 
2017; Gruber et  al., 2023), where the former corresponds to uncertainty that cannot be 
reduced with further information (e.g.  more training data), as it originates from inherent 
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randomness in the relationship between features X and labels Y. Therefore, we assume that 
the ground truth is a conditional probability distribution ℙY |X on Y , i.e. given an input 
sample x ∈ X  , each outcome y has a certain probability to occur, given by ℙY |X=x . Even 
with perfect knowledge about the underlying data-generating process, the outcome cannot 
be predicted with certainty. However, in a typical machine learning scenario, the learner 
does not know ℙY|X . Having a space of possible hypotheses, an estimator of the underlying 
probability distribution f within this space typically consists of a mapping f ∶ X → ℙ(Y) , 
where X  denotes the feature space and ℙ(Y) the space of all probability distributions over 
the target space Y . In essence, epistemic uncertainty refers to the uncertainty about the true 
ℙY |X , or the “gap” between ℙY |X and f. One approach to represent this gap is via second-
order probability distributions, assigning a probability for each of the first-order predicted 
probability distributions, i.e. the candidates for f. This is commonly done in Bayesian meth-
ods, such as Gaussian processes and Bayesian neural networks (Gelman et al., 2004), but 
also in evidential deep learning methods (Ulmer et al., 2023). However, the former usually 
involves computationally costly methods to approximate the intractable posterior distribu-
tion, while the latter has been criticised for producing unfaithful or unreliable representa-
tions of epistemic uncertainty (Bengs et  al., 2022, 2023; Meinert et  al., 2023; Juergens 
et al., 2024). An alternative way of representing epistemic uncertainty—which will be the 
topic of this paper—is through sets of probability distributions. Such sets are often referred 
to as credal sets (Walley, 1991) in the imprecise probability literature, and are commonly 
assumed to be closed and convex (Cozman, 2000). In essence, they are designed to repre-
sent ignorance, i.e. a lack of knowledge about the underlying ground truth, by not commit-
ting to one, but a set of potential probability distributions. They can be obtained in a direct 
manner, as via credal classifiers (Hüllermeier et al., 2022; Javanmardi et al., 2024; Wang 
et al., 2025; Caprio et al., 2024; Nguyen et al., 2022), which have recently gained popular-
ity, or in an indirect manner, via various types of ensemble methods, such as bootstrapped 
ensembles, deep ensembles (Lakshminarayanan et al., 2017) and randomization techniques 
based on Monte Carlo dropout (Gal & Ghahramani, 2016). In credal sets, epistemic uncer-
tainty is quantified via the size of the credal set (Sale et al., 2023) or the diversity of the 
corresponding ensemble (Lakshminarayanan et al., 2017).

Due to a lack of an objective ground-truth, epistemic uncertainty representations are 
often evaluated in an indirect manner, using downstream tasks such as out-of-distribution 
detection (Ovadia et  al., 2019), robustness to adversarial attacks (Kopetzki et  al., 2021), 
and active learning (Nguyen et  al., 2022). However, recent studies have raised concerns 
about the usefulness of such tasks w.r.t. epistemic uncertainty evaluation (Abe et al., 2022; 
Meinert et al., 2023; Bengs et al., 2022). A crucial open question is whether existing rep-
resentations of epistemic uncertainty can be interpreted in a statistically profound way. For 
the case of credal sets, one might wonder whether such representations are statistically 
valid, i.e., whether a credal set contains with high probability the true underlying condi-
tional target distribution. One way to evaluate this validity criterion is via statistical tests, 
as exemplary visualized in Fig. 1. Chau et al. (2024) address this issue by proposing a two-
sample test framework for credal sets. However, they assume having a sample of sufficient 
size from the same underlying conditional distribution. In the “classical” machine learning 
scenario that we look at, we do not have access to the ground truth conditional distribution 
nor to more than one realization (xi, yi) from it, making this direct evaluation infeasible.

One necessary condition for validity is calibrationNiculescu-Mizil and Caruana (2005), 
which measures the consistency between predicted probabilities and actual frequencies. In 
this paper we will utilize in this paper the notion of distribution calibration (Vaicenavicius 
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et al., 2019) as a surrogate method for validity. Failing calibration necessarily means failing 
validity, hence in this case one can be confident that the true data generating distribution 
is not contained inside the credal set. Hence, by introducing a calibration test for set-based 
epistemic uncertainty representations, we aim for a more direct evaluation than measuring 
the performance on downstream tasks.

Our work builds further upon the work of Mortier et al. (2023), who first proposed the 
usage of calibration as a proxy for epistemic uncertainty evaluation of credal sets. The test 
introduced in that study analysed whether, for a given convex set of probabilistic mod-
els, there exists a calibrated convex combination in the set. However, this existing test 
has important limitations, which motivate our current work. Specifically, the original test 
focuses on determining whether a single convex combination of ensemble predictions can 
achieve calibration, but it does so in an instance-agnostic manner. This limitation means 
that the approach does not account for the variability of model calibration in dependence 
on the instance space. Moreover, the previous test tries to simulate the distribution of the 
calibration error estimators under the null hypothesis via sampling predictions in the cre-
dal set at random, which possibly leads to an overestimation of how calibrated the found 
convex combination is. In this paper, we address these shortcomings by introducing an 
instance-dependent approach to calibration testing, with two important modifications: 
First, due to the instance-dependency of the underlying convex combination of probabil-
istic predictions, we consider situations where predictions of the set are “differently well” 
calibrated for different regions in the instance space. Second, by using an optimization-
based instead of a sampling-based algorithm, we achieve a more reliable estimate of the 
calibration statistic under the null hypothesis. Together the two modifications result in bet-
ter control of the statistical Type I error, while simultaneously increasing the power of the 
test.

The paper is organized as follows. In Sect.  2 we review the literature on calibration, 
and we formally discuss the calibration measures that are used further on. In Sect. 3 we 
introduce both the concept of instance-dependent validity as well as the (weaker) notion of 
calibration for credal sets. We then propose our novel, nonparametric calibration test that is 
able to assess whether an epistemic uncertainty representation via credal sets is calibrated. 
Furthermore, we introduce an optimization algorithm for finding the most calibrated 

Fig. 1   Exemplary illustration of a desired statistical test of validity for the the case of K = 3 classes. Ideally, 
it should be instance-dependent, that is, allow the ground truth to be a convex combination with weights 
that vary across the instance space. In the left and middle panel the credal sets (composed by the blue dots) 
is valid because the true conditional distribution (green dot) lies inside the convex hull. In the right panel 
the true conditional distribution lies outside the convex hull, hence the null hypothesis should be rejected. 
In this work, we use calibration as an approximation to test validity, that is, we replace ℙY|X with ℙY|f (X) for 
a probabilistic predictor f 



	 Machine Learning (2025) 114:202202  Page 4 of 29

convex combination. It includes training a neural network as a meta-learner, using proper 
scoring rules as loss functions. In Sect. 4 we empirically evaluate the statistical Type I and 
Type II error of our test in different scenarios, thereby showing its improvement over the 
test proposed by Mortier et al. (2023) We further demonstrate its usefulness on validating 
common ensemble-based epistemic uncertainty representations of models trained on real-
world datasets.

2 � Calibration of first‑order predictors

We start with reviewing common calibration metrics that have been introduced for evaluat-
ing distribution calibration in multi-class classification. We also discuss differentiable esti-
mators of these metrics, and statistical tests that assess calibration for a single probabilistic 
model. The extension to sets of probabilistic models will be discussed in Sect. 3.

2.1 � General setting

We assume a multi-class classification setting with feature space X ⊆ ℝ
d and label space 

Y = {1,… ,K} , consisting of K classes. Let X and Y be random variables that are distrib-
uted according to a joint distribution ℙX,Y on X × Y . A probabilistic model can be rep-
resented as f ∶ X → ℙ(Y) , which is a map from the feature space to the space of prob-
ability distributions over the output space Y . For multi-class classification problems with 
K classes, ℙ(Y) = ΔK (the (K − 1)-dimensional probability simplex. Roughly speaking, a 
classifier is calibrated if its outputs coincide with probability distributions that match the 
empirical frequencies observed from realized outcomes. In multi-class classification, one 
distinguishes between different types of calibration. Confidence calibration (Niculescu-
Mizil & Caruana, 2005; Guo et al., 2017; Kumar et al., 2018) only analyses the confidence 
score, i.e., the probability of the predicted class being calibrated. It is therefore the weakest 
notion of calibration. Distribution calibration (Bröcker, 2009; Vaicenavicius et al., 2019), 
which will be the focus in this paper, analyses whether all class probabilities are calibrated. 
Instead of only requiring calibrated marginal probabilities as in the definition of classwise 
calibration (Zadrozny & Elkan, 2002), it is defined via conditioning on the full probability 
vector; hence, it is the strongest notion of calibration.

Definition 1  A probabilistic multi-class classifier with output vector f (X) ∈ ΔK is cali-
brated in distribution if for all k ∈ Y = {1,… ,K} it holds that

with sk being the k-th component of the probability vector s ∈ ΔK.

To evaluate calibration, one typically makes use of calibration errors. In general, these 
errors measure the (average) discrepancy between the conditional probability distribution 
ℙY|f (X) and the predictions f(X). Different calibration errors have been introduced to meas-
ure distribution calibration. One can in general differentiate between calibration errors 
defined as an expectation over a divergence d ∶ ΔK × ΔK → [0,∞) between f(X) and ℙY|f (X) 
(Popordanoska et al., 2022, 2024):

ℙ(Y = k|f (X) = s) = sk,
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and calibration errors defined via integral probability metrics (Müller, 1997), also called 
kernel calibration errors (Kumar et al., 2018; Widmann et al., 2019; Marx et al., 2024):

where H is typically chosen to be the unit ball of a reproducing kernel Hilbert space 
(RKHS) H , and Z is a conditioning variable that is assumed to be calibrated.

For a given dataset D = {(xi, yi)}
N
i=1

 , we denote ĈE(f ) ∶= ĈE(f ,D) as an estimator of 
CE based on the dataset D.

A very common way to estimate the calibration error is to use binning (Zadrozny & 
Elkan, 2001; Naeini et al., 2015; Guo et al., 2017), i.e., partitioning the domain of the pre-
dictor variable f(X) into a finite number of discrete intervals or bins, and estimating the cal-
ibration error by aggregating data within each bin. However, the piecewise nature of bin-
ning functions makes binned estimators non-differentiable and unsuitable for optimization 
tasks requiring gradient information, a property that we will need in Sect. 3. Binning also 
introduces a bias in estimating the conditional expectation �[Y|f (X)] , because it replaces 
continuous variations with average values within bins. Furthermore, binned estimators 
usually measure a weaker form of calibration than distribution calibration as defined in 
Definition 1, namely classwise calibration, which only demands calibrated marginal prob-
abilities. For these reasons, binning is not discussed in the following overview of existing 
estimators. Due to the nature of our problem, we make use of calibration estimators that are 
consistent, (asymptotically) unbiased and differentiable.

2.2 � Overview of calibration errors and estimators

One of the first and still widely used metrics (Gupta et al., 2020; Murphy, 1973; Rahimi 
et al., 2020) that intrinsically also assesses calibration is the (expected) Brier score (Brier, 
1950) . It is defined as

with eY being the one-hot-encoded vector of Y. Its estimator is given by the mean squared 
error between the predicted probability and actual outcome, averaged over all classes:

where fij denotes the j-th entry of the vector f (xi) . Being a proper scoring rule (Gneiting & 
Raftery, 2007), it does not only measure calibration, but can be decomposed into a calibra-
tion and a refinement loss term (Murphy, 1973; Kull & Flach, 2015), where the calibration 
loss consists of the expected L2 error between the conditional distribution PX|f (X) and f(X), 
hence Eq. (1) with d being the Euclidean distance. In their framework of proper calibra-
tion errors, Gruber and Buettner (2022) show that the Brier score also serves as an upper 
bound for other common calibration errors.

(1)CEd(f ) = 𝔼

[
d
(
f (X),ℙY|f (X)

)]
,

(2)CEH(f ) = sup
�∈H

|||�
[
�(f (X), Y)

]
− �

[
�(f (X), Z)

]|||,

(3)BS(f ) = �

[‖‖‖f (X) − eY
‖‖‖
2

2

]
,

(4)B̂S(f ) =

N∑
i=1

K∑
j=1

(fij − �(yi=j)
)2,
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Popordanoska et al. (2022) proposed an estimator for the Lp calibration error, which 
for the case p = 2 directly corresponds to the calibration term in the decomposition of 
the Brier score:

They formulate an estimator of CEp(f ) using Beta and Dirichlet kernel density estimates 
for the binary and multi-class classification case, respectively. Precisely, they prove that

is a point-wise consistent and asymptotically unbiased estimator, where the estimator of 
the conditional expectation is defined via kernel density estimation.

Using the Kullback–Leibler divergence DKL as the divergence measure, one can 
define another proper calibration error (Popordanoska et al., 2024):

which exactly forms the calibration error term of the popular log loss. An estimator is 
given by

where the estimator ̂�[y|f (xj)] is again defined via kernel density estimation.
Widmann et  al. (2019) introduced the kernel calibration error and multiple differ-

entiable estimators for it. In its kernel-based formulation, it is defined using a matrix-
valued kernel k ∶ ΔK × ΔK → ℝ

K×K as follows:

where (X�, Y �) is an independent copy of (X, Y) and eY , eY ′ are the one-hot-encoded vectors 
of the random variables Y and Y ′ . We will make use of the computationally more feasible 
unbiased estimator they propose, defined as

with k being a universal matrix-valued kernel and hi,j corresponds to the term in the expec-
tation (9) evaluated on two instance-label pairs.

Marx et  al. (2024) introduced a framework of calibration estimators for different 
types of calibration, which considers it as a distribution matching problem between 
(true) conditional distribution ℙY|X and the predicted distribution ℙ̂Y|X induced by f(X). 
Similar to Widmann et al. (2019), they proposed integral probability metrics to meas-
ure the distance between real conditional and predicted distribution. For (X, Y) ∼ ℙ and 
(X, Ŷ) ∼ ℙ̂ they define the calibration error as the Maximum-Mean-Discrepancy (MMD) 
between ℙ and ℙ̂:

(5)CEp(f ) =
(
𝔼

[‖‖‖f (X) − ℙY|f (X)
‖‖‖
p

p

]) 1

p

.

(6)ĈEp(f ) =

(
1

n

n∑
j=1

[‖‖‖ ̂�[y|f (xj)] − f (xj)
‖‖‖
p

p

]) 1

p

(7)CEKL(f ) ∶= �

[
DKL(�[Y|f (X)], f (X))

]
,

(8)ĈEKL(f ) =
1

n

n∑
j=1

⟨
̂�[y|f (xj)], log

�[y|f (xj)]
f (xj)

⟩
,

(9)CEk(f ) =
(
�
[
(eY − f (X))�k(f (X), f (X�))(eY � − f (X�))

])1∕2
,

ĈEk(f ) =
1

⌊n∕2⌋
⌊n∕2⌋�
i=1

h2i−1,2i,
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where H is again the unit ball of an RKHS. For the classification case, they introduce a 
trainable calibration estimate for distribution calibration which measures the squared error 
as

where the terms hij are defined dependent on the type of calibration. They define zi being a 
conditional random variable distributed according to f (xi) , for i ∈ {1,… ,N} and

with k ∶ ΔK × ΔK → ℝ being a universal kernel function, and qi(y) the predicted probabil-
ity for y given f (xi).

2.3 � Statistical tests for calibration

As the estimators ĈE(f ,D) reviewed in the previous section are computed from finite sam-
ples, their realised values inherit sampling variability, and hence comparing them in terms 
of their realized values does not take this randomness into account. Appendix A visualises 
the distribution of the estimators under the null hypothesis that they are calibrated; the dis-
persion shrinks with the sample size N, but even for large N randomness is non-negligible. 
Consequently a formal hypothesis test is needed when evaluating the calibration of a clas-
sifier f ∶ X→ΔK on a finite data set D = {(xi, yi)}

N
i=1

:

There are a number of established tests for calibration in classification problems. The clas-
sical Hosmer–Lemeshow test (Hosmer et al., 1997), initially developed as a goodness-of-
fit test for the logistic regression model, considers a chi-squared distributed test statistic 
based on observed and expected frequencies of events. However, as it requires binning and 
can only be used to test for confidence calibration, we do not include it in this analysis. 
Widmann et al. (2019) derive a test for the kernel calibration error ( CEk ), which takes the 
asymptotic normality of their proposed estimator into account. While it yields analytic 
p-values and is computationally light once the test statistic is calculated, its validity holds 
only for the specific kernel calibration estimator and its asymptotic normality.

Vaicenavicius et al. (2019) developed a general framework to evaluate calibration based 
on consistency sampling (Bröcker & Smith, 2007), a method that applies bootstrapping to 
estimate the distribution of the calibration estimator’s values under the null hypothesis that 
f is calibrated. This is done by resampling new labels in each bootstrap iteration, based on 
the distribution that f predicts for the respective bootstrap sample. Given the (empirical) 
distribution function of the calibration estimator under the null hypothesis, one can then 
check how likely the given calibration estimate is under the assumption that f is calibrated. 
Being a nonparametric test, it can therefore be used to test for distribution calibration in 
combination with any of the calibration estimators mentioned above. For these reasons we 
adopt the nonparametric bootstrap test of Vaicenavicius et al. (2019) throughout the paper: 

(10)CEMMD(f ) = sup
𝜙∈H

|||�
[
𝜙(Y , f (X))

]
− �

[
𝜙(Ŷ , f (X))

]|||,

(11)ĈE
2

MMD
=

1

n(n − 1)

n∑
i=1

n∑
j=1,j≠i

hij,

hij = k((yi, zi), (yj, zj)) +
∑
y∈Y

∑
y�∈Y

qi(y)qj(y
�)k((y, zi), (y

�, zj)) − 2
∑
y∈Y

qi(y)k((y, zi), (yj, zj)),

H0 ∶ f is calibrated H1 ∶ ¬H0.
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it is the only approach that (a) is valid for all considered calibration errors, (b) remains 
distribution-free, and (c) integrates seamlessly with our proposed algorithm.

3 � Calibration of sets of probabilistic predictors

We will now come to the main part of this paper, namely the evaluation of calibration of 
not only one, but a set of classifier models. To this end, after introducing the necessary 
methodology, we introduce our proposed test in a step-wise manner.

3.1 � Credal sets

Credal sets, generally defined as sets of probability distributions, form a way to repre-
sent disbelief or uncertainty about the true underlying probability distribution. Instead of 
committing to a single point prediction, using credal sets to represent uncertainty allows 
to stay imprecise, thereby avoiding prediction error if the uncertainty is too high. The 
sets can be obtained in various ways (Wang et al., 2025; Caprio et al., 2024), one direct 
way being via sets of probabilistic classifiers. In the following, let F ∶= {f (1),… , f (M)} , 
with f (i) ∶ X → ΔK the i-th probabilistic model in a set that contains M models in total. 
For each feature vector x ∈ X  , this yields a (credal) set of probability distributions 
F|x = {f (1)(x),… , f (M)(x)} ⊆ ΔK . A natural way to validate a representation of epistemic 
uncertainty through sets of predictors is to look at their possible convex combinations: If 
there is at least one prediction in the convex hull of F|x that is calibrated, then one can 
argue that the set of predictors contains the ground truth aleatoric part of the uncertainty, 
hence fulfils a necessary requirement for representing epistemic uncertainty. Calibration 
here serves as a relevant necessary condition for validity; a calibrated combination indi-
cates that the predictors are not systematically biased and that they can approximate the 
true data-generating process in a consistent manner. For each instance x ∈ X  , we now 
define the (credal) set S(F, x) as the set of all possible convex combinations of predictors 
in F|x.

Definition 2  For a feature vector x ∈ X  , the credal set S(F, x) is the set of all convex com-
binations of F|x:

where ΔM,X =
�
� = (�1,… , �M)

��� �i ∶ X ↦ [0, 1] and
∑M

i=1
�i(x) = 1∀x ∈ X

�
 denotes the 

set of all functions with co-domain being the (M − 1)-simplex.

Here ΔM,X is a function space over X  , while in previous work (Mortier et al., 2023), ΔM 
was the (M − 1)-simplex of all (constant) convex combinations, that is, the same convex 
combination for all x ∈ X  was analysed in order to test for calibration. Instance-dependent 

S(F, x) =

{
f
�
(x) ∈ H

||||||
f
�
(x) =

M∑
i=1

�i(x)f
(i)(x)

||||||
(�1,… , �M) ∈ ΔM,X

}
,
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convex combinations offer the flexibility needed to capture varying degrees of aleatoric and 
epistemic uncertainty across the input domain. Different regions of the instance space may 
require different degrees of model blending to appropriately represent the level of uncer-
tainty, particularly when some models are better calibrated than others. Def. 2 constructs 
credal sets via realizations of sets of predictors, which yield sets of probability distribu-
tions. From the perspective of imprecise probabilities, one might also define a credal pre-
dictor, which yields as output a set of probability distributions. The proposed framework 
also holds for this scenario, given the predictor outputs a convex set of extreme points.

3.2 � Validity and calibration for sets of predictions

In the following, we formally define our notion of validity for set representations of epis-
temic uncertainty. It implies that for each x ∈ X  , the true underlying probability distribu-
tion ℙY|X=x is contained in the (credal) set of all possible convex combinations S(F, x).

Definition 3  (Validity of credal sets) Let F = {f (1),… , f (M)} be a set of predictors, with 
f (i) ∶ X → ℙ(Y) , and for each x ∈ X  , define the induced credal set F|x as in Definition 2. 
Then F  is valid if ℙY|X=x ∈ S(F, x) for all x ∈ X .

In practice, testing validity requires having either access to the ground truth condi-
tional distribution ℙY|X or a sufficient number of samples thereof, as assumed in Chau et al. 
(2024). Hence, in our setting, we make use of the weaker notion of calibration which results 
from conditioning on the predictions f(X) instead of X. This way, we analyse whether there 
is a � ∈ ΔM,X such that ℙY|f�(x) ∈ S(F, x) . Similar as in Mortier et al. (2023), we now define 
a set of classifiers, or equivalently a credal classifier, as calibrated if there exists (at least) 
one calibrated convex combination of predictors. Definition 4 forms a generalization of 
Definition 4 of Mortier et al. (2023), where the coefficients of the convex combination do 
not form functions on the instance space, but are constants, i.e., � ∈ ΔM.

Definition 4  Let F = {f (1),… , f (M)} be a set of predictors, f (i) ∶ X → ΔK . We say that 
F  is calibrated in distribution if there exists � ∈ ΔM,X such that the combined predictor 
f
�
∶ X → S(F,X) defined as

is calibrated in distribution (Definition 1).

Note that calibration provides a necessary, but not sufficient condition for validity: A 
valid predictor is always calibrated, yet the reverse does not have to hold. In fact, there are 
(possibly) many calibrated predictors, as shown in Vaicenavicius et al. (2019). In Appen-
dix B, we show that this is also the case for convex combinations of probabilistic models. 
However, if a predictor is not calibrated, one knows that it is also not valid.

f
�
(x) =

M∑
i=1

�i(x)f
(i)(x)
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3.3 � A novel calibration test for sets of predictors

Our null and alternative hypothesis for testing the calibration of a set of predictors F  can 
now be formulated as

In order to analyse whether there is a calibrated convex combination, a natural approach is 
to analyse the one with the lowest calibration error. Hence, we define the minimum calibra-
tion error as follows:

where g is a calibration error.
For the experiments, we choose g to be equal to the errors proposed in Sect.  2, i.e., 

g ∈ {CEp, CEKL, CEMMD, CEk} . These have under suitable conditions the desirable prop-
erty that f is calibrated if and only if CE = 0 , making them suitable for optimization. Fur-
thermore, the respective estimators described in Sect.  2 are both consistent and at least 
asymptotically unbiased. Having an optimisation dataset Dopt = {(xi, yi)}

Ñ
i=1

 , one can repre-
sent the evaluations of the weight function � ∶ X → ΔM,X by an Ñ ×M matrix:

Hence, for ĝ being the (data-dependent) estimator of g, finding the minimum empirical cal-
ibration error can be formulated as follows:

with fΛ(xi) =
∑M

m=1
�m(xi)f

(m)(xi) ∈ [0, 1]K , having the constraint 
∑M

j=1
Λij = 1 for all 

j ∈ {1,… , Ñ}.
As already described in Sect.  3.2, there are in general many calibrated functions f, 

implying the absence of a unique global minimum for the optimization problem (16). 
Therefore, in the optimisation, we make use of a combined loss function consisting of a 
proper scoring rule and the respective calibration estimator, weighted by a constant. Proper 
scoring rules intrinsically optimise for both a calibration error and an accuracy term and 
provide a stable optimisation. The specific optimisation method is described in Sect. 3.5.

(12)H0 ∶ ∃� ∈ ΔM,X s.t.f
�
is calibrated, H1 ∶ ¬H0.

(13)min
�∈ΔM,X

g(f
�
),

(14)Λ =

⎛⎜⎜⎝

𝜆1(x1) … 𝜆M(x1)
⋮ ⋱ ⋮

𝜆1(xÑ) … 𝜆M(xÑ)

⎞⎟⎟⎠
.

(15)min
Λi,j , i∈1,…,M,j∈1,…,Ñ

ĝ(fΛ,Dval)
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3.4 � Algorithmic procedure

Algorithm 1   Algorithm to test whether there exists a calibrated, instance-dependent con-
vex combination of an ensemble of M classifier models.

We now explain in detail our new, adapted version of the statistical test proposed in 
Mortier et al. (2023), which in turn is based on the bootstrap test introduced by Vaice-
navicius et al. (2019). Algorithm 1 shows the pseudo code of the test, which consists of 
the following steps:

First, using an appropriate optimization algorithm, the per-instance convex combina-
tion Λ∗ with minimal calibration error is found (line 3). Using Λ∗ , the predictions of 
the combined classifier fΛ∗ are computed (line 4). Third, the calibration test of Vaicena-
vicius et al. (2019) is employed to assess whether the predictions of fΛ∗ are calibrated 
(line 5–19). This statistical test is based on bootstrapping and consistency resampling, 
that is, resampling the labels from the distribution induced by fΛ∗ . This way, one is able 
to estimate the distribution of the calibration error estimator ĝ under the null hypothesis 
that fΛ∗ is calibrated (see also Fig. 5 for an example).

For a given significance level � , the test rejects the null hypothesis if the value of 
the calibration error estimator is higher than the (1 − �)-quantile of the bootstrapped 
empirical distribution. In the other case, it cannot reject it. Algorithm 1 differs from the 
proposed algorithm in Mortier et al. (2023) in two important aspects: 
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1.	 It allows for the case where the weights for the most calibrated convex combination 
depend on the instance space, i.e., for different regions in it, it accounts for the fact that 
some predictors might be better calibrated than others and vice versa.

2.	 It uses an optimization instead of a sampling-based approach: For constructing the distri-
bution under the null hypothesis, the previous test used uniform sampling of the weights. 
Directly optimizing over the calibration error and performing the test on the found 
convex combination has two main advantages: (a), the uniform sampling of weights 
used in Mortier et al. (2023) does not lead to uniform sampling in the credal set, which 
we further elaborate on in Appendix D. By putting emphasis on combinations in the 
inner of the polytope, it could lead to a biased estimate of the distribution under the null 
hypothesis. Advanced sampling techniques that could result in a more uniform sampling 
in the credal sets, like rejection-sampling or triangulizations, are computationally costly. 
(b), the minimization step automatically “guides” the algorithm towards the region with 
low calibration errors, avoiding the need to explore the whole credal set. In Appendix C 
we show that using a universal approximator to learn the underlying convex combina-
tion leads to the test being asymptotically valid, i.e., controlling the Type 1 error. The 
optimisation step is explained in more detail in the following section.

3.5 � A robust way of finding the most calibrated convex combination

We will now analyse further how optimization problem (15) can be solved in an efficient 
and robust manner. Specifically, we try to avoid the problem of overfitting on the empirical 
calibration error on the respective dataset: Since the latter is finite, there might be a mis-
match between the estimated and the population-level calibration error. Classical gradient-
based solvers, which purely optimise the calibration error on the same dataset that is used 
for the test, might therefore run into the problem of underestimating the true calibration 
error, thereby making the test more conservative. This can also be seen in the empirical 
results of Mortier et al. (2023).

Therefore, we suggest an alternative approach find the minimum in (15), which incorpo-
rates two important aspects:

•	 We use a neural network for learning the weight function � ∶ X → ΔM,X , exemplary 
visualized in Fig. 2. This approach is similar to stacking (Wolpert, 1992), where a sec-
ond meta-learner is trained to find the optimal combination of predictions. It is trained 

Fig. 2   General concept of learning the optimal function �∗ ∶ X → ΔM,X , here for the example of M = 5 
ensemble predictions. The neural network is trained using the combined calibration loss function as in Eq. 
(16), with the calibration estimators introduced in Sect. 2 for the calibration term. It predicts for a given 
instance value x ∈ X  the optimal �∗(x) such that the empirical calibration error for the combined predictor 
f
�
∗ is minimized
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on a separate optimization dataset, and then used to predict the optimal convex combi-
nation for our test.

•	 As a loss function, we use the risk of a proper scoring rule � , combined with a term 
controlling the calibration error, such that the true risk minimizer is given by 

 We use ĝ ∈ {�CEKL,
�CE2,

�CEk,
�CEMMD} as estimates for the respective calibration error 

of interest, while � ≥ 0 denotes a weight factor. This approach takes recent insights 
(Popordanoska et  al., 2022; Marx et  al., 2024) that adding a calibrating penalty to a 
proper scoring rule can help ensuring calibration, into account, while avoiding trivial 
or degenerate solutions. In particular, many convex combinations can be calibrated 
(Appendix B), hence, the proper scoring rule serves as a regularizer, guiding the opti-
mizer toward solutions that not only reduce calibration error but also maintain high pre-
dictive accuracy. Furthermore, we learn �∗ on a validation set but evaluate calibration 
on a separate test set. This split reduces the risk of overfitting to our chosen calibration 
metric, ensuring the resulting test does not become overly conservative.

4 � Experimental results

We evaluate our test both on synthetic and real-world data. A more detailed description of 
the experimental setup can also be found in Appendix E and the code for reproducing the 
experiments is available on GitHub.1 For the experiments on synthetic data, a MLP archi-
tecture with 3 hidden layers and 16 neurons is used. Experimentally, we found that this 
simple architecture was sufficient to solve the optimization problem in Eq. (16) and learn 
the underlying weight function. For the experiments on real data, we use a more complex 
network architecture, which is described in Sect. 4.3. As a loss function, we use the com-
bined loss as in (16), with the Brier score as a proper scoring rule, and � = 0.01.

4.1 � Binary classification

For illustration purposes, we first examine the case of binary classification by simulating 
M = 2 probabilistic predictors, each outputting a probability for the positive class. For each 
input x, the predictor’s probabilities f (1)(x) and f (2)(x) are sampled from a Gaussian process 
(GP) constrained to [0,  1]. We then define a true calibrated predictor f ∗ that lies inside 
(under H0 ) or outside (under H1 ) the convex hull of the two predictors. Figure 9 shows the 
exemplary setting for this experiment. Under H0 , we consider two cases of non-instance 
and instance-dependence of � = (�1, �2)

T : 

1.	 H0,1 : The calibrated predictor f ∗ is a constant convex combination of f (1) and f (2) , where 
�∗
1
(x) ≡ c ∼ Unif ([0, 1]) , �∗

2
(x) = 1 − �∗

1
(x).

2.	 H0,2  :  �∗(x) i s  a  r andomly  gene ra t ed  po lynomia l  func t ion  and 
f ∗(x) = �∗(x)f (1)(x) + (1 − �∗(x))f (2)(x).

(16)�
∗ ∈ argmin

�∈ΔM,X

�
[
𝓁(f

�
(x), y)

]
+ � ⋅ g(f

�
).

1  https://​github.​com/​mkjue​rgens/​Ensem​bleCa​libra​tion.

https://github.com/mkjuergens/EnsembleCalibration
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Under H1 , f ∗(x) lies strictly outside or near the boundary of the credal set. We generate 3 
scenarios of increasing distance from it: 

1.	 H1,1 : f ∗(x) is set at a small �-distance to one boundary.
2.	 H1,2 : is sampled from a GP that remains close but outside the credal set.
3.	 H1,3 : similar to H1,2 , but allowing a larger maximum distance.

Using the described scenarios, Fig. 3 shows the Type 1 and Type 2 error of the proposed 
test, averaged over 200 runs of the experiment. For comparison, we include the results 
given by the algorithm of Mortier et al. (2023), as well as the algorithm of Vaicenavicius 
et  al. (2019) applied to the mean of the ensemble, f�AVG (x) =

1

M

∑M

i=1
f (i)(x) . The average 

Type 1 error of our testlies close to the chosen significance level. In some cases, it lies 
slightly above it, which is is due to the generalization error on the unseen data: Since we 
learn the optimally calibrated convex combination on a separate dataset, the learned convex 

Fig. 3   Average Type 1 and Type 2 error given a significance level (x-axis) for Algorithm 1 with D = 100 
bootstrap iterations run on the binary classification experiment and the cases H0,1 −H1,3 where the null 
hypothesis is true (a), and false (b), respectively. The average is taken over 200 resampling iterations. In 
each iteration we newly generate a dataset of size Ntest = 400 on which the tests are performed. For the pro-
posed test, we do the optimisation on a separate dataset Dopt of the same size. For comparison, the average 
Type 1 and Type 2 error of the previously proposed test (Mortier et al.) as well as the bootstrapping-based 
test of Vaicenavicius et al. applied to the mean prediction (Avg. + npbe) are shown
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combination on the test set might be not the one with lowest calibration error, due to the 
inherent randomness within the data. Nonetheless, with increasing sample size, we expect 
the Type 1 error to be controlled by the significance level (due to the test’s asymptotic 
validity). The results show that the test of Mortier et al. is overly conservative, with a rejec-
tion rate far lower than the significance level. The test of Vaicenavicius applied to the mean 
prediction has a Type 1 error far higher than the significance level; which is expected, as 
the mean prediction might not lie close enough to the underlying conditional distribution 
for the test to not reject. Both our test and the test of Vaicenavicius applied to the mean 
show a high power for this setting, with almost zero Type 2 error also in the case where 
the true distribution lies in very close distance to the polytope. However, the conservative 
nature of the test of Mortier et al. leads to a higher Type 2 error, thereby revealing the pro-
vided benefit of our test in terms of power.

4.2 � Multi‑class classification

We consider K > 2 classes, and follow a Dirichlet-based scheme to generate an ensem-
ble of M probabilistic predictors. Specifically, we generate a prior p ∼ Dir(1) and pre-
dictions f (1)(x),… , f (M)(x) ∼ Dir(

p|x⋅K
u(x)

) , where u ∶ X → ℝ>0 is a function defining the 
epistemic uncertainty (i.e. the larger u, the higher is the spread between the predictions 
within the set) over the instance space. For the experiments, we use a constant 
u(x) ≡ 0.5 . Under H0 , which we found to be a good tradeoff to evaluate Type 1 and 2 
error of the test. We distinguish between 

1.	 H0,1 : �∗(x) ≡ c ∈ [0, 1] where c ∼ Dir(1,… , 1) ∈ ΔM ( �∗ is constant across the instance 
space), and

2.	 H0,2 : �∗(x) = (�∗
1
(x),… , �∗

M
(x)) ∈ ΔM with �∗

m
(x) =

∑D

i=0
�ix

i for m = 1,… ,M and ∑M

m=1
�∗
m
(x) = 1 (the components of �∗ form scaled polynomials of a certain degree).

For the alternative hypothesis, we select a random corner fc ∉ F  of the simplex 
and then set the true underlying conditional distribution f ∗ as a point on the con-
necting line between the corner and the boundary point fb ∈ F  of the credal set: 
f ∗(x) = � ⋅ fc(x) + (1 − �) ⋅ fb(x) . We define three cases with increasing distance to the 
credal set by varying the mixing coefficient � : H1,1 : � = 0.01 , H1,2 : � = 0.1 and H1,3 : 
� = 0.2.

The resulting Type 1 and Type 2 errors of this experiment are shown in Fig. 4, again 
for our test and the two baselines. We see that the proposed test yields more reliable 
decisions, not heavily exceeding the given significance level while following it closely. 
The test of Mortier et al. is again overly conservative for all estimators, except for the 
kernel calibration error estimator ĈEk , which in general leads to unreliable results and 
low power. While the test of Vaicenavicius et al. applied to the mean prediction yields 
the highest power, it cannot be seen as a valid test, as it does not control the Type 1 
error rate. Note here that we use the same datasets for all three tests, but we perform 
the optimisation for our proposed test on a separate dataset of the same size. The Type 
2 error analysis shows that, except for the kernel calibration error, our proposed test has 
higher power than the previously proposed one, and it aligns better with the chosen sig-
nificance level.
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4.3 � Experiments on real‑world data

Since the true data-generating distribution is unknown in real-world datasets, we cannot 
directly quantify Type 1 or Type 2 errors. Instead, we demonstrate the practical useful-
ness of our test by applying it to the two standard image classification tasks CIFAR-10 and 
CIFAR-100 (Krizhevsky et al., 2009). More specifically, we apply our test on the predic-
tions of three ensemble methods, combined with two different architectures that are trained 
on the two datasets, respectively. We train a deep ensemble (DE, (Lakshminarayanan et al., 
2017)), a dropout network with dropout rate 0.5 (DN(0.5), (Gal & Ghahramani, 2016)) and 
a dropout network with dropout rate 0.2 (DN(0.2)). For the deep ensemble, we train 10 dif-
ferent models using different weight initializations, while in the dropout networks, dropout 
is applied after specific layers. A higher dropout rate injects more parameter noise during 
training, increasing predictor diversity and thus enlarging the credal set, which is why we 
analyse the two different cases. After training, we obtain a set of different predictions from 
these models, which we then use to run Algorithm 1. As model architectures, we use two 
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Fig. 4   Average Type 1 and Type 2 error given a significance level (x-axis) for Algorithm 1 with D = 100 
bootstrap iterations run on the multi-class classification experiment, and the settings H0,1 −H1,3 where 
the null hypothesis is true (a), and false (b), resp. with Ntest = 400 instances, M = 10 ensemble members, 
K = 5 classes and uncertainty u = 0.5 . The average is taken over 200 resampling iterations. For comparison, 
the average Type 1 and Type 2 error of the previously proposed test (Mortier et al.) as well as the bootstrap-
ping test applied to the mean prediction (Avg. + npbe) are shown
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architectures of different model complexity: the ResNet-18 (He et  al., 2016) ( 11.6 × 106 
parameters) and the VGG-19 (Simonyan & Zisserman, 2014) ( 138 × 106 parameters). For 
the optimisation part, we leverage the same architecture, i.e. a pre-trained ResNet-18 or 
VGG-19, to embed images and attach a fully-connected layer with 32 neurons to predict the 
weight function � . Section E describes the full experimental setup. The results are shown 
in Table 1. For each model and calibration estimator, we run the respective bootstrapping 
test (line 5–19 of Algorithm 1), with the optimal weight function �∗ learned by the neural 
network. Similarly as in the synthetic experiments, we also perform the bootstrapping part 
of the test with the mean predictor (Algorithm 1 from line 5 with f

�AVG.
=

1

M

∑M

j=1
f (j) ). The 

results differ significantly, depending on the used calibration error. In general, using the 
calibration error CEKL led to the fewest rejections (i.e.   the highest p values), potentially 

Table 1   Calibration test results on CIFAR-10 and CIFAR-100 for the significance level � = 0.05 and 
D = 100 bootstrap iterations

For each architecture (ResNet-18 or VGG-19) and model type (Deep Ensemble (DE) or MC Dropout 
(DN(p)) with rate p ∈ {0.2, 0.5} , we show results of running the proposed test using two different calibra-
tion errors, g ∈ {CEKL, CE2

} . For g = CEKL , log loss, for g = CE
2
 the Brier score is used as the proper 

scoring rule for optimization. Columns 4–7 show accuracy, test decision, p value, and value of the test sta-
tistic for the average ensemble combination ( �

AVG
 ), and columns 8–11 for the learned convex combination 

(�∗)

DATA​ ARCH TYPE ERR �
AVG

�
∗

Acc H
0

p val ĝ Acc H
0

p val ĝ

CIFAR-10 ResNet-18 DE CE
KL

0.869 ¬REJ 1.000 0.259 0.873 ¬REJ 0.990 0.262
CE

2
0.869 ¬REJ 0.970 0.125 0.872 ¬REJ 0.950 0.121

DN(0.2) CE
KL

0.847 ¬REJ 0.810 0.293 0.848 ¬REJ 0.780 0.297
CE

2
0.847 ¬REJ 0.800 0.129 0.849 ¬REJ 0.760 0.295

DN(0.5) CE
KL

0.507 ¬REJ 0.800 0.330 0.507 ¬REJ 0.780 0.329
CE

2
0.507 ¬REJ 0.220 0.104 0.507 ¬REJ 0.350 0.106

VGG-19 DE CE
KL

0.900 ¬REJ 0.530 0.176 0.902 ¬REJ 0.420 0.166
CE

2
0.900 ¬REJ 0.150 0.079 0.901 ¬REJ 0.180 0.084

DN(0.2) CE
KL

0.903 REJ 0.000 0.134 0.903 REJ 0.000 0.133
CE

2
0.903 REJ 0.000 0.042 0.903 REJ 0.000 0.042

DN(0.5) CE
KL

0.899 REJ 0.000 0.131 0.896 REJ 0.000 0.129
CE

2
0.899 REJ 0.010 0.047 0.896 REJ 0.000 0.056

CIFAR-100 ResNet-18 DE CE
KL

0.586 ¬REJ 1.000 1.200 0.589 ¬REJ 1.000 1.203
CE

2
0.586 REJ 0.000 0.476 0.589 REJ 0.000 0.482

DN(0.2) CE
KL

0.264 ¬REJ 1.000 2.123 0.265 ¬REJ 1.000 2.126
CE

2
0.264 REJ 0.000 0.552 0.265 REJ 0.000 0.551

DN(0.5) CE
KL

0.352 ¬REJ 1.000 2.123 0.353 ¬REJ 1.000 2.136
CE

2
0.352 REJ 0.000 0.620 0.351 REJ 0.030 0.624

VGG-19 DE CE
KL

0.647 ¬REJ 0.510 0.925 0.648 ¬REJ 0.390 0.927
CE

2
0.647 REJ 0.000 0.347 0.647 REJ 0.000 0.346

DN(0.2) CE
KL

0.621 REJ 0.030 0.999 0.620 REJ 0.000 1.006
CE

2
0.621 REJ 0.020 0.343 0.620 REJ 0.020 0.343

DN(0.5) CE
KL

0.588 ¬REJ 0.210 1.282 0.587 ¬REJ 0.410 1.274
CE

2
0.588 REJ 0.010 0.417 0.587 REJ 0.010 0.416
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because the models were trained with a log-loss objective as proper scoring rule, which 
aligns more closely with KL-based calibration measures. In general, for the CIFAR-100 
dataset with more classes, the test rejects more often, and the dropout networks are less 
calibrated. In most cases, the learned convex combination �∗ leads to a slight increase in 
accuracy for the combined prediction f

�
∗.

5 � Discussion

We developed a novel statistical test for the calibration of epistemic uncertainty represen-
tations based on sets of probability distributions. It is defined on an instance-based level, 
thereby making the test more flexible. As calibration forms a necessary condition for valid-
ity, we claim that by testing for it, one can safely detect scenarios where the credal set is not 
valid. For this case, the next step to include would be actionability, i.e., ways to increase 
the size of the credal set to include at least one calibrated convex combination. Here, we 
model calibration as a property that applies across the entire instance space. Alternatively, 
calibration could be viewed as an instance-specific concept, allowing analysis in differ-
ent regions of the instance space. However, there has been limited research on this form 
of calibration, sometimes referred to as conditional or local calibration (Luo et al., 2022), 
and the challenge of partitioning the instance space in a way that enables the computation 
of expectations remains unresolved. Interesting future work includes the application of the 
test to other credal set representations such as interval-neural networks (Wang et al., 2025), 
credal sets based on relative log-likelihood (Löhr et al., 2025) and bootstrapped ensembles, 
as well as the analysis of the regression case.

Appendix A Estimator analysis

In this section we empirically analyse the distribution of the chosen calibration estimators 
and their behaviour with respect to the distance from the underlying ground truth probabil-
ity distribution. Figure 5 shows the distribution of the estimators under the null hypothesis. 
In the figure, we see that the mean of the estimators ĈE2 and ĈEKL is slightly above zero—
since they are only asymptotically unbiased—while ĈEMMD and ĈEk also empirically show 
their unbiasedness. The kernel calibration estimator ĈEk is symmetrically distributed 
around zero—its asymptotic normality was also shown by Widmann et al. (2019). As the 
estimators ĈEk and ĈEMMD can obtain negative values, we use their squared versions for 
the optimization in Eq. (16).

Figure 6 shows the values of different calibration estimators in dependence of the posi-
tion in the simplex, where the true underlying calibrated convex combination f

�
∗ is set with 

�
∗ = (0.1, 0.1, 0.8) , and the predictions are sampled from a Dirichlet distribution. We see 

that by optimizing over � , the true calibrated convex combination is learned differently 
“well enough”. However, �∗ still lies within a certain region of low estimator values. For 
ĈEk , we see in general more noisy behaviour in the region around the ground truth distri-
bution (red dot).

We also do a similar analysis in �-space: In Fig. 7, we show the value of the calibration 
estimators not in distance to the ground truth probability distribution, but the ground truth 
weight vector � ∈ Δ3 , given the predictions of two predictors {f (1)(x), f (2)(x), f (3)(x)} and a 
ground truth probability distribution f

�
∗ (x) = 0.1 ⋅ f (1)(x) + 0.1 ⋅ f (2)(x) + 0.8 ⋅ f (3)(x) , that 
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is �∗ = (0.1, 0, 1, 0.8)T . We see that here the heatmaps vary more significantly for the dif-
ferent calibration estimators.

Appendix B Non‑uniqueness of calibrated models

Using simple examples, we will show the non-uniqueness of calibrated convex combi-
nations, that is, that there are often many different (possibly instance-dependent) convex 
combinations leading to a calibrated predictor. Using a proposition proven by Vaicena-
vicius et al. (2019), which states that conditioning Y on any measurable function h yields a 
calibrated predictor, we show this with a concrete example.

Example 1  (Many calibrated classifiers) For the following, assume the case of having 3 
classes, i.e. Y = {1, 2, 3} . We have (Vaicenavicius et al. 2019, Proposition 1) for any meas-
urable function h ∶ X ↦ Z with Z being some measurable space, that the function

is a calibrated classifier. As an example, taking a constant h(x) = c ∈ ℝ∀x ∈ X  , the classi-
fier that simply predicts the marginal class probabilities

f (X) ∶= ℙ[Y ∈ ⋅|h(X)]

Fig. 5   Distributions of calibration error estimators under the null hypothesis. Histograms (with kernel 
density estimates) of the estimated calibration error g ∈ {ĈE2, ĈEKL, ĈEMMD, ĈEk} are shown. Predicted 
probabilities were sampled from a uniform Dirichlet distribution over three classes ( K = 3 ) and repeated 
N = 1000 times to simulate a perfectly calibrated model. Labels were sampled from the corresponding cat-
egorical distribution in D = 500 resampling steps. Vertical dashed black lines indicate the mean values of 
each statistic. Vertical dashed red lines indicate the 95% quantile of the empirical distribution
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is calibrated for Y = {1, 2, 3} . Further, if we take h ∶ X ↦ X  with h(x) = x , then

is also a calibrated classifier. To make this example more concrete, let X = {1, 2, 3} with 
ℙ(X = x) =

1

3
∀ x ∈ X  . Further let again Y = {1, 2, 3} and

f ≡

⎛⎜⎜⎝

ℙ(Y = 1)

ℙ(Y = 2)

ℙ(Y = 3)

⎞⎟⎟⎠

f � ≡

⎛⎜⎜⎝

ℙ(Y = 1�X)
ℙ(Y = 2�X)
ℙ(Y = 3�X)

⎞⎟⎟⎠

ℙ(Y = i|X = j) =

{
1, i = j

0, else

Fig. 6   Simple experiment that illustrates the behaviour of the calibration estimators for the case of a non-
instance-dependent underlying ground truth distribution. Log-transformed values of the empirical calibra-
tion error ĝ(f̂ ,D) where ĝ ∈ {�CEKL,

�CE2,
�CE

2

k
, �CEMMD}, in dependence of the (constant) predictor f̂  within 

the probability simplex, for the case of K = 3 classes. N = 2000 labels yi in D were generated from the 
ground truth categorical distribution, yi ∼ Cat(f ∗), i = 1,… , 2000 . Here, we set f ∗(x) ≡ (0.1, 0.1, 0.8)T 
constant for all x ∈ X  . The red point corresponds to f ∗ and represents the theoretical minimum of the cali-
bration error
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for i, j ∈ {1, 2, 3} . Then ℙ(Y = i) =
∑3

j=1
ℙ(Y = i�X = j)ℙ(X = j) =

1

3
 for i ∈ {1, 2, 3} , and

where ex denotes the x-th unit vector, are both calibrated predictors.

Going from the case of one single classifier, similarly, one can also show that there 
usually exists various calibrated convex combinations for a set of classifiers. The fol-
lowing example illustrates this for the simple case of binary classification.

Example 2  Let us look at a very simple problem of binary classification with Y = {1, 2} 
and X = {−1, 1} . Assume

f (x) ≡

⎛⎜⎜⎝

1∕3

1∕3

1∕3

⎞⎟⎟⎠
, f �(x) = ex

ℙ(Y = i|X = xj) =

{
1, (i, xj) ∈ {(1,−1), (2, 1)}

0, else,

Fig. 7   Heatmaps of the values of the chosen calibration estimators for a given location within the space 
of weights � ∈ Δ3 . The predictions f (i) ∈ {f (1), f (2), f (3)} are generated according to a Dirichlet distribution 
with parameters �j = 1 + �i=j ⋅ 10 for j ∈ {1, 2, 3}
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and ℙ(X = x) =
1

2
, x ∈ X  . Then the two classifiers

and

are both calibrated (which can easily be seen by Proposition 1 of Vaicenavicius et  al. 
(2019) and conditioning on h1(x) = c and h2(x) = x ). Further, they can be written as con-

vex combinations of the two classifiers m1(x) =

(
0

1

)
,∀x and m2(x) =

(
1

0

)
∀x using the 

two different convex combinations

and

Appendix C Validity of the proposed algorithm

In the following, we prove the asymptotic validity of the derived test.

Theorem  1  (Asymptotic validity of Algorithm  1) Let Dopt = {(xi, yi)}
n
i=1

 and 
Dval = {(x�

i
, y�

i
)}m

i=1
 be i.i.d. data generated from the underlying distribution ℙX,Y . Denote by

the weight function that is the risk minimizer of the empirical version of Eq. (16) evaluated 
at Dopt , where � is the (strictly) proper Brier score or log loss and ĝn is a consistent, differ-
entiable and (asymptotically) unbiased estimator of one of the calibration errors in Sect. 2. 

f1 ∶X → Δ2

x ↦

(
1

2
1

2

)
, x ∈ {−1, 1}

f2 ∶X → Δ2

x ↦

⎧
⎪⎨⎪⎩

�
1

0

�
, x = −1

�
0

1

�
, x = 1

�1 ∶X → Δ2

x ↦

⎧
⎪⎨⎪⎩

�
0

1

�
, x = −1

�
1

0

�
, x = 1

�2 ∶X → Δ2

x ↦

(
1

2
1

2

)
, x ∈ {−1, 1}.

�̂n ∈ argmin
Λ

1

n

n∑
i=1

�(fΛ(xi), yi) + 𝛾 �gn(fΛ,Dopt)
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Define tm,n ∶= ĝm(f�̂n ,Dval) the test statistic evaluated on the combined predictor, and let 
cm,D,𝛼 = F̂−1

m,D
(1 − 𝛼) be the (1 − �)-quantile of the empirical cumulative distribution func-

tion F̂m,D of the bootstrap replicates t0,1,… , t0,D generated by the consistency–resampling 
scheme of Vaicenavicius et al. (2019) (line 5 − 19 of Algorithm 1). Furthermore, assume 
that the set of predictors F = {f (1),… , f (M)} is such that the mapping � ↦ f

�
 is continu-

ous over X  and for the respective calibration function g all regularity conditions are ful-
filled such that f is calibrated if and only if g = 0 . Then Algorithm 1 rejects H0 whenever 
tm,n ≥ cm,D,� . Then, under H0,

Proof  In the following, we assume that the null hypothesis is true, i.e., there exists (at 
least) one underlying function � such that the combined predictor f

�
 is calibrated. 

1.	 Consistency: Because � is strictly proper, the population level risk in Eq. (16) is uniquely 
minimised by some �⋆∈ΔM,X with respective combined predictor f

�
⋆ . As the expecta-

tion of � can be decomposed into a calibration and refinement term, and g(f ) = 0 for 
any calibrated predictor f, we have that g(f

�
⋆ ) = 0.

	   By the arg-min consistency theorem (Thm. 5.7 of van der Vaart (2000)) it holds that 
the empirical risk minimizer converges to the population level one, i.e. ‖�̂n − �

⋆‖L1 → 0 
as n→∞ , and hence we have ‖f

�̂n
− f

�
∗‖L1 → 0.

2.	 Asymptotic distribution: Under the null hypothesis, for each of the calibration errors we 
have g(f

�
∗ ) = 0 . Further, taking the asymptotic behavior of U-statistics (van der Vaart, 

2000) into account, we have 
√
m ĝm(f�∗ ,Dval) → Z , m → ∞ , for some random variable 

with limiting distribution FZ . By Rubin’s theorem (see Theorem 7.9 in Dümbgen (2017)) 
it holds that 

√
m tm,n → Z , m, n → ∞.

3.	 Bootstrap validity: For sake of simplicity, set D = m . Under H0 , the consistency-boot-
strap (line 5 to 19 of Algorithm 1, Vaicenavicius et al. (2019)) guarantees that condition-
ally on the validation data set it holds that 

√
mcm,D,� → F−1

Z
(1 − �). This is because 

supt |F̂−1
m,D

(t) − F−1
tm,n

(t)| → 0 (compare to Section 23.2.1 in van der Vaart (2000)).
4.	 Control of Type 1 error: The convergence of the bootstrap quantile against the quantile of 

the limiting distribution implies �{tm,n ≥ cm,D,�} → �{Z ≥ F−1
Z
(1 − �)}. Taking expecta-

tions yields: ℙ(reject|H0) = ℙ(tm,n ≥ cm.B.�) → 1 − FZ(F
−1
Z
(1 − �)) = �.

	�  ◻

Appendix D Uniform sampling in the credal set

In the work of Mortier et al. (2023), a sampling within the polytope of convex combina-
tions of predictions is done by sampling weights � ∈ ΔM ∼ Dir(1,… , 1) . This however 
does in general not lead to a uniform sampling within the polytope, as is exemplary shown 
in Fig. 8. As soon as we have more than M = 3 predictors, the sampled predictions start 
“accumulating” in the centre of the simplex, due to the fact that there are more possible 
combinations in the centre than for the regions in the boundary. Possible ways to achieve 
uniform sampling is by using triangulization methods, rejection sampling or Markov Chain 

lim
m, n → ∞

D → ∞

ℙ(tm,n ≥ cm,D,�|H0) = �.
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Monte Carlo sampling methods, however, these methods come with increased computa-
tional effort.

Appendix E Experimental setup

In this section we explain the experimental setup for the experiments conducted in Sect. 4.

E.1 Synthetic data

For optimising the weights � in the synthetic experiments, we use an MLP with 3 hid-
den layers each consisting of 16 neurons that is trained on an optimization dataset of size 
Nopt = 400 . Both tests (the previous one proposed by Mortier et al. and ours) are performed 
on a validation set set of size Nval = 400 (Fig. 9).

For the case of binary classification, we draw {xi}Ni=1 ∼ U([0, 5]) , and generate pre-
dictions from two probabilistic predictors {f (1)(x), f (2)(x)} by sampling from a Gauss-
ian process with an rbf kernel, whose outputs are constrained to output probabili-
ties [0,  1], using min-max sclaing. Under H0 , we generate the probability for class 1, 
f ∗(x) = �∗ f (1)(x) + (1 − �∗) f (2)(x) with �∗ generated as

Fig. 8   Sampling example for K = 3 : The point predictions f (i)(x) are visualized as red dots on the corners 
and/or the inside of the 2-simplex. In (a) and (b), and (c) samples f

�1
,… , f

�n
 are generated by sampling the 

weights of the convex combination from the uniform Dirichlet distribution, �i ∼ Dir(1,… ,M) . In (d) and 
(e), an MCMC approach is used to uniformly sample in the polytope of convex combinations
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•	 H0,1 : �∗ is a constant and sampled as �∗ ∼ U(0, 1),
•	 H0,2 : �∗ ∶ X → [0, 1] is a polynomial of degree D. In the experiments, we set D = 2.

Under H1 , f ∗(x) lies outside the credal set with

•	 H1,1 : f ∗(x) lies at an �-distance to one of the boundaries of the credal set. We sample 
� ∼ U([0, 0.02]).

•	 H1,2 −H1,3 reflect increasing distance to the boundary by sampling a new GP that 
intentionally remains outside the credal set.

For the multi-class classification case, we again draw {xi}Ni=1 ∼ U([0, 5]) and gener-
ate the set of probabilistic predictors f (1),… , f (M)} as follows: For each xi , draw a prior 
p ∈ ℝ

K ∼ Dir(1,… , 1) , then sample f (m)(xi) ∼ Dir(
p⋅K

0.5
) . Under H0 , the weight function �∗ 

is generated as

•	 H0,1 : �∗ ∼ Dir(1,… , 1)
•	 H0,2 : �∗ = (�∗

1
,… , �∗

M
) with �∗

m
∶ X → [0, 1] ; the components of �∗ are randomly gen-

erated and scaled polynomials of degree D = 2.

Under H1 , f c(x) is randomly chosen as one of the corners of the simplex, outside of the 
convex set. f ∗(x) is then given by the point prediction on the line segment between f c(x) 
and the boundary point f b(x) in the credal set, f ∗(x)(x) = �f c(x) + (1 − �) f b(x) , with

•	 H0,1 : � = 0.01,
•	 H0,2 : � = 0.1,
•	 H0,3 : � = 0.2.

In both settings, the labels {(yi)}Ni=1 are then sampled from the resulting categorical distri-
bution with parameter f ∗(xi).

Fig. 9   1-simplex spanned by the ensemble members {f (1), f (2)} (grey) that are generated according to the 
binary classification setting as described in Sect.  4.1, and the underlying ground truth calibrated predic-
tions for test cases H0,1 - H1,3 described in Sect. 4.1 (left). In the right graphic, the respective weights of the 
underlying convex combination for the cases H0,1 (constant) and H0,2 (instant-dependent polynomial) are 
visualised as a function of the instance space
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E.2 Real data

Here we provide details on the data preprocessing, model architectures, hyper-parameters, 
and calibration-test implementation used in the real-world experiments.

Data splitting: We split the data into training set, (used to train the ensembles), valida-
tion and test set. The validation set together with the predictions of the models are then 
used to optimise for �∗ , and the test is performed on the test data.

•	 CIFAR-10: 50000 training, 5000 validation and 5000 test samples,
•	 CIFAR-100: 60000 training, 5000 validation and 5000 test samples.

Models: We use the following training parameters to train the deep ensemble and dropout 
models, in order to obtain the credal set of predictions:

•	 adam optimizer with lr = 0.001,
•	 loss function: cross-entropy (log loss)
•	 batch size: 128
•	 number of epochs: 50
•	 early stopping: monitor validation loss, stop if does not decrease for patience = 10 

epochs.

Optimization of weights: We concatenate a small MLP consisting of 3 hidden layers and 
32 neurons to the same VGG-19/ResNet-18 architecture that has been used for learning the 
prediction sets. For optimization, we use the combined loss as in (16) with

•	 log loss and ĈEKL with � = 0.01 for testing CEKL

•	 Brier score and ĈE2 with � = 0.01 for testing CE2.

As optimisation parameters, we use a learning rate lr = 0.0001 , a batch size = 256 , the 
adam optimizer and train the neural network for 200 epochs.
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