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In today’s data-driven world, the proliferation of publicly available information raises security 
concerns due to the information leakage (IL) problem. IL involves unintentionally exposing 
sensitive information to unauthorized parties via observable system information. Conventional 
statistical approaches rely on estimating mutual information (MI) between observable and secret 
information for detecting ILs, face challenges of the curse of dimensionality, convergence, 
computational complexity, and MI misestimation. Though effective, emerging supervised machine 
learning based approaches to detect ILs are limited to the binary system, sensitive information, 
and lacks a comprehensive framework. To address these limitations, we establish a theoretical 
framework using statistical learning theory and information theory to quantify and detect IL 
accurately. Using automated machine learning, we demonstrate that MI can be accurately 
estimated by approximating the typically unknown Bayes predictor’s Log-Loss and accuracy. 
Based on this, we show how MI can effectively be estimated to detect ILs. Our method performs 
superior to state-of-the-art baselines in an empirical study considering synthetic and real-world 
OpenSSL TLS server datasets.

1. Introduction

The rapid proliferation of publicly available data, coupled with the increasing use of Internet of Things (IoT) technologies in 
today’s data-driven world, has magnified the challenge of IL, posing substantial risks to system security and confidentiality [1]. IL 
occurs when sensitive or confidential information is inadvertently exposed to unauthorized individuals through observable system 
information [2]. This can lead to severe consequences, ranging from potential electrical blackouts to the theft of critical information 
like medical records and military secrets, making the efficient detection and quantification of IL of paramount importance [2,3]. 
According to information theory, quantifying IL typically involves estimating MI between observable and secret information [4]. 
Despite being a pivotal measure, MI is difficult to compute for high-dimensional data, facing challenges such as the curse of di

mensionality, convergence, and computational complexity [5]. Traditional statistical estimation methods often struggle with all of 
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these challenges, while more recent robust non-parametric approaches with improved convergence rates still find high-dimensional 
scenarios challenging [6].

In recent years, machine learning (ML) techniques have gained popularity in information leakage detection (ILD), particularly 
for performing side-channel attacks (SCAs) on cryptographic systems [7]. These systems release the observable information via many 
modes called the side-channels, such as network messages, CPU caches, power consumption, or electromagnetic radiation, which 
are exploited by SCAs to reveal secret inputs (secret keys, plaintexts), potentially rendering cryptographic protections ineffective 
[8,2]. Therefore, detecting the existence of a side-channel is equivalent to uncovering IL [2]. In this field, the most relevant literature 
uses ML to perform SCAs rather than preventing side-channels through early detection of ILs [2]. Current ML-based methods in this 
realm detect side-channels to prevent SCAs and protect the system on both algorithmic and hardware levels [8]. These approaches 
leverage observable information to classify systems as vulnerable (with IL) or non-vulnerable (without IL) [9]. They extract observable 
information from secure systems, categorizing them as non-vulnerable (labeled 0), then introduce known ILs to categorize them as 
vulnerable (labeled 1), creating a classification dataset for the learning model. However, this approach is limited to domain-specific 
scenarios and cannot be easily transferred to detect other unknown leakages [9].

Recent promising ML-based methods proposed for estimating MI within classification datasets grapple with challenges related 
to convergence and computational complexity [10], and others may underestimate MI or miss specific subclasses of IL [11]. Recent 
advancements have demonstrated the effectiveness of ML-based techniques in directly detecting IL by analyzing the accuracy of the 
supervised learning models on extracted system data [8]. Yet, these methods exhibit limitations in handling imbalanced and noisy 
real-world datasets, commonly encountered in practical scenarios, and tend to miss ILs by producing false negatives [12,13].

To address these limitations, in our prior work, we proposed utilizing binary classifiers integrated with Fisher’s exact test (FET) and 
paired t-test (PTT) statistical tests to account for imbalance [14]. Despite its merits, this approach is limited to binary classification 
tasks and needs a comprehensive theoretical framework [14].

Our contributions We address these shortcomings with the following contributions:

• A novel ILD framework with a generalized LAS metric to assess ILs accurately.

• MI estimators approximating Bayes’ performance via automated machine learning.

• Bayes’ performance in terms of Log-Loss is used to address the data imbalance.

• ILD by thresholding on MI with Holm-Bonferroni correction for robust detection.

• Empirical study of ILD approaches vs. baselines to counter Bleichenbacher SCA.

2. Information leakage detection problem

In this section, we formalize the ILD task of categorizing a system as vulnerable or non-vulnerable using the proposed generalized 
leakage assessment score (LAS) measure to quantify IL, subsequently used to detect IL in the system. LAS is evaluated by comparing 
the (approximate) performance of the Bayes predictor and marginal Bayes predictor; when using log-loss, it reduces to MI, a standard 
measure for IL quantification. We also briefly introduce the concepts of Bayes predictor and MI, with details of statistical learning 
theory using the notations defined in Table A.4.

2.1. Formal setting

ILD aims to identify unintended disclosure of secret information through observable information of the system. The ILD algorithm 
analyzes the system dataset  = {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂ × ,𝑁 ∈ℕ, where  =ℝ𝑑 represents observable information and  = [𝐶] represents 
secret information as categorical classes. The goal is to labels  with 1 indicating IL and 0 its absence, denoted by mapping 𝐿 as

𝐿 ∶
⋃
𝑁∈ℕ

( ×)𝑁 → {0,1} ,

which takes a dataset  of any size as input and outputs the decision on the presence of IL in the system. The ILD approach produces 
the mapping 𝐿̂ and predicts ILs in the given system. Let  = {(𝑖, 𝑧𝑖)}

𝑁𝐿

𝑖=1 be an IL-Dataset, such that 𝑁𝐿 ∈ ℕ, 𝑧𝑖 ∈ {0,1} and 𝒛 =
(𝑧1,… , 𝑧𝑁𝐿

) be the ground truth vector generated by 𝐿. The predicted ILs produced by 𝐿̂ are denoted as the vector 𝒛̂ = (𝑧̂1,… , 𝑧̂𝑁𝐿
), 

such that 𝑧̂𝑖 = 𝐿̂(𝑖). The performance of an ILD approach (𝐿̂) is measured using classification metrics (m(⋅)(𝒛, 𝒛̂)) (cf. Appendix A.2.1).

2.2. Fundamentals

We briefly introduce the concepts of Bayes predictor and MI, including the details of the classification problem.

2.2.1. Mutual information

Mutual information (MI) measures the extent to which knowledge of one random variable informs about another, quantifying 
their dependence degree [15]. Consider a pair of random variables 𝑋 and 𝑌 with joint distribution 𝑝(𝑋,𝑌 )(⋅) on  × . We assume 
that 𝑋 is a continuous 𝑑-dimensional real-valued random variable ( = ℝ𝑑 ), and 𝑌 is a discrete random variable with 𝐶 possible 
values—as in the IL scenario relevant to us [4]. Let the measure 𝑃 induces a marginal probability density function (PDF) on  and 
 denoted by 𝑝𝑋 (⋅) and 𝑝𝑌 (⋅) of the joint distribution 𝑝(𝑋,𝑌 )(⋅), which induces the conditional distributions 𝑝𝑌 |𝑋 (⋅) and 𝑝𝑋|𝑌 (⋅).
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The entropy of a discrete random variable 𝑌 is defined as

𝐻(𝑌 ) = −
∑
𝑦∈

𝑝𝑌 (𝑦) log(𝑝𝑌 (𝑦)) , (1)

where 0 log(0) = 0 by definition. It reaches the maximum value of log(𝐶) when outcomes are equally likely (𝑝𝑌 (𝑦) = 1∕𝐶,∀𝑦 ∈ [𝐶]), 
indicating complete uncertainty of the outcome. The minimum value of 0 occurs in the case of a Dirac measure when only one 
outcome is certain, i.e., 𝑝𝑌 (𝑦) = 0,∀𝑦 ∈ [𝐶] ⧵ 𝑐, 𝑝𝑌 (𝑐) = 1.

The conditional entropy of 𝑌 given 𝑋 is defined as

𝐻(𝑌 | 𝑋) = − ∫
𝒙∈

𝑝𝑋 (𝒙)
∑
𝑦∈

𝑝𝑌 |𝑋 (𝑦 | 𝒙) log(𝑝𝑌 |𝑋 (𝑦 | 𝒙)) d𝒙 .
Conditional entropy measures the residual uncertainty in one random variable 𝑌 given knowledge of the other 𝑋 �- more specifically, 
it measures the expected residual uncertainty, with the expectation taken with respect to the marginal distribution of 𝑌 . It reaches 
its maximum value of 𝐻(𝑌 ), when 𝑋 does not inform about 𝑌 , i.e., 𝐻(𝑌 | 𝒙) = 𝑝𝑌 (⋅),∀𝒙 ∈  , and the minimum entropy of 0 occurs 
when 𝑋 completely determines 𝑌 and again all conditionals 𝑝𝑌 |𝑋 (⋅ | 𝒙) are Dirac distributions.

MI measures the reduction of uncertainty about variable 𝑌 by observing variable 𝑋:

𝐼(𝑋;𝑌 ) =𝐻(𝑌 ) −𝐻(𝑌 | 𝑋) . (2)

Plugging in the expressions for (conditional) entropy and rearranging terms shows that MI equals the Kullback-Leibler (KL) divergence 
of the joint distribution 𝑝(𝑋,𝑌 )(⋅) from the product of the marginals (i.e., the joint distribution under the assumption of independence):

𝐼(𝑋;𝑌 ) =𝐻(𝑌 ) −𝐻(𝑌 | 𝑋)

= ∫
𝒙∈

∑
𝑦∈

𝑝(𝑋,𝑌 )(𝒙, 𝑦) log
(

𝑝(𝑋,𝑌 )(𝒙, 𝑦) 
𝑝𝑋 (𝒙) ⋅ 𝑝𝑌 (𝑦)

)
𝑑𝒙 . (3)

MI is a symmetric measure ranging from 0 to min({𝐻(𝑋),𝐻(𝑌 )}), where 0 indicates independence and the maximum value signifies 
full dependence [15]. In this paper, MI is measured in bits using base-2 logarithms (log(⋅)).

2.2.2. Classification problem

In the realm of classification, the learning algorithm (learner) is provided with a training dataset  = {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂  × of size 
𝑁 ∈ℕ, where  =ℝ𝑑 is the input (instance) space and  = {1,2,… ,𝐶} = [𝐶], 𝐶 ∈ℕ the output (categorical classes) space [16], and 
the (𝒙𝑖, 𝑦𝑖) are assumed to be independent and identically distributed (i.i.d.) according to 𝑝(𝑋,𝑌 )(⋅). The primary goal of the learner 
in standard classification is to induce a hypothesis ℎ ∶  → , ℎ ∈, with low generalization error (risk)

𝑅(ℎ) = 𝔼[𝓁(𝑦,ℎ(𝒙))] = ∫
×

𝓁(𝑦,ℎ(𝒙)) 𝑑 𝑝(𝑋,𝑌 )(𝒙, 𝑦) , (4)

where  is the underlying hypothesis space, 𝓁∶  × →ℝ is a loss function, and 𝑝(𝑋,𝑌 )(⋅) is the joint probability measure modeling 
the underlying data-generating process. The risk minimizer defined as ℎ∗ = arg minℎ∈ 𝑅(ℎ), achieves the minimum expected loss 
𝔼[𝓁(⋅)] in terms of the loss function 𝓁 across the entire joint distribution 𝑝(𝑋,𝑌 )(⋅). The 0-1 loss defined as 𝓁01(𝑦, 𝑦̂) ∶= �𝑦̂ ≠ 𝑦�, is 
commonly used in standard classification. In practice, the 𝑝(𝑋,𝑌 )(𝒙, 𝑦) is not directly observed by the learner, so minimizing the 
risk (4) is not feasible. Instead, learning in a standard classification setting is commonly accomplished by minimizing (a regularized 
version of) empirical risk for ℎ:

𝑅emp(ℎ) =
1 
𝑁

𝑁∑
𝑖=1 

𝓁(𝑦𝑖, ℎ(𝒙𝑖)) . (5)

In the subsequent discussions, we denote by 𝑔 = arg minℎ∈ 𝑅emp(ℎ) the (learned) hypothesis that minimizes (5), i.e., the empirical 
risk minimizer, which in principle is the best possible approximation (empirical estimation) ℎ∗ and is an approximation thereof [16].

Probabilistic classification Distinct from standard classifiers, probabilistic classifiers focus on estimating the (conditional) class proba

bilities 𝑝𝑌 |𝑋 (𝑦 | 𝒙) for each class 𝑦 in  , for a given input instance 𝒙 ∈  . We denote predictions of that kind by 𝑝̂𝑌 |𝑋 (𝑦 | 𝒙). As before, 
training data comes in the form  = {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂  × , where the (𝒙𝑖, 𝑦𝑖) are i.i.d. according to 𝑝(𝑋,𝑌 )(⋅), and the goal to induce a 
hypothesis ℎ𝑝 ∶  → ℙ() with low generalization error (risk):

𝑅𝑝(ℎ𝑝) = 𝔼[𝓁𝑝(𝑦,ℎ𝑝(𝒙))] = ∫
×

𝓁𝑝(𝑦,ℎ𝑝(𝒙)) 𝑑 𝑝(𝑋,𝑌 )(𝒙, 𝑦) .

Now, however, instead of comparing a predicted class 𝑦̂ with a true class 𝑦, the loss 𝓁𝑝 compares a predicted probability distribution 
with 𝑦�- thus, the loss is a mapping 𝓁𝑝 ∶  ×ℙ()→ℝ, where ℙ() denotes the set of probability mass functions (PMFs) on  . The 
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most commonly used loss function 𝓁𝑝(⋅) is the categorical cross-entropy (CCE), defined as 𝓁CCE(𝑦, 𝒑̂) ∶= − ln(𝑝̂𝑦) [17, chap. 4]. The 
CCE loss is a proper scoring rule widely recognized for its information-theoretic interpretations and practical effectiveness [18].

Since  is finite and consists of 𝐶 classes, ℙ() can be represented by the (𝐶 − 1)-simplex, i.e., predictions can be represented 
as probability vectors ℎ𝑝(𝒙) = 𝒑̂ = (𝑝̂1,… , 𝑝̂𝐶 ), where 𝑝̂𝑐 = 𝒑̂[𝑐] = 𝑝̂𝑌 |𝑋 (𝑐 | 𝒙) is the probability assigned to class 𝑐. Typically, learning 
predictors of that kind involves minimizing the empirical risk

𝑅emp|𝑝(ℎ𝑝) = 1 
𝑁

𝑁∑
𝑖=1 

𝓁𝑝(𝑦𝑖, ℎ𝑝(𝒙𝑖)) . (6)

In the subsequent discussions, we denote the empirical risk minimizer by 𝑔𝑝 = arg minℎ𝑝∈𝑝
𝑅emp|𝑝(ℎ𝑝) [16,17, chap. 4]. In the case 

where 𝑌 is independent of 𝑋, the marginal Bayes predictor or marginal classifier (denoted by 𝑔mc
𝑝 ) is again the best constant proba

bility predictor, i.e., the one with the lowest risk (6) among all constant predictors. Obviously, a probabilistic prediction can be used 
deterministically by selecting the class with the highest predicted probability: 𝑦̂ = arg max𝑦∈ 𝑝̂𝑌 |𝑋 (𝑦 | 𝒙) to induce a deterministic 
classifier 𝑔. This approach minimizes the standard 0-1 loss on average, emphasizing the importance of accurately identifying the most 
probable class for optimal performance [17, chap. 4].

2.2.3. Bayes-optimal predictor

In statistical learning theory, the Bayes predictor is the optimal classification function 𝑔b ∶  → , which minimizes expected risk 
(4) for a given loss function 𝓁(⋅) ∶  × →ℝ:

𝑔b(𝒙) = arg min
𝑦̂∈ 

∑
𝑦∈

𝓁(𝑦, 𝑦̂) ⋅ 𝑝𝑌 |𝑋 (𝑦 | 𝒙) = arg min
𝑦̂∈ 

𝔼𝑦[𝓁(𝑦, 𝑦̂) | 𝒙] ,
where 𝔼𝑦[𝓁] is the expected loss of prediction 𝑦̂ for 𝑦 ∈  , and 𝑝𝑌 |𝑋 (𝑦 | 𝒙) is the (conditional) class 𝑦 probability for input 𝒙 [19]. 
For 0-1 loss, it simplifies to:

𝑔bc(𝒙) = arg max
𝑦∈ 

𝑝𝑌 |𝑋 (𝑦 | 𝒙) . (7)

It produces the minimum expected loss, known as Bayes error rate, denoted by mErr (𝑔bc). When  and  are independent of each 
other, i.e., 𝑝𝑌 |𝑋 (𝑦 | 𝒙) = 𝑝𝑌 (𝑦),∀𝒙 ∈  , it reduces to the marginal Bayes predictor:

𝑔bc(𝒙) ≡ 𝑔mc(𝒙) ≡ arg max
𝑦∈ 

𝑝𝑌 (𝑦) . (8)

It assigns to each input 𝒙 a class label from the set of labels with the highest marginal probability, as input features are completely 
uninformative. Formally, as the maximum in (8) is not necessarily unique, the marginal Bayes predictor may pick any label with the 
highest probability �- in that case, we nevertheless assume that it picks the same label for every 𝒙, so that it is a constant function.

2.3. Quantifying and detecting information leakage

IL occurs when observable information (𝒙 ∈  , represented by 𝑋) is correlated with secret information (𝑦 ∈  , represented by 
𝑌 ), allowing inference of 𝑦 from 𝒙 [1,4]. To quantify IL, we introduce LAS 𝛿(⋅), evaluating the difference in average penalties of 
marginal Bayes predictor and Bayes predictor using loss functions (𝓁(⋅)) or metrics (m(⋅)):

𝛿(m(⋅)) = |m(⋅)(𝑔mc) − m(⋅)(𝑔bc)|, 𝛿(𝓁(⋅)) = 𝓁(⋅)(𝑔mc) − 𝓁(⋅)(𝑔bc) ,

where |⋅| is used to avoid negative values for accuracy measures. When using loss function as log-loss, LAS is equal to MI, i.e., 
𝛿(𝓁𝑙𝑙) = 𝐼(𝑋;𝑌 ) = 𝔼[𝓁𝑙𝑙(𝑔mc)] − 𝔼[𝓁𝑙𝑙(𝑔bc)] and Bayes error rate (mErr (𝑔bc)) bounds the MI, which serves as the foundation for our 
Log-Loss and Mid-Point estimation approaches, respectively, as discussed in Section 3.1.

In practice, since 𝑝(𝑋,𝑌 )(.) is seldom observed, we approximate LAS using empirical risk minimizers (𝑔𝑝 or 𝑔) as proxies for Bayes 
predictor and 𝑔mc

𝑝 for marginal Bayes predictor:

𝛿(m(⋅)) ≊ |m(⋅)(𝑔mc
𝑝 ) − m(⋅)(𝑔)|, 𝛿(𝓁(⋅)) ≊ 𝓁(⋅)(𝑔mc

𝑝 ) − 𝓁(⋅)(𝑔𝑝) .

For losses evaluated using (conditional) class probabilities, 𝑔𝑝 minimizing (6) is used as a proxy for the Bayes predictor. However, 
for decision-based classification losses, 𝑔 minimizing (5) or the decision rule of 𝑔𝑝 is used, with 𝑔 being a better proxy for error rate 
or accuracy measure.

IL detection IL occurs if LAS is significantly greater than 0, i.e., 𝛿(m(⋅))≫ 0 or 𝛿(𝓁(⋅))≫ 0. Thus, ILD involves analyzing the learnability 
of empirical risk minimizers (𝑔𝑝 or 𝑔) on the dataset  used for the system. Our prior work [14] introduced classification-based ILD 
approaches using an average error rate (0-1 loss) to quantify and detect IL by analyzing 𝛿(mErr) and 𝛿(mCM) using PTT and FET, 
respectively. We also propose MI-based ILD approaches using the one-sample t-test (OTT) on MI estimates, with Cal Log-Loss 
effectively detecting IL in OpenSSL TLS servers (cf. Section 4.3).
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Fig. 1. Bounding MI (y-axis) with respect to Bayes error rate (x-axis) for a balanced and imbalanced binary classification dataset with 30 % of minority classes (class 
imbalance level 𝑟 = 0.3). The upper bound 𝐹𝑢(⋅) is derived using 𝐻𝑙(⋅) by Hellman and Raviv [23] and the lower bound 𝐹𝑙(⋅) is defined using the upper bound 𝐻𝑢(⋅)
derived by Fano [24]. The gray lines represent the case of no IL, where the Bayes-optimal predictor converges to the marginal Bayes predictor.

3. Mutual information estimation

This section introduces two methods for estimating MI in classification datasets. We compare their performance on synthetic 
datasets against state-of-the-art approaches including mutual information neural estimation (MINE) [20], Gaussian mixture model 
(GMM) [21], and PC-Softmax [11]. While MINE and GMM do not explicitly handle imbalance—MINE which was initially proposed 
to estimate MI for two real-valued vectors, the classes are binary encoded to estimate MI and have already been proposed to assess 
IL, and GMM fits per-class Gaussians, which are widely used state-of-the-art approaches [10]. In contrast, PC-Softmax addresses 
class imbalance by incorporating label frequency to modify CCE loss function to propose probability-corrected softmax (PC-softmax) 
to estimate MI considering the 𝑝𝑌 (𝑌 ), making it a fair and relevant baseline for comparison with Log-Loss [11]. We describe the 
experimental setup, including the configuration of datasets generated by simulated systems using the multivariate normal (MVN) 
distribution and evaluation metrics, and summarize the results in Section 3.3. Our results demonstrate the superior performance of 
our proposed methods for estimating MI.

3.1. Our approaches

We introduce two methods for estimating MI in classification datasets called Log-Loss, which explicitly targets imbalanced 
datasets, and Mid-Point, which estimates MI using only model accuracy, rather than relying solely on standard statistical methods.

3.1.1. Mid-point estimation

The Mid-Point approach estimates MI by leveraging the relationship between Bayes error rate mErr (𝑔bc) and the conditional 
entropy 𝐻(𝑌 | 𝑋) for a classification task [22]. The MI is estimated using the empirical risk minimizer 𝑔 of (5) to approximate the 
Bayes error rate.

The conditional entropy 𝐻(𝑌 | 𝑋) is bounded as

𝐻𝑙(mErr (𝑔bc),𝐶) ≤𝐻(𝑌 | 𝑋) ≤𝐻𝑢(mErr (𝑔bc),𝐶) 

𝐻𝑙(mErr (𝑔bc),𝐶) = log(𝑐) + 𝑐(𝑐 + 1)
(
log

(
𝑐 + 1
𝑐

))(
mErr (𝑔bc) − 𝑐 − 1

𝑐

)
𝐻𝑢(mErr (𝑔bc),𝐶) =𝐻2(mErr (𝑔bc)) + mErr (𝑔bc) ⋅ log(𝐶 − 1) ,

where 𝐻𝑙(⋅) derived by Hellman and Raviv [23] is valid for 1 
𝑐+1 ≤ 1−mErr (𝑔bc) ≤ 1

𝑐
, 𝑐 = 1,… ,𝐶 −1 and 𝐻𝑢(⋅) derived by Fano [24]

uses the binary cross-entropy function, 𝐻2(𝑎) = −𝑎 log(𝑎) − (1 − 𝑎) log(1 − 𝑎).
Plugging in 𝐻𝑙(⋅) and 𝐻𝑢(⋅) in (2), the bounds on MI the lower bound 𝐹𝑙(⋅) and the upper bound 𝐹𝑢(⋅) with respect to Bayes error 
rate and the number of classes 𝐶 is derived as

𝐻(𝑌 ) −𝐻𝑢(mErr (𝑔bc),𝐶) ≤ 𝐼(𝑋;𝑌 ) ≤𝐻(𝑌 ) −𝐻𝑙(mErr (𝑔bc),𝐶)

𝐹𝑙(mErr (𝑔bc),𝐶) ≤ 𝐼(𝑋;𝑌 ) ≤ 𝐹𝑢(mErr (, )𝑔bc,𝐶).

MI is estimated as

𝐼(𝑋;𝑌 ) ≊
𝐹𝑢(mErr (𝑔),𝐶) + 𝐹𝑙(mErr (𝑔),𝐶)

2 
, (9)

where 𝑔 is the empirical risk minimizer of (5) and serves as a proxy of the Bayes predictor, as mErr (𝑔bc) ≊ mErr (𝑔) (Fig. 1).
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Overestimation in imbalanced data To illustrate the issue of MI overestimation by the Mid-Point approach—leading to false positives 
in IL detection—we visualize MI estimated using Mid-Point in a non-vulnerable system that generates imbalanced binary classification 
data with a class imbalance level of 30% (𝑟 = 0.3, defined in Appendix A.1.1) in Fig. 1. The non-vulnerable system corresponds to 
the condition where the Bayes-optimal predictor converges to the marginal Bayes predictor, as discussed in Section 2.3. While Zhao 
et al. [25] relates metrics like balanced error rate (BER) to the conditional entropy 𝐻(𝑌 | 𝑋) in binary classification, such relationships 
do not extend naturally to the multi-class case.

3.1.2. Log-Loss estimation

We propose the Log-Loss approach for MI estimation to address the overestimation and false positives of the Mid-Point approach 
and the false negatives of baseline ILD approaches. This approach uses the empirical risk minimizer 𝑔𝑝 minimizing (6) to approximate 
the log-loss of the Bayes predictor.

The MI between 𝑋 and 𝑌 in (2) is defined as

𝐼(𝑋;𝑌 ) = −𝐻(𝑌 | 𝑋) +𝐻(𝑌 )

= ∫
𝒙∈

𝑝𝑋 (𝒙)
∑
𝑦∈

𝑝𝑌 |𝑋 (𝑦 | 𝒙) log (𝑝𝑌 |𝑋 (𝑦 | 𝒙))𝑑𝒙−
∑
𝑦∈

𝑝𝑌 (𝑦) log
(
𝑝𝑌 (𝑦)

)
= −𝔼[𝓁𝑙𝑙(𝑔bc)] + 𝔼[𝓁𝑙𝑙(𝑔mc)] ≊ −𝔼[𝓁𝑙𝑙(𝑔𝑝)] + 𝔼[𝓁𝑙𝑙(𝑔mc

𝑝 )] ,

where 𝔼[𝓁𝑙𝑙(⋅)] represents the expected log-loss. The conditional entropy 𝐻(𝑌 | 𝑋) equals the expected log-loss of the Bayes predictor 
𝑔bc, while the entropy of 𝑌 corresponds to the expected log-loss of the marginal Bayes predictor 𝑔mc, reaffirming MI as a special case 
of LAS (cf. Section 2.3).

Log-loss For probabilistic classifiers 𝑔𝑝, CCE is used to obtain estimated conditional class probabilities, forming a vector 𝒑̂ =
(𝑝̂1,… , 𝑝̂𝐶 ) for each input 𝒙. The log-loss for 𝑔𝑝 is defined in Bishop [17, chap. 4] as

𝓁𝑙𝑙(𝑦, 𝒑̂) = −
𝐶∑
𝑐=1 

𝑝̂𝑐 log(𝑝̂𝑐) = −
𝐶∑
𝑐=1 

𝑔𝑝(𝒙)[𝑐] log(𝑔𝑝(𝒙)[𝑐]) .

It reaches its minimum value of 0 when one class dominates, i.e., 𝑝̂𝑐 ≊ 1 and 𝑝̂𝑗 ≊ 0 for all 𝑗 ∈ [𝐶] ⧵ {𝑐}, and its maximum log(𝐶)
when class probabilities are uniform, i.e., 𝑝̂𝑐 = 1∕𝐶 for all 𝑐 ∈ [𝐶], implying that high classification uncertainty increases the log-loss, 
making it suitable for estimating the conditional entropy 𝐻(𝑌 | 𝑋).

Marginal Bayes predictor It is estimated from the class distribution in the dataset  = {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 using (6) and is denoted by 𝑔mc
𝑝 . 

The class probabilities for each input 𝒙 are 𝑔mc
𝑝 (𝒙) = 𝒑̂𝑚𝑐 = (𝑝̂1,… , 𝑝̂𝐶 ), where 𝑝̂𝑐 =

|{(𝒙𝑖 ,𝑦𝑖)∈ | 𝑦𝑖=𝑐}||| is the fraction of instances for 
class 𝑐. The log-loss of the marginal Bayes predictor suitably estimates the entropy of 𝑌 , i.e., 𝐻(𝑌 ) ≊ 𝓁𝑙𝑙(𝑦, 𝒑̂𝑚𝑐), ranging from 0 to 
log(𝐶), with the maximum acquired for a balanced dataset.

MI estimation We approximate the expected log-loss of the Bayes predictor and marginal Bayes predictor by evaluating the log-loss 
of 𝑔𝑝 and 𝑔mc

𝑝 for the dataset  = {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 as

𝔼[𝓁𝑙𝑙(𝑔𝑝)] =
1 
𝑁

𝑁∑
𝑖=1 

𝓁𝑙𝑙(𝑦𝑖, 𝑔𝑝(𝒙𝑖)) = − 1 
𝑁

𝑁∑
𝑖=1 

𝐶∑
𝑐=1 

𝑔𝑝(𝒙𝑖)[𝑐] log(𝑔𝑝(𝒙𝑖)[𝑐])

𝔼[𝓁𝑙𝑙(𝑔mc
𝑝 )] = 1 

𝑁

𝑁∑
𝑖=1 

𝓁𝑙𝑙(𝑦𝑖, 𝑔mc
𝑝 (𝒙𝑖)) = −

𝐶∑
𝑐=1 

𝒑̂𝑚𝑐[𝑐] log(𝒑̂𝑚𝑐[𝑐]).

The MI is then estimated as

𝐼(𝑋;𝑌 ) ≊
𝐶∑
𝑐=1 

(
1 
𝑁

𝑁∑
𝑖=1 

𝑔𝑝(𝒙𝑖)[𝑐] log(𝑔𝑝(𝒙𝑖)[𝑐]) − 𝒑̂𝑚𝑐[𝑐] log(𝒑̂𝑚𝑐[𝑐])

)
. (10)

Classifier calibration Despite the sound theoretical grounding of the proper scoring rule loss function, CCE often yields poorly cali

brated probabilities in practice, with neural networks tending to be overconfident, especially on imbalanced datasets [26]. Post-hoc 
calibration techniques address this by learning mappings from predicted to improved probabilities using validation data [27]. To 
enhance Log-Loss estimation accuracy, we employ calibration techniques like Isotonic Regression (IR Cal Log-Loss), Platt’s Scaling 
(PS Cal Log-Loss), Beta Calibration (Beta Cal Log-Loss), Temperature Scaling (TS Cal Log-Loss), and Histogram Binning (HB 
Cal Log-Loss), referred collectively as Cal Log-Loss [27]. These calibration techniques are pivotal for enhancing Log-Loss, and 
enabling accurate MI estimation—thereby avoiding the false positives often observed with the Mid-Point approach.
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Table 1
Overview of the synthetic datasets for MI estimation experiments.

MVN Perturbation & MVN Proximity Synthetic Datasets 
Dataset Type Generation Method (𝗀𝑟) Input Dimensions (𝑑) Classes (𝐶) Noise Level (𝜖) Class Imbalance (𝑟) 

Balanced NA {2, 4, . . . , 20} {2, 4, . . . , 10} {0.0, 0.1, . . . , 1.0} NA 
Imbalanced Binary-class Minority 5 2 {0.0, 0.1, . . . , 1.0} {0.05, 0.1, . . . , 0.5} 
Imbalanced Multi-class Minority, Majority 5 5 {0.0, 0.1, . . . , 1.0} {0.02, 0.04, . . . , 0.2} 

Fig. 2. Visualization of three-class synthetic datasets in 2-D space, generated using MVN perturbation and proximity-based techniques to simulate vulnerable systems 
(𝜖 = 0, 0.5) and a non-vulnerable system (𝜖 = 1.0).

3.2. Empirical evaluation

This section outlines the evaluation process for our MI estimation methods compared to baselines, as illustrated in Fig. 4. Our 
goal is to assess the generalization capabilities of these approaches under various conditions, including the number of classes (𝐶), 
input dimensions (𝑑), class imbalance (𝑟), and noise level (𝜖), using datasets generated by systems with different configurations 
(𝗀𝑟,𝐶, 𝑑, 𝑟, 𝜖) outlined in Table 1. Overall and generalization performance results are discussed in Section 3.3.

3.2.1. Synthetic datasets

To evaluate our MI estimation methods, we generated synthetic datasets by simulating real-world systems using the MVN distri

bution, allowing for straightforward calculation of ground truth MI, discussed in Appendix A.1.1. MVN perturbation and proximity 
techniques were used to introduce noise and simulate systems with varying levels of vulnerability, as detailed in Appendix A.1.2. The 
perturbation technique introduces noise by flipping a percentage of class labels, and the proximity technique reduces the distance 
between the mean vectors of the MVN for each class, causing the generated Gaussians to overlap. To simulate the realistic scenarios, 
we define the vulnerable systems as those with noise levels 𝜖 ∈ [0.0,0.90), where side-channel signals remain distinguishable, and 
non-vulnerable systems as those with 𝜖 ∈ [0.90,1.0], where high noise renders secret information statistically indistinguishable using 
the side-channel observable information.

This assumption is supported by the Marvin SCA [28], which shows that even noisy side-channels can be exploited using statistical 
tests and system-level optimizations. Fig. 2 illustrates two-dimensional data points with class imbalance level (𝑟 = 0.3), generated using 
both MVN perturbation and proximity-based techniques. The datasets include vulnerable systems at noise levels 𝜖 = 0 and 𝜖 = 0.5, 
and a non-vulnerable system at 𝜖 = 1.0. We introduce class imbalance (𝑟) using Minority and Majority sampling strategies to define the 
output prior 𝑝𝑌 (⋅), as described in Appendix A.1.1, with example class distributions for each case of imbalanced binary-class and multi

class datasets illustrated in Fig. 3. To evaluate MI estimation accuracy of different approaches under varying class distributions (class 
imbalance levels 𝑟), we generated datasets for balanced, imbalanced binary-class, and multi-class scenarios. Each dataset configuration 
varies in input dimension (𝑑), number of classes (𝐶), class imbalance level (𝑟), and noise level (𝜖), as summarized in Table 1. All 
datasets were independently generated across the full noise range (𝜖 ∈ [0.0,1.0]) to simulate both vulnerable (𝜖 ∈ [0.0,0.90)) and 
non-vulnerable (𝜖 ∈ [0.90,1.0]) systems.
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Fig. 3. Classification dataset class distribution with 10 % of class imbalance level (𝑟 = 0.1). 

Fig. 4. Experimental setup for evaluating MI estimation methods. 

3.2.2. Experimental setup

We evaluate each MI estimation approach on synthetic datasets generated for configurations outlined in Table 1, as shown in 
Fig. 4. For each configuration (𝗀𝑟,𝐶, 𝑑, 𝑟, 𝜖), we generate 10 datasets (𝑗 ) using different seeds 𝑗 ∈ [10] and evaluate the performance 
using normalized mean absolute error (NMAE). Using nested cross-validation with hyperparameter optimization (HPO), we split 𝑗

into 70% training and 30% test datasets. HPO involves 100 function evaluations using Monte Carlo cross-validation (MCCV) with 
3 splits on the training set, reserving 30% for validation, denoted as ``N1S-3SCV'', as shown in Fig. 4. Objective functions for HPO 
include BER for PC-Softmax, AutoGluon, and TabPFN, Akaike information criterion (AIC) for GMM, and mean squared error (MSE) 
for MINE with parameter ranges provided in Table A.5. We identify the best-performing pipeline from running AutoGluon for 1800
seconds and model using HPO on GMM, MINE, PC-Softmax, and TabPFN using validation loss or accuracy. The estimated MI of this 
model on the dataset 𝑗 , is compared with respect to the ground truth MI in (A.8), denoted by 𝐼𝑗 and 𝐼𝑗 , using the NMAE in (11).

3.2.3. Evaluation metric

We assess generalization using normalized mean absolute error (MAE) (NMAE), computed by dividing MAE by the entropy of 𝑌 , 
i.e., 𝐻𝑌 (𝗀𝑟,𝐶, 𝑟) = −

∑𝐶
𝑐=1 𝑝𝑌 (𝑐) log

(
𝑝𝑌 (𝑐)

)
, since MI ranges from 0 to log(𝐶). The NMAE metric for 10 ground-truth and estimated 

MI values is defined as:

mNMAE(𝑰 , 𝑰̂) =
1 
10

10 ∑
𝑗=1 

|𝑰[𝑗] − 𝑰̂[𝑗]|
𝐻𝑌 (𝗀𝑟,𝐶, 𝑟) 

=
10 ∑
𝑗=1 

|𝐼𝑗 − 𝐼𝑗 | 
10 ⋅𝐻𝑌 (𝗀𝑟,𝐶, 𝑟)

. (11)

3.3. Results

This section discusses the overall performance of various MI estimation methods on systems simulated using perturbation and 
proximity techniques. We also analyze the generalization capabilities of selected approaches across various factors, including the 
number of classes (𝐶), input dimensions (𝑑), class imbalance (𝑟), and noise levels (𝜖). Our analysis covers balanced, binary-class, and 
imbalanced multi-class datasets, as detailed in Table 1. We examine datasets generated by simulated vulnerable systems with noise 
levels of 0% (𝜖 = 0.0, representing a fully compromised system) and 50% (𝜖 = 0.5, representing a compromised system with ineffective 
countermeasures against SCAs). In contrast, datasets from non-vulnerable systems are simulated with noise levels 𝜖 ∈ [0.90,1.0], 
representing systems robust even against advanced attacks such as the Marvin SCA, which can exploit noisy information to reveal 
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secrets [28]. This setup highlights the importance of accurate MI estimation for effective ILD. Additionally, to assess accurate MI 
estimation for ILD in imbalanced datasets from realistic systems, we examine the binary and multi-class imbalanced datasets generated 
by various vulnerable systems (𝜖 ∈ [0.00,0.90)) and two non-vulnerable systems with 𝜖 ∈ {0.90,1.0}.

3.3.1. Overall performance

We present the performance of various MI estimation methods using bar charts showing mean and standard error (SE) of NMAE 
on systems simulated by MVN perturbation and proximity techniques, as shown in Figs. 5a and 5b, respectively.

Fig. 5. Overall NMAE of MI estimation methods on synthetic datasets 

MVN perturbation The results depicted in Fig. 5a indicate that TabPFN IR Cal Log-Loss consistently excels in estimating MI, and 
methods using AutoGluon significantly underperform compared to those using TabPFN. For balanced datasets, TabPFN IR Cal Log

Loss shows exceptional performance (≈ 0.003) and low SE of 0.001. For more vulnerable systems with noise (𝜖 = 0.5), TabPFN IR 
Cal Log-Loss performs less effectively (≈ 0.212 ± 0.012), while TabPFN PS Cal Log-Loss and Beta Cal Log-Loss perform better 
(≈ 0.067 ± 0.003). The HB Cal Log-Loss method does not enhance the Log-Loss estimation for both automated machine learning 
(AutoML) tools. For systems generating imbalanced binary-class datasets, the GMM shows exceptional performance (≈ 0.019± 0.002), 
with TabPFN Log-Loss and TabPFN IR Cal Log-Loss also performing well (≈ 0.05). For imbalanced multi-class datasets, TabPFN IR 
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Cal Log-Loss leads (≈ 0.029 ± 0.001), with the GMM also performing well (≈ 0.10 ± 0.002), demonstrating strong adaptability for 
imbalanced datasets.

MVN proximity Overall, MI estimation is more straightforward on datasets generated using proximity than on ones using the pertur

bation technique, as it introduces more complexity (Appendix A.1). However, performance trends are similar to MVN perturbation 
datasets: TabPFN IR Cal Log-Loss outperforms, while AutoGluon performs worse. For systems generating balanced datasets, TabPFN 
IR Cal Log-Loss performs exceptionally well for vulnerable systems (≈ 0.003 for 𝜖 = 0.0 and ≈ 0.010 for 𝜖 = 0.5) with low variance. 
For non-vulnerable systems, TabPFN PS Cal Log-Loss and TS Cal Log-Loss perform best (≈ 0.016). For systems generating imbal

anced binary-class datasets, the GMM and TabPFN IR Cal Log-Loss are top performers (≈ 0.017 ± 0.001). In imbalanced multi-class 
datasets, TabPFN IR Cal Log-Loss maintains superior performance (≈ 0.016), while the GMM also performs well (≈ 0.017).

Summary The TabPFN approaches, particularly IR Cal Log-Loss, consistently excel in MI estimation, with AutoGluon approaches 
significantly underperforming compared to those using TabPFN. Calibration techniques (Cal Log-Loss) generally do not significantly 
impact TabPFN Log-Loss’s performance for balanced datasets but enhance AutoGluon Log-Loss’s performance in vulnerable datasets, 
indicating AutoGluon’s poor calibration and TabPFN’s well-calibrated class probabilities. However, these techniques can sometimes 
worsen AutoGluon Log-Loss’s performance in non-vulnerable systems, leading to MI overestimation and potential false positives in 
ILD, as shown in Appendix B.2.

3.3.2. Generalization performance

This section examines the generalization capabilities of different MI estimation methods relative to baselines, identifying the best

performing methods using AutoGluon and TabPFN on balanced (non-vulnerable systems with noise levels of {0.90,1.0} and vulnerable 
systems with noise levels 0.0 and 0.5), and imbalanced binary-class and multi-class datasets containing datasets generated by various 
vulnerable and non-vulnerable systems using NMAE, as detailed in Section 3.3.1. We assess generalization based on the number 
of classes (𝐶) and input dimensions (𝑑) by aggregating NMAE across dimensions for each class (𝐶 ∈ [2,10]) and classes for each 
dimension (𝑑 ∈ [2,20]). For class imbalances, we aggregate NMAE across noise levels for each imbalance parameter (𝑟 ∈ [0.05,0.5]
for binary-class and 𝑟 ∈ [0.02,0.2] for multi-class datasets). Similarly, we assess generalization for noise levels (𝜖 ∈ [0.0,1.0]) by 
aggregating NMAE across class imbalances. Figs. 6 and 7 visualize these results with line plots, showing NMAE on systems simulated 
using MVN perturbation and proximity techniques, respectively.

Number of classes (𝐶) The top row of Figs. 6 and 7 shows MI estimation methods’ generalization across datasets with varying 
numbers of classes (𝐶 ∈ [2,10]) on the X-axis in systems simulated using MVN perturbation and proximity techniques, respectively. 
In vulnerable and non-vulnerable systems, AutoGluon and TabPFN show high accuracy (lower NMAE) with increasing classes, with 
TabPFN outperforming AutoGluon, especially at 50% noise (𝜖 = 0.5). Baselines degrade (NMAE increases) with the increase in the 
number of classes. In vulnerable systems, MINE is the least accurate, whereas in non-vulnerable systems, both MINE and PC-Softmax 
outperform GMM.

Input dimensions (𝑑) The second row of Figs. 6 and 7 shows MI estimation methods’ generalization across datasets with varying 
input dimensions (𝑑 ∈ [2,20]) on the X-axis in systems simulated MVN perturbation and MVN proximity techniques, respectively. 
In vulnerable and non-vulnerable systems, AutoGluon and TabPFN improve notably with more dimensions, with TabPFN leading, 
specifically in systems with 50% noise. Baselines, especially GMM, deteriorate significantly with more dimensions, indicating that 
even deep multi-layer perceptrons (MLPs) struggle with high-dimensional datasets. MINE and PC-Softmax perform well in non

vulnerable systems simulated using perturbation but deteriorate in ones using the proximity technique.

Class imbalance (𝑟) In the third row of Figs. 6 and 7 shows MI estimation methods’ generalization across datasets with varying class 
imbalances (𝑟 ∈ [0.05,0.5] for binary-class and 𝑟 ∈ [0.02,0.2] for multi-class) on X-axis, in imbalanced datasets generated using MVN 
perturbation and MVN proximity technique, respectively. In systems generating imbalanced datasets, TabPFN and GMM show high 
accuracy and stay unaffected, especially in systems generated using perturbation techniques. AutoGluon, MINE, and PC-Softmax 
are deteriorating, notably beyond 0.25 class imbalance level for systems generating binary class imbalanced datasets using perturbation 
techniques. While for systems generating imbalanced multi-class datasets, AutoGluon improves as class imbalance decreases, MINE 
and PC-Softmax remain relatively constant with a notable drop at 0.04 class imbalance level.

Noise level (𝜖) The last row of Figs. 6 and 7 shows MI estimation methods’ generalization across datasets with varying noise levels 
(𝜖 ∈ [0.0,1.0]) on the X-axis, in imbalanced datasets generated using MVN perturbation and MVN proximity techniques, respectively. 
In systems generating imbalanced datasets, TabPFN and GMM demonstrate high accuracy across all noise levels, particularly in 
systems generated using the perturbation technique. AutoGluon deteriorates with increasing noise, while MINE and PC-Softmax 
improve significantly.

Summary TabPFN, particularly IR Cal Log-Loss, consistently demonstrates remarkable generalization in MI estimation across var

ious factors for systems simulated using both MVN perturbation and proximity techniques. TabPFN and AutoGluon show strong 
generalization performance across different numbers of classes (𝐶) and input dimensions (𝑑), with baselines performing worse as 
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Fig. 6. Generalizability of MI estimation methods on MVN perturbation systems. 

they increase. GMM struggles with high-dimensional datasets. MINE shows the lowest generalization capability, suggesting its unsuit

ability for estimating MI in classification datasets. TabPFN and GMM exhibit robust generalization across various class imbalances (𝑟) 
and noise levels (𝜖). GMM handles noise and imbalance well in low-dimensional datasets (𝑑 = 5) but struggles with high-dimensional 
ones. Conversely, AutoGluon, MINE, and PC-Softmax shows weaker generalization with respect to class imbalances and noise levels.

4. Information leakage detection

This section introduces the ILD process with various classification-based and MI-based ILD approaches. We describe the exper

imental setup and IL-Datasets descriptions used to evaluate information leakage detection approaches for detecting side-channel 
leakages (ILs) through time delays, countering Bleichenbacher’s attacks on OpenSSL TLS servers, and summarize the results with 
Appendix B provides a detailed analysis. Our results conclude that our MI-based ILD approach using the calibrated log-loss (Cal 
Log-Loss) outperforms state-of-the-art methods.

4.1. ILD methodology

Fig. 8 illustrates the process of detecting IL in systems generating classification datasets using various ILD approaches. To enhance 
IL detection confidence, we apply Holm-Bonferroni correction on 𝑝-values obtained using statistical tests on performance estimates 
of the top-10 AutoML models or pipelines from AutoGluon and TabPFN obtained through HPO.

4.1.1. ILD approaches

We divide the ILD approaches based on using MI and classification metrics to detect IL in a system into MI-based and classification

based methods. We propose using the AutoML tools AutoGluon and TabPFN, as described in Appendix A.2.2, to accurately estimate 
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Fig. 7. Generalizability of MI estimation methods on MVN proximity systems. 

empirical risk minimizers (𝑔 or 𝑔𝑝), which can serve as an appropriate proxy for Bayes predictor. We propose applying statistical tests 
to the LAS calculated using Log-Loss, accuracy, and confusion matrix (CM) of the top-performing AutoML models or pipelines (𝑔 or 
𝑔𝑝) to obtain a 𝑝-value. All statistical tests in our setup follow a common framework, where the null hypothesis 𝐻0(⋅) assumes no IL, 
and the alternative 𝐻1(⋅) indicates its presence. A 𝑝-value below the significance level 𝛼 leads to rejecting 𝐻0, thereby inferring the 
presence of IL. The threshold 𝛼 = 0.01 is particularly appropriate for avoiding false positives using the Holm-Bonferroni correction 
when testing multiple hypotheses to ensure high-confidence detection in security-sensitive settings [14,29]. We propose to use 𝛼 = 0.01
for the Holm-Bonferroni correction, tuned with the rejection threshold of 5 on the cutoff parameter 𝜏 ≥ 5 from our prior work [14].

MI-based approach The MI-based ILD approach is based on the condition that IL occurs in the system if MI or LAS with log-loss must 
be significantly greater than 0, i.e., 𝛿(𝓁𝑙𝑙)≫ 0, as per Section 2.3. To achieve this, we propose to apply the one-sample t-test (OTT) on 
10 MI estimates obtained using 𝐾 -fold cross-validation (KFCV) on the Log-Loss and Mid-Point techniques on top-𝑗th performing 
pipeline, as well as baseline methods, denoted by vector 𝑰̂ 𝑗 . The OTT provides a 𝑝-value representing the probability of observing the 
sample mean to be around the actual mean (0 in our case) [30]. The null hypothesis 𝐻0(𝑰̂ 𝑗 ∼ 0) implies absence of IL in a system.

Classification-based approaches Our prior work Gupta et al. [14] proposes classification-based ILD approaches based on the condition 
that IL occurs if the Bayes predictor accuracy significantly surpasses that of a marginal Bayes predictor, i.e., LAS is significantly 
greater than 0, as per Section 2.3.

PTT-based approach PTT is used to compare two samples (generated from an underlying population) where the observations in 
one sample can be paired with observations in the other sample [30]. The approach tests the condition that LAS is significantly 
greater than 0 for IL to exist in a system, i.e., 𝛿(mACC)≫ 0. The PTT-Majority approach achieves this by applying PTT between 
the 10 accuracy estimates from KFCV for the 𝑗-th best performing AutoML pipeline (𝑔 minimizing (5), proxy of Bayes predictor) and 
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of 𝑔mc
𝑝 (proxy of marginal Bayes predictor, cf. Section 3.1.2), denoted by 𝒂𝑗 and 𝒂𝑚𝑐 , respectively. We propose using the corrected 

version of PTT, which accounts for the dependency in estimates due to KFCV, to provide an unbiased estimate of the 𝑝-value [31]. 
The 𝑝-value represents the probability of obtaining our observed mean accuracy difference, assuming the null hypothesis 𝐻0(⋅) holds, 
implying that accuracies are drawn from the same distribution or have nearly zero average difference [30]. The null hypothesis 
is 𝐻0(𝒂𝑗 = 𝒂𝑚𝑐), which implies no IL and the alternate hypothesis 𝐻1(𝒂𝑗 ≠ 𝒂𝑚𝑐) implies presence of IL in the system. However, 
PTT assumes asymptotic behavior and normal distribution of accuracy differences, which can lead to optimistic 𝑝-values, and using 
accuracy can misestimate results on imbalanced datasets [13].

Fig. 8. Procedure of using ILD approaches to detect ILs in a system generating . 

FET-based approach FET is a non-parametric test used to determine the probability of independence (or non-dependence) be

tween two classification methods, in this case, classifying instances based on ground truths 𝒚 and classifying them based on AutoML 
predictions 𝒚̂ [32]. The FET-based approach addresses the class imbalance issue and improves 𝑝-value estimation by applying the 
FET on 𝐾 CMs 𝑗 = {𝑴𝑘

𝑗 }
𝐾
𝑘=1 obtained using KFCV to detect IL. If a strong correlation exists between inputs 𝒙 and outputs 𝑦

in , the AutoML pipeline’s prediction 𝑦̂ = 𝑔(𝒙) encapsulates input information, and FET can assess IL using the CM (analyzing 
LAS 𝛿(mCM)), which contains relevant information for predicting correct outputs (mtp,mtn). The 𝑝-value represents the proba

bility of independence between the ground truth 𝒚 and AutoML predictions 𝒚̂ defined by the null hypothesis (𝐻0(⋅)). The null 
hypothesis 𝐻0(𝑝(𝒚, 𝒚̂|𝑴 ) = 𝑝(𝒚|𝑴 )𝑝(𝒚̂|𝑴 )) posits that 𝒚 and 𝒚̂ are independent, indicating no IL, while the alternative hypothesis 
𝐻1(𝑝(𝒚, 𝒚̂ | 𝑴 ) ≠ 𝑝(𝒚 | 𝑴 )𝑝(𝒚̂ | 𝑴 )) suggests significant dependence, implying IL.

The FET implicitly accounts for dataset imbalance by testing LAS using Matthews correlation coefficient (MCC) (i.e., 𝛿(mMCC)≫ 0). 
The MCC metric, which equally penalizes mfp and mfn [33], is directly proportional to the square root of the 𝜒2 statistic, i.e., 
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|mMCC| =√
𝜒2∕𝑁 [32]. Since the 𝜒2 test is asymptotically equivalent to FET, this supports using FET to evaluate the learnability of 𝑔

(a proxy for the Bayes predictor) via the CM, while accounting for class imbalance and yielding accurate 𝑝-values for detecting IL. We 
aggregate the 10 𝑝-values obtained using FET on 𝐾 CMs through median and mean, referred to as the FET-Median and FET-Mean 
approaches [34].

4.1.2. Detection process

The ILD process involves rigorous estimation, statistical assessment, and correction techniques to detect IL in a system confidently. 
The process starts with obtaining accurate MI or Bayes predictor performance estimates using nested 𝐾 -fold cross-validation (KFCV) 
with HPO and specific parameter ranges provided in Table A.5. The dataset  is split into 90% training and 10% test sets using 
KFCV (10), conducting HPO with 100 evaluations using MCCV with 3 splits, reserving 30% of training data for validation, denoted 
as ``N10F-3SCV'', as depicted in Fig. 8b Objective functions for HPO include BER for PC-Softmax, AutoGluon, and TabPFN, AIC for 
GMM, and MSE for MINE with parameter ranges provided in Table A.5. We identify the top-10 best-performing pipelines from running 
AutoGluon for 1800 seconds and top-performing models using HPO on GMM, MINE PC-Softmax and TabPFN, using validation loss 
or accuracy. KFCV is applied to the top-10 models or pipelines, generating 10 estimates from the entire dataset , which statistical 
tests use to produce 𝑝-values, which are assessed to detect IL. We obtain 10 MI estimates, accuracies, and CMs for each of the 𝑗-th 
best-performing model/AutoML pipeline, denoted by 𝑰̂ 𝑗 , 𝒂𝑗 and 𝑗 = {𝑴𝑘

𝑗 }
𝐾
𝑘=1, respectively. The OTT is used on MI estimates (𝑰̂ 𝑗 ), 

PTT compares the accuracies (𝒂𝑗 ) with that of 𝑔mc
𝑝 (𝒂𝑚𝑐 ), and FET is applied to CMs (𝑗 = {𝑴𝑘

𝑗 }
𝐾
𝑘=1), producing 10 𝑝-values which 

are aggregated using mean and median operators.

To enhance robustness and reliability in ILD, we use the Holm-Bonferroni correction to ensure accuracy and reliability in our 
ILD framework, which mitigates the influence of overfitting and noisy estimates that can arise when using just one pipeline (model) 
[29]. The Holm–Bonferroni method controls the family-wise error rate, minimizing false positives (type-1 errors) by adjusting the 
rejection criteria 𝛼 for each hypothesis within our family of null hypotheses,  = {𝐻1,… ,𝐻𝐽 }, ensuring that the significance level 
of  not exceeding predefined threshold of 𝛼 = 0.01 [29]. After obtaining 10 𝑝-values from top-10 models/pipelines, we apply the 
correction to acquire the number of rejected hypotheses or the cut-off parameter 𝜏 = |𝑟|, quantifying IL detection confidence. To 
detect IL efficiently, it is imperative to set an appropriate rejection threshold on the cut-off parameter 𝜏 . A higher rejection threshold 
would help avoid false positives and prevent the detection of non-existent IL while decreasing it would avoid missing ILs occurrences 
and reduce false negatives. Based on prior work [14], setting the rejection threshold to ⌊𝐽∕2⌋ on the cut-off parameter 𝜏 ensures robust 
and accurate IL detection, which we also use for this study, i.e., 𝜏 ≥ 5. This systematic and rigorous approach detects IL with a high 
degree of confidence, ensuring the robustness of our ILD framework.

4.2. Empirical evaluation

This section outlines the evaluation process for our ILD approaches compared to baselines in detecting timing side-channel leaks 
in OpenSSL TLS servers, as illustrated in Fig. 8. Our main objective is to assess the generalization capability of various ILD approaches 
with respect to the LAS of systems, generating both balanced and imbalanced datasets, as outlined in Table 2. The overall performance 
results for selected approaches are discussed in Section 4.3, with detailed analysis in Appendix B.

4.2.1. OpenSSL timing datasets

We target side-channel vulnerabilities in cryptographic software to validate our approaches using network traffic generated by a 
modified OpenSSL TLS server. Bleichenbacher’s attack exploits server behavior to differentiate correctly formatted decrypted mes

sages from incorrect ones [35]. A secure OpenSSL TLS server exhibits no time difference in processing correctly and incorrectly 
formatted messages, but a vulnerable server does, exposing IL through processing time differences. For our experiments, the timing 
side-channel or time delay, i.e., observable differences in server computation times when processing messages with correct and ma

nipulated padding were introduced as per the Java TLS implementation vulnerability CVE-2014-04111 [36]. Datasets were provided 
by Funke [37] from the vulnerable (DamnVulnerableOpenSSL2) OpenSSL TLS server, which exhibits longer computation times for 
incorrectly formatted messages with manipulated padding, and the non-vulnerable (OpenSSL 1.0.2l3), which shows no time delay 
(no IL). There are 10 padding manipulations: five cause longer processing times (simulating IL, 𝑧 = 1), and five do not (no IL, 𝑧= 0). 
Each IL-Dataset  contains 10 binary-class datasets corresponding to 10 padding manipulations , with label 0 instances correspond

ing to correctly formatted messages and positive label (𝑦 = 1) instances corresponding to incorrectly formatted messages. Table 2
details the IL-Datasets generated for various time delay values (in 𝜇 seconds) serving as the system’s LAS, and class imbalances of 
𝑟 ∈ {0.1,0.3,0.5} uploaded on OpenML.4

4.2.2. Experimental setup

We apply each ILD approach depicted in Fig. 8b to a set of IL-Datasets detailed in Table 2. As discussed IL-Dataset ( = {(𝑖, 𝑧𝑖)}10𝑖=1) 
consists of 10 systems corresponding to 10 messages with manipulated padding (𝑦𝑖 = 1), with five systems containing IL (𝑧 = 1) and five 

1 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0411.
2 https://github.com/tls-attacker/DamnVulnerableOpenSSL.
3 https://www.openssl.org/source/old/1.0.2/.
4 https://www.openml.org/search?type=study&sort=tasks_included&study_type=task&id=383.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0411
https://github.com/tls-attacker/DamnVulnerableOpenSSL
https://www.openssl.org/source/old/1.0.2/
https://www.openml.org/search?type=study&sort=tasks_included&study_type=task&id=383
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Table 2
Overview of the OpenSSL timing IL-Datasets used for the ILD experiments.

Time Delay 
(in 𝜇 seconds)

# Folds Imbalance 𝑟 IL-Dataset  configuration Dataset  configuration 
# Systems || # 𝑧 = 0 # 𝑧 = 1 || # 𝑦 = 0 # 𝑦 = 1 # Features 

{20,21,… ,28} 3 0.1 10 5 5 [943,1064] [849,958] [94,106] 124 
{20,21,… ,28} 3 0.3 10 5 5 [1212,1368] [849,958] [363,410] 124 
{20,21,… ,28} 3 0.5 10 5 5 [1725,1929] [849,958] [829,989] 124

{10, 15, . . . , 35} 10 0.1 10 5 5 [962,2263] [866,2037] [96,226] [124,154]
{10, 15, . . . , 35} 10 0.3 10 5 5 [1237,2910] [866,2037] [371,873] [124,154]
{10, 15, . . . , 35} 10 0.5 10 5 5 [1721,4084] [866,2037] [826,2104] [124,154]

not (𝑧 = 0). We evaluate each ILD approach using standard binary classification metrics: Accuracy, FPR, and FNR (cf. Appendix A.2.1), 
on the predicted IL decisions (𝒛̂ = (𝑧̂1,… , 𝑧̂10)) and the ground truth vector (𝒛 = (𝑧1,… , 𝑧10)).

4.3. Results: detection accuracy

We evaluate the performance of various ILD approaches across different class imbalance levels (𝑟 ∈ {0.1,0.3,0.5}) and time 
delays. Our analysis distinguishes between OpenSSL systems with short (≤ 25 𝜇-seconds) and long (≥ 25 𝜇-seconds) delays, reflecting 
complex and straightforward IL cases, respectively. Fig. 9 shows the mean detection accuracy and SE across IL-Datasets using a 
rejection threshold of 5 on 𝜏 . For generalization results across varying LAS or time delays, see Appendix B.

We summarize the results by selecting the best-performing calibrated Log-Loss ILD approaches using both TabPFN and AutoGluon 
using Log-Loss estimation, we assessed their NMAE from experiments detailed in Section 3.2.2. This process determined the optimal 
calibration approach for each AutoML tool separately for balanced (𝑟 = 0.5) and imbalanced (𝑟 ∈ 0.1,0.3) datasets. AutoGluon TS Cal 
Log-Loss was most effective for both scenarios, while TabPFN IR Cal Log-Loss performed best on imbalanced datasets and TabPFN 
PS Cal Log-Loss for balanced ones. We focus on FET-Median due to its robustness [34], and prior work [14] shows it performs 
similarly to FET-Mean at a rejection threshold of 5 for the cut-off parameter 𝜏 .

4.3.1. Short time delay

Our first set of experiments focuses on systems with short time delays (≤ 25 𝜇-seconds) with more complex or noisy ILs.

Imbalanced Detecting ILs with short time delays or LAS is challenging. Notably, the TabPFN Cal Log-Loss approach consistently 
exhibits high detection accuracy, with AutoGluon FET-Median also performing well. For 𝑟 = 0.1, TabPFN Cal Log-Loss achieves 
69% accuracy and 58% for 𝑟 = 0.3, while AutoGluon FET-Median detects 54% and 58% of ILs, respectively. However, detecting ILs 
in these scenarios remains challenging due to missed IL and high false positive rate (FPR), as detailed in Appendix B.

Balanced Detecting ILs in systems generating balanced datasets with short time delays remains challenging, but it is more man

ageable than generating imbalanced ones. AutoGluon Log-Loss and Cal Log-Loss approaches outperform, detecting a significant 
proportion of ILs (approximately 68%). IR Cal Log-Loss enhances TabPFN Log-Loss detection accuracy to 67%, making it a com

petent approach, while PS Cal Log-Loss does not improve its detection performance. Overall, AutoGluon outperforms TabPFN, with 
PTT-Majority detecting over 61% of ILs.

4.3.2. Long time delay

Our second set of experiments focuses on systems with long time delay (≥ 25 𝜇-seconds) with easily detectable ILs.

Imbalanced Detecting ILs in systems with larger time delays or LAS is more straightforward, with all approaches consistently per

forming well, detecting more than 50% of ILs. In particular, the TabPFN Cal Log-Loss approach detects approximately 94% of ILs, 
while AutoGluon FET-Median excels, detecting over 92% of ILs for 𝑟 = 0.3 and approximately 72% for 𝑟 = 0.1. FET based approaches 
perform better than PTT-Majority in detecting ILs in imbalanced systems’ datasets, also confirmed in [14].

Balanced In systems with balanced datasets and longer time delays, detecting ILs becomes more straightforward. AutoGluon Mid

Point and TabPFN IR Cal Log-Loss consistently detect the majority of ILs (around 99%), confirming that IR Cal Log-Loss provides 
an effective alternative calibration technique to enhance the performance of the TabPFN Log-Loss approach. In contrast, TabPFN 
PS Cal Log-Loss and Log-Loss detect approximately 97% of ILs, showing no improvement with the selected calibration method, 
while TabPFN Mid-Point detects only 85%. Among classification-based approaches, PTT-Majority consistently outperforms others, 
detecting 99% of ILs, which contrasts with the findings in [14].

4.3.3. Summary

Detecting IL is easier in systems that generate balanced datasets, where TabPFN IR Cal Log-Loss, Mid-Point, and PTT-Majority, 
using AutoGluon, show robust performance. Contrary to Gupta et al. [14], PTT-Majority outperforms FET-based approaches in 
balanced datasets, indicating that ILD performance varies with IL patterns. Baseline methods detect only 50% of ILs, reflecting random 
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Fig. 9. ILD performance in detecting OpenSSL TLS timing side-channels. 

Table 3
Runtime comparison (in seconds) for each base learner for all experiments.

Learner ILD Experiments MI Estimation Experiments 
AutoGluon 2395.55 ±5.21 7168.04 ±62.77 
TabPFN 30513.28 ±114.85 9970.27 ±72.34 
GMM Baseline 35113.05 ±348.72 963.79 ±22.36 
MINE Baseline 33447.14 ±128.25 1962.87 ±13.43 
PC-softmax Baseline 16993.88 ±266.83 7605.09 ±91.36 
Total 18027.93 ±148.12 7676.46 ±42.60 

detection decisions, as discussed in Appendix B. TabPFN Cal Log-Loss consistently outperforms other approaches, highlighting 
the need for calibrating TabPFN Log-Loss for accurate MI estimation. The Mid-Point approach is unable to detect ILs in systems 
generating imbalanced datasets, as expected. For balanced datasets, IR Cal Log-Loss significantly improves detection accuracy 
compared to PS Cal Log-Loss, as shown in Appendix B, indicating that the choice of calibration technique depends on the available 
underlying dataset. Calibration of Log-Loss using AutoGluon often leads to overfitting and overestimating MI, resulting in false 
positives, as also shown in Section 3.3.1. This discrepancy may result from feature reduction (from 150 to [20,50]) on an imbalanced 
dataset using TabPFN, implying that the choice and necessity of calibration techniques depend on the underlying datasets.

4.3.4. Computational time

For practical use, AutoGluon completes an ILD run in approximately 2395 seconds, while TabPFN requires around 30513 seconds, 
as detailed in Table 3. Although the transformer-based inference offers more accurate MI estimation, making it more suitable when 
detection accuracy is prioritized over runtime, as shown in Fig. 9. TabPFN’s ability to produce high-quality predictions through a 
single forward pass reduces the need for calibration in MI estimation. However, calibration may still be necessary depending on the 
use of feature reduction and the presence of class imbalance in the dataset. The baselines are computationally more expensive than 
AutoGluon and perform poorly in detecting ILs, further indicating that AutoGluon offers a favorable trade-off between efficiency and 
accuracy, making it a computationally effective choice for practical ILD deployment. With TabPFN now integrated into AutoGluon 
and capable of handling datasets with over 100 features, it is well-suited for inclusion in a fully automated pipeline that supports 
appropriate calibration techniques for estimating MI via Log-Loss and enables scalable ILD in high-dimensional settings [38].



Information Sciences 719 (2025) 122419

17

P. Gupta, M. Wever and E. Hüllermeier 

5. Conclusion

This paper presents a comprehensive framework for ILD, leveraging information theory and statistical learning theory concepts 
to enhance cybersecurity by identifying vulnerabilities. We introduced two techniques for quantifying and detecting IL by estimating 
MI between a system’s observable and secret information, using the Bayes predictor’s Log-Loss and accuracy. Our methods employ 
two powerful AutoML tools, TabPFN and AutoGluon, for efficient MI estimation, offering an automated alternative to traditional 
statistical techniques or deep MLPs. We propose to apply OTT to estimated MIs and enhance robustness and provide confidence in IL 
decisions using Holm-Bonferroni correction, as already established in our prior work [14].

Our empirical results show that our approach, mainly using TabPFN for calibrated Log-Loss approximation, effectively estimates 
MI and detects timing side-channel leaks in OpenSSL TLS servers, outperforming state-of-the-art methods. The key contributions of our 
work include a comprehensive ILD framework, addressing imbalance with minimal false positives, robustness to noise in generated 
system datasets, and an adaptable, scalable IL detection solution for real-world scenarios. Furthermore, our work concludes that the 
choice and requirement of calibration techniques for Log-Loss estimation depend on the characteristics of the system datasets.

In future work, we aim to use attention-based transformer embeddings to reduce high-dimensional network traces into compact, 
semantically meaningful representations, enabling the effective quantification and detection of IL while addressing TabPFN’s input 
limitations. The new version of AutoGluon supports advanced search algorithms such as Hyperband, which can be explored to 
accelerate the overall process of finding an optimal model using evaluation-e˙icient successive halving [39]. As TabPFN is now 
part of AutoGluon’s model pool [38], a promising direction is to integrate it with feature selection and dimensionality reduction for 
building an end-to-end AutoML pipeline. This would enable scalable MI estimation and IL detection on high-dimensional, multi-class 
datasets (𝐶 > 10), thereby overcoming the limitations of the proposed solution. Improving the Mid-Point approach to account for 
dataset imbalance and extending the BER and MI relationship by Zhao et al. [25] for multiple classes is an essential direction for 
future work as well. We plan to extend our experiments to finer-grained imbalance and time-delay variations for deeper robustness 
analysis. Another direction involves integrating permutation-based tests, such as Westfall–Young, and tuning the Holm-Bonferroni 
rejection threshold to the standard significance level of 𝛼 = 0.05 [30].

Additionally, we will explore detecting leaks through side information leaked via channels such as the CPU caches, power con

sumption, and electromagnetic radiation [7,9]. [40] showed that the MSE of the Bayes-optimal predictor in regression tasks, where 
the output is real-valued, is directly linked to the MI between input and output. This relationship enables the use of MI to quantify 
and detect leakage in systems vulnerable to cloud-based SCAs, where continuous-valued user information, such as age or salary, may 
be exposed [41]. Exploring such leakage scenarios represents a promising direction for future work [42]. We aim to explore adaptive 
IL detection methods for evolving attack strategies or environments, using approaches such as reinforcement or active learning [43].
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Appendix A. Additional experimental details

This section will list all experimental details excluded from the main paper for conciseness. Hyperparameters and their ranges for 
TabPFN, AutoGluon, baseline MI estimators, and ILD approaches are provided in Table A.5. We provide a detailed explanation of the 
algorithms used to generate synthetic system datasets, a description of the performance metrics, and the AutoML tools employed in 
the experiments implemented in the Python package,5 along with the scripts used for running the experiments in Sections 3 and 4.2

5 https://github.com/LeakDetectAI/AutoMLQuantILDetect.

https://github.com/LeakDetectAI/AutoMLQuantILDetect
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Table A.4

Notation used throughout the paper.

Symbol Meaning 
[𝑛] Set of integers {1,2,… , 𝑛}, 𝑛∈ℕ
[𝑎, 𝑏] Set of integers {𝑎, 𝑎+ 1,… , 𝑏}, 𝑎, 𝑏 ∈ ℕ
�𝐴� Indicator function which is 1 if statement 𝐴 is true and 0 otherwise 
𝑝(𝑋,𝑌 )(⋅), 𝑝̂(𝑋,𝑌 )(⋅) Actual and predicted joint PDF between (𝑋,𝑌 )
𝑝(𝑋,𝑌 )(𝒙, 𝑦) = 𝑝(𝑋,𝑌 )(𝒙, 𝑦) Joint PDF of 𝑋 and 𝑌 , at point (𝒙, 𝑦)
𝑝𝑋 (⋅), 𝑝̂𝑋 (⋅) Actual and predicted marginal PDF of 𝑋
𝑝𝑋 (𝒙) = 𝑝𝑋 (𝒙) Probability mass of input 𝒙
𝑝𝑌 (⋅), 𝑝̂𝑌 (⋅) Actual and predicted marginal PMF of 𝑌
𝑝𝑌 (𝑦) = 𝑝𝑌 (𝑦) Probability of class label 𝑦
𝑝𝑌 |𝑋 (⋅), 𝑝̂𝑌 |𝑋 (⋅) Actual and predicted conditional PDF of 𝑌 given 𝑋
𝑝𝑌 |𝑋 (𝑦 | 𝒙) = 𝑝𝑌 |𝑋 (𝑦 | 𝒙) Probability of 𝑦 given 𝒙
𝑝𝑋|𝑌 (⋅), 𝑝̂𝑋|𝑌 (⋅) Actual and predicted conditional PDF of 𝑌 given 𝑋
𝑝𝑋|𝑌 (𝒙 | 𝑦) = 𝑝𝑋|𝑌 (𝒙 | 𝑦) Probability of 𝒙 given 𝑦

𝑋 Input (𝒙 ∈ℝ𝑑 ) random variable (d-dimensional continuous) 
𝑌 Output (𝑦 ∈ [𝐶]) random variable (discrete) 
 ∈ℝ𝑑 Input Space, set of 𝒙 sampled from 𝑋
 ∈ [𝐶] Output Space, set of 𝑦 sampled from 𝑌
 = {(𝒙𝑖 , 𝑦𝑖)}𝑁𝑖=1 Classification dataset 
𝑟 Imbalance in a dataset 
𝜖 Noise in a dataset 
𝐼(𝑋;𝑌 ) MI between 𝑋 and 𝑌
𝐻(𝑌 | 𝑋) Conditional entropy for 𝑌 given 𝑋
𝐻(𝑋) ,𝐻(𝑌 ) Entropy for random variable 𝑋 and 𝑌
𝐻2(𝑎) = −(𝑎) log(𝑎) − (1 − 𝑎) log(1 − 𝑎) Binary cross-entropy function for 𝑎∈ (0,1)

mErr (𝑔bc),mErr (𝑔mc) The Bayes error rate and error rate of marginal Bayes predictor 
𝛿(𝓁(⋅)) = 𝓁(⋅)(𝑔mc) − 𝓁(⋅)(𝑔bc)

LAS is the difference in performance of 𝑔bc and 𝑔mc quantifying IL
𝛿(m(⋅)) = |m(⋅)(𝑔mc) − m(⋅)(𝑔bc)|
𝐿 , ILD function and IL-Dataset 
𝐻0(condition) ,𝐻1(condition) Null and Alternate hypothesis for statistical tests 
𝜏 ∈ [𝐽 ], 𝐽 ∈ ℕ, Cut-off parameter on 𝐽 hypothesis for Holm-Bonferroni correction 
𝛼 = 0.01 Significance level on 𝐻0 (accept 𝐻1) for statistical tests 

and additional results.6 The 10 IL-Datasets per time delay were transformed into multi-class datasets with 11 padding classes and 
uploaded to OpenML.4

A.1. Simulating synthetic systems

We use the MVN distribution, which is ideal for simulating real-world vulnerable and non-vulnerable systems generating classifica

tion datasets, providing a straightforward means of obtaining ground truth MI, as described in Appendix A.1.3. The MVN distribution 
is widely used for benchmarking classifiers due to its simplicity, ability to model inter-variable correlations, and well-established 
statistical properties [17, chap. 2]. Its use is further supported by the central limit theorem, which justifies normality in aggregated 
data [17, chap. 4]. We simulate both balanced and imbalanced datasets with varying LAS or MI levels using MVN perturbation and 
proximity techniques.

A.1.1. Generation method

Synthetic datasets are generated using MVN to define the joint PDF (𝑝(𝑋,𝑌 )) between 𝑋 and 𝑌 , inducing their marginals on 𝑋 and 
𝑌 . The dataset  is created by sampling instances from 𝑝𝑋|𝑌 (⋅) with class distribution 𝑝𝑌 (𝑦), as illustrated in Fig. 2.

Formal definition of PDFs We define the joint distribution 𝑝(𝑋,𝑌 )(⋅) and marginal on 𝑌 𝑝𝑋 (⋅), required to generate the dataset 
by sampling (𝒙𝑖, 𝑦𝑖) ∼ 𝑝𝑋|𝑌 (𝒙𝑖 | 𝑦𝑖),∀𝑖 ∈ [𝑁] with class distribution defined by 𝑝𝑌 (𝑦). These PDFs are used to define the conditionals 
𝑝𝑌 |𝑋 (⋅) and 𝑝𝑋|𝑌 (⋅) and induce the marginal on  , denoted by 𝑝𝑋 (⋅). The conditional PDF on 𝑋 given 𝑌 is defined for class 𝑐 as

𝑝𝑋|𝑌 (𝒙 | 𝑐) = MVN(𝝁𝑚,Σ) , (A.1)

where Σ is the covariance matrix and 𝝁𝑚 is the mean vector for class 𝑐. The covariance matrix should be positive semi-definite and 
is typically sampled using eigenvalue decomposition [17].

Generating imbalanced datasets: marginal on 𝑌  The parameter 𝑟, referred to as class imbalance, is the minimum proportion of 
instances for any class 𝑐 ∈ [𝐶], defined as 𝑟 = min𝑐∈[𝐶]

|{(𝒙𝑖 ,𝑦𝑖)∈ | 𝑦𝑖=𝑐}||| . For balanced datasets, 𝑟 = 1∕𝐶, and for imbalanced ones, 

6 https://github.com/LeakDetectAI/automl-qild-experiments/.

https://github.com/LeakDetectAI/automl-qild-experiments/
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Table A.5

Hyperparameter ranges for AutoML tools: AutoGluon models and TabPFN including the MI estimation baseline approaches (GMM, MINE, and PC-Softmax).

AutoGluon 
Tree-based Ensemble Models 

Base Learner Learning Rate # Estimators Max Depth # Leaves Feature Fraction Bagging Fraction Min Data in 
Leaf

Lambda L1 / 
Lambda L2

Light gradient boosting 
machine (LightGBM)

[0.01, 0.5] [20, 300] [3, 20] [20, 300] [0.2, 0.95] [0.2, 0.95] [20, 5000] [1e−6, 
1e−2]

Categorical boosting 
machine (CatBoost)

[0.01, 0.5] NA [4, 10] NA NA NA NA [0.1, 10]

EXtreme gradient 
boosting machine 
(XGBoost)

[0.01, 0.5] [20, 300] [3, 10] NA NA NA NA NA

Random forest classifier 
(RF)

NA [20, 300] [6, 20] NA NA NA NA NA

Extra trees classifier (XT) NA [20, 300] [6, 20] NA NA NA NA NA

Neural Networks (MLPs) 
Base Learner Learning Rate Dropout Prob # Layers # Units Other Parameters 
FASTAI [1e−5, 1e−1] [0.0, 0.5] NA NA NA NA NA NA

NN_TORCH [1e−5, 1e−1] [0.0, 0.5] [2, 20] [8, 256] NA NA NA NA

TabPFN 
Base AutoML Model Reduction Technique #Reduced Features # Ensembles Other Parameters 
TabPFN RF, XT [10, 50] [32, 200] NA NA NA NA NA

Baselines 
Learner Reduction Technique # Reduced Features Covariance Matrix Type Regularization Strength Other Parameters 
GMM RF, XT [10, 50] {Full, Diagonal, Tied, 

Spherical}

[1e−10, 1e−1] NA NA NA NA

Learning Rate Optimizer Type # Layers # Units Regularization 
Strength

Early Stopping Batch Nor

malization

Other 
Parameters

MINE [1e−5, 1e−1] {RMSProp, SGD, Adam } [1, 50] [2, 256] [1e−10, 0.2] {True, False} {True, False} NA

PC-Softmax [1e−5, 1e−1] {RMSProp, SGD, Adam } [1, 50] [2, 256] [1e−10, 0.2] {True, False} {True, False} NA
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𝑟 < 1∕𝐶, i.e., 𝑟 ∈ (0, 1∕𝐶]. To generate imbalanced multi-class datasets (𝐶 > 2), we introduce two methods: Minority and Majority, with 
an example class frequency in each case shown in Fig. 3. In the Minority method, the minority class is assigned 𝑟 fraction of total 
data points, and remaining samples are uniformly distributed among other classes (> 𝑁

𝐶
). While in the Majority method, all classes 

apart from the selected majority class is assigned 𝑟 fraction of total data points (< 𝑁

𝐶
), and the majority class gets the remaining 

data points.

The marginal on 𝑌 for a balanced dataset with 𝑟 = 1∕𝐶 is defined as 𝑝𝑌 (𝑐) = 1∕𝐶 and for imbalanced datasets using Minority or 
Majority generation methods is defined as

𝗀𝑟 =

⎧⎪⎪⎨⎪⎪⎩
Majority

{
𝑝𝑌 (𝑐) = 𝑟, if 𝑐 ∈ [𝐶] ⧵𝐶
𝑝𝑌 (𝑐) = 1 − 𝑟 ⋅ (𝐶 − 1), if 𝑐 = 𝐶

Minority

{
𝑝𝑌 (𝑐) =

1−𝑟 
𝐶−1 , if 𝑐 ∈ [𝐶] ⧵𝐶

𝑝𝑌 (𝑐) = 𝑟, if 𝑐 = 𝐶

(A.2)

Using these, the joint distribution 𝑝(𝑋,𝑌 )(𝒙, 𝑐) for class 𝑐 is defined as 𝑝(𝑋,𝑌 )(𝒙, 𝑐) = 𝑝𝑌 (𝑐) ⋅ 𝑝𝑋|𝑌 (𝒙 | 𝑐), which induces a marginal on 
𝑋 as

𝑝𝑋 (𝒙) =
𝐶∑
𝑐=1 

𝑝𝑌 (𝑐) ⋅ 𝑝𝑋|𝑌 (𝒙 | 𝑐) = 𝐶∑
𝑐=1 

𝑝𝑌 (𝑐) ⋅ MVN(𝜇𝑚,Σ) (A.3)

Conditional on 𝑌 given 𝑋 The conditional 𝑝𝑌 |𝑋 (⋅) on 𝑌 given 𝑋 for instance (𝒙, 𝑐) is defined as

𝑝𝑌 |𝑋 (𝑐 | 𝒙) = 𝑝𝑌 (𝑐) ⋅ 𝑝𝑋|𝑌 (𝒙 | 𝑐) ∑𝐶
𝑐=1 𝑝𝑌 (𝑐) ⋅ 𝑝𝑋|𝑌 (𝒙 | 𝑐) =

𝑝(𝑋,𝑌 )(𝒙, 𝑐)
𝑝𝑋 (𝒙) 

. (A.4)

A.1.2. Introducing noise (𝜖)

To simulate real-world IL scenarios in cryptographic systems, we introduce noise, which decreases the certainty about output 𝑦𝑖 ∈ with more observed inputs 𝒙𝑖 ∈  , resulting in 𝐻(𝑌 | 𝑋) > 0 and 𝐼(𝑋;𝑌 ) <𝐻(𝑌 ). We propose two methods: the MVN perturbation 
and proximity techniques. The perturbation technique introduces noise by flipping a percentage of outputs or classes in the dataset. 
In contrast, the proximity technique reduces the distance between mean vectors (𝝁𝑐 ) of each class, leading to overlap between the 
Gaussians MVN(𝝁𝑐 ,Σ). These methods simulate scenarios where cryptographic systems leak no information (non-vulnerable) with 
𝐼(𝑋;𝑌 ) = 0.

MVN perturbation technique This approach introduces noise by flipping a percentage, denoted by 𝜖, of class labels (𝑦 ∼ ) in the 
dataset, simulating perturbed systems to generate classification datasets. This technique modifies the conditional PDFs 𝑝𝑌 |𝑋 (⋅) in 
(A.4) and 𝑝𝑋|𝑌 (⋅) in (A.1).

Output variable 𝑌𝜖  Let random variables 𝐵 ∼ Bernoulli(𝑝 = 𝜖, 𝑞 = 1 − 𝜖) and 𝑌 ∼ Categorical(𝑝𝑌 (1),… , 𝑝𝑌 (𝐶)) are independent of 
{𝑋,𝑌 }, for a fixed 𝜖. The modified output random variable 𝑌𝜖 is defined as 𝑌𝜖 = 𝑌 ⋅ �𝐵 = 0�+ �𝐵 = 1� ⋅ 𝑌 . The marginal distributions 
on 𝑋 remain unchanged because only the class labels are flipped. Accordingly, the modified marginal on 𝑌𝜖 is derived as 𝑝𝑌𝜖 (𝑌𝜖 =
𝑦) = 𝜖 ⋅ 𝑝𝑌 (𝑌 = 𝑦) + (1 − 𝜖) ⋅ 𝑝𝑌 (𝑌 = 𝑦) = 𝑝𝑌 (𝑌 = 𝑦). So, the marginal on 𝑌𝜖 is the same as that of 𝑌 .

Conditional on 𝑌𝜖 given 𝑋 The conditional on the modified output variable 𝑌𝜖 given 𝑋 is

𝑝𝑌𝜖 |𝑋 (𝑌𝜖 = 𝑐 | 𝒙) = 𝑝𝐵(𝐵 = 0) ⋅ 𝑝𝑌 |𝑋 (𝑐 | 𝒙) + 𝑝𝐵(𝐵 = 1) ⋅ 𝑝𝑌 (𝑌 = 𝑐) (A.5)

= (1 − 𝜖) ⋅ 𝑝𝑌 |𝑋 (𝑐 | 𝒙) + 𝜖 ⋅ 𝑝𝑌 (𝑐) . (A.6)

Conditional on 𝑋 given 𝑌𝜖 The conditional 𝑝𝑋|𝑌𝜖 (𝒙 | 𝑌𝜖 = 𝑐) combines multiple MVN components is defined as

𝑝𝑋|𝑌𝜖 (𝒙 | 𝑌𝜖 = 𝑐) =
𝑝𝑌𝜖 |𝑋 (𝑌𝜖 = 𝑐 | 𝒙)𝑝𝑋 (𝒙)

𝑝𝑌 (𝑐) 
, .

This results in a more complex distribution, which is more difficult to approximate for performing MI estimation.

MVN proximity technique Our second approach introduces noise in the simulated systems by reducing the distance between the Gaus

sians generated by MVN distributions. This is achieved by moving the mean vectors 𝝁′
𝑐 ,∀𝑐 ∈ [𝐶]0 corresponding to MVN distribution 

representing each class closer to each other. The updated MVNs for each class 𝑐 is defined by MVN(𝝁′
𝑐 ,Σ), which in turn represents 

the conditional PDF 𝑝𝑋|𝑌 (⋅) for the underlying generated system dataset. Notably, when introducing proximity, only the original 
MVN is modified, which only modifies the conditional on 𝑋 given 𝑌 , i.e., 𝑝′

𝑋|𝑌 (𝒙 | 𝑐) = MVN(𝝁′
𝑐 ,Σ). Consequently, the conditional 

PDF 𝑝𝑌 |𝑋 (⋅) and the marginal on 𝑋 can be computed using (A.4) and (A.3) as

𝑝′
𝑌 |𝑋 (𝑐 | 𝒙) = 𝑝𝑌 (𝑐) ⋅ 𝑝′𝑋|𝑌 (𝒙 | 𝑐) ∑𝐶

𝑐=1 𝑝𝑌 (𝑐) ⋅ 𝑝
′
𝑋|𝑌 (𝒙 | 𝑐) =

𝑝′(𝑋,𝑌 )(𝒙, 𝑐)

𝑝𝑋 (𝒙) 
. (A.7)
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Therefore, the underlying distribution for synthetic datasets generated through the introduction of noise using the proximity approach 
remains the same as for the datasets using the MVN distribution with updated means.

A.1.3. Ground truth MI

By plugging in the conditional 𝑝𝑌 |𝑋 (⋅) and the marginal 𝑝𝑌 (⋅) defined above in (2), the ground truth MI for the generated system 
dataset  = {𝒙𝑖, 𝑦𝑖} is approximated as

𝐺𝐼() ≊ 1 
𝑁

𝑁∑
𝑖=1 

𝑝𝑌 |𝑋 (𝑦𝑖 | 𝒙𝑖) log(𝑝𝑌 |𝑋 (𝑦𝑖 | 𝒙𝑖))− 𝐶∑
𝑐=1 

𝑝𝑌 (𝑐) log
(
𝑝𝑌 (𝑐)

)
. (A.8)

For systems simulated using perturbation and proximity techniques, the modified conditional 𝑝𝑌𝜖 |𝑋 (⋅) in (A.6) and 𝑝′
𝑌 |𝑋 (𝑐 | 𝒙) in (A.7) 

and the unchanged marginal on 𝑌 is used to calculate the ground truth MI.

A.2. Implementation details

This section details the implementation setup, including automated tools and calibration methods used for accurate MI estimation 
via Log-Loss. Hyperparameters and their ranges for TabPFN, AutoGluon, baseline MI estimators, and ILD approaches are provided 
in Table A.5, used for experiments in Sections 3 and 4.2. Python code including MI estimation, ILD methods, synthetic dataset 
generation, and the OpenML parser, is available in the GitHub repository5, along with the scripts used for running the experiments 
in another GitHub repository6. The 10 IL-Datasets per time delay were transformed into multi-class datasets with 11 padding classes 
and uploaded to OpenML.4

A.2.1. Performance evaluation metrics

Koyejo et al. [44] defines evaluation measures used for evaluating the performance of classifiers, using the ground truth labels 
denoted by 𝒚 = (𝑦1,… , 𝑦𝑁 ) for a given  = {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 and the predictions denoted by the vector 𝒚̂ = (𝑦̂1,… , 𝑦̂𝑁 ), acquired from the 
empirical risk minimizers 𝑔 and 𝑔𝑝 (cf. Section 2.2.2).

Accuracy and error-rate The accuracy is defined as the proportion of correct predictions, while error-rate is the proportion of 
incorrect predictions

mAcc(𝒚, 𝒚̂) ∶=
1 
𝑁

𝑁∑
𝑖=1 

�𝑦𝑖 = 𝑦̂𝑖� , mErr(𝒚, 𝒚̂) ∶=
1 
𝑁

𝑁∑
𝑖=1 

�𝑦𝑖 ≠ 𝑦̂𝑖� .

Confusion matrix (CM) The CM is defined using the true positive (mtp), true negative (mtn), false positive (mfp), and false negative 
(mfn) as

mCM(𝒚, 𝒚̂) =

⎡⎢⎢⎢⎢⎣
mtn(𝒚, 𝒚̂) =

𝑁∑
𝑖=1

�𝑦𝑖 = 0, 𝑦̂𝑖 = 0� mfp(𝒚, 𝒚̂) =
𝑁∑
𝑖=1

�𝑦𝑖 = 0, 𝑦̂𝑖 = 1�

mfn(𝒚, 𝒚̂) =
𝑁∑
𝑖=1

�𝑦𝑖 = 1, 𝑦̂𝑖 = 0� mtp(𝒚, 𝒚̂) =
𝑁∑
𝑖=1

�𝑦𝑖 = 1, 𝑦̂𝑖 = 1�

⎤⎥⎥⎥⎥⎦
False negative rate (FNR) and FPR The FNR (type 2 error) is defined as the ratio of false negatives to the total number of positive 

instances, while the FPR (type 1 error) is the ratio of false positives to the number of negative instances, defined as

mFNR(𝒚, 𝒚̂) =
mfn(𝒚,𝒚̂) 

mfn(𝒚,𝒚̂)+mtp(𝒚,𝒚̂)
, mFPR(𝒚, 𝒚̂) =

mfp(𝒚,𝒚̂) 
mfp(𝒚,𝒚̂)+mtn(𝒚,𝒚̂)

.

A.2.2. AutoML tools

In the last decade, the field of AutoML has emerged to address the growing need for automating machine learning pipelines, 
particularly in the absence of expert intervention. While AutoML aims to streamline the entire data science workflow, much of the 
research has focused on the challenge of the combined algorithm selection and hyperparameter optimization (CASH) problem. Since 
then, various systems have been devised, demonstrating promising performances for tailoring the choice of ML algorithms and the 
setting of their hyperparameters to a given task, typically comprising a dataset and a loss function [45]. While various AutoML 
systems with complementary strengths have been proposed in the literature, a recent benchmark study [46] suggests AutoGluon [39] 
as the AutoML system with the best performance across datasets and different tasks. In Hollmann et al. [47], instead of tackling 
the CASH problem, a general predictor called TabPFN is fitted across various datasets and can immediately return highly accurate 
predictions. Yielding competitive performance to AutoGluon, TabPFN suggests itself as a state-of-the-art AutoML tool that returns 
results substantially faster than other AutoML systems. Therefore, we selected AutoGluon and TabPFN to approximate the Bayes 
predictor in our methods for estimating MI and detecting ILs in systems [39,47].

AutoGluon This AutoML tool allows the customization of the set of considered ML methods, including gradient boosting machine 
(GBM) tree-based models and deep neural networks (NNs). For our study, we limited the search space of AutoGluon to consistent 
classifiers, i.e., tree-based ensemble classifiers like RF, XT, GBM algorithms (LightGBM, CatBoost, XGBoost), and MLP implemented 
using PyTorch and fastai [48,49]. The AutoGluon search space comprises various learning algorithms with their corresponding 
hyperparameter ranges, is listed in Table A.5.
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Fig. 10. Performance of ILD approaches versus time delay with 5 μs step. 

TabPFN This AutoML tool supports up to 100 numeric features, so we apply dimensionality reduction, using RF or XT when 𝑑 > 100. 
We fine-tune TabPFN using HPO, optimizing parameters such as the number of reduced features, the reduction method, and the 
number of priorfitted models, with hyperparameter ranges listed in Table A.5.

Appendix B. Generalization capability of ILD approaches

This section evaluates the generalization performance of our ILD approaches against state-of-the-art baselines. We assess ILD 
methods with respect to time delay—the computation time difference between correct and incorrect messages—capturing the system’s 
LAS. We focus on detection accuracy, FPR, and FNR for identifying timing side-channels targeting Bleichenbacher-style attacks. 
Heatmaps with a fixed rejection threshold of 5 (𝜏 ≥ 5) are used to visualize results: Fig. 10 uses linear 5 μs increments, while Fig. 11

uses logarithmic 2 μs steps.
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Fig. 11. Performance of ILD approaches versus time delay with 2 μs logarithmic step. 

B.1. TabPFN

This section analyzes MI and classification-based ILD approaches using TabPFN. In summary, TabPFN IR Cal Log-Loss generalizes 
well, detecting 60% of ILs at minimal delays of 20 μs. It performs even better on balanced datasets, achieving up to 80% accuracy.

Classification-based approaches Detection accuracy drops sharply for all approaches when time delays fall below a critical threshold 
(35 μs for imbalanced dataset and 16 μs for balanced dataset), with all methods failing to detect ILs and yielding a 100% FNR. 
FET-Median performs best on imbalanced datasets, while PTT-Majority leads on balanced ones.

MI-based approaches Overall, IR Cal Log-Loss consistently outperforms other approaches across both balanced and imbalanced 
datasets, with HB Cal Log-Loss showing competitive results. While most approaches overfit and overestimate MI on imbalanced 
data, IR Cal Log-Loss and HB Cal Log-Loss maintain reliable detection and avoid false positives. Both methods generalize well, 
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detecting more than 80% of ILs, even under minimal time delays of 20 μs, specifically for the balanced datasets, underscoring IR Cal 
Log-Loss’s strength in enhancing Log-Loss.

B.2. AutoGluon

This section analyzes MI and classification-based ILD approaches using AutoGluon. Generally, they detect non-existent ILs in 
systems generating imbalanced datasets, especially with time delays under 20 μs. However, in systems generating balanced datasets, 
they occasionally detect over 70% of ILs with similar short delays.

Classification-based approaches Overall, FET based approaches show almost comparable detection performance in systems generating 
balanced and imbalanced datasets, while PTT-Majority performs better in the case of balanced systems datasets. All approaches 
reliably detect ILs for time-delays above a critical threshold, with all methods failing to detect ILs and yielding a 100% FNR, below 
this threshold (30 μs for imbalanced dataset and 16 μs for balanced dataset)).

MI-based approaches All methods reliably detect ILs above a critical time-delay threshold, but fail below it—yielding a 100% FNR (at 
25 μs for imbalanced and 10 μs for balanced datasets). The midpoint approach performs best on balanced datasets, while Log-Loss 
excels on imbalanced ones. This suggests that calibration (Cal Log-Loss) does not improve log-loss-based MI estimation; in fact, 
IR Cal Log-Loss and HB Cal Log-Loss degrade it by overfitting and overestimating MI, resulting in false positives and a 100%
FPR—consistent with our findings in Sections 3.3.1 and 4.3.

B.3. Baselines

The baselines consistently achieve around 50% accuracy on both balanced and imbalanced datasets, underscoring the need for 
specialized ILD approaches. MINE and PC-Softmax frequently miss ILs, with detection occasionally reaching 60%. GMM tends to 
overestimate MI, resulting in false positives and a 100% FPR due to overfitting in high-dimensional settings.

B.4. Summary

Overall, we conclude that the calibration techniques (Cal Log-Loss) have mixed effects on Log-Loss performance across TabPFN 
and AutoGluon. While IR Cal Log-Loss and HB Cal Log-Loss often degrade AutoGluon Log-Loss performance due to overfitting, 
they improve detection with TabPFN—especially IR Cal Log-Loss, which consistently achieves the best accuracy on both balanced 
and imbalanced datasets. In contrast, with AutoGluon, FET-Median performs best on imbalanced datasets, while Mid-Point and 
PTT-Majority are most effective for balanced datasets. These findings, consistent with results in Sections 3.3 and 4.2, highlight the 
importance of selecting calibration methods based on the dataset and underlying model. The Mid-Point approach excels on balanced 
datasets but falsely detects ILs in imbalanced ones, resulting in a 100% FPR, confirming the intuition in Section 3.1.1. Baseline ILD 
approaches remain suboptimal detecting only 50% of ILs, often with 100% FPR or FNR.

Data availability

The data is uploaded on OpenML: https://www.openml.org/s/383.
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