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Abstract. Additive feature explanations rely primarily on game-
theoretic notions such as the Shapley value by viewing features as coop-
erating players. The Shapley value’s popularity in and outside of explain-
able AI stems from its axiomatic uniqueness. However, its computational 
complexity severely limits practicability. Most works investigate the uni-
form approximation of all features’ Shapley values, needlessly consum-
ing samples for insignificant features. In contrast, identifying the k most 
important features can already be sufficiently insightful and yields the 
potential to leverage algorithmic opportunities connected to the field of 
multi-armed bandits. We propose Comparable Marginal Contributions 
Sampling (CMCS), a method for the top-k identification problem uti-
lizing a new sampling scheme taking advantage of correlated observa-
tions. We conduct experiments to showcase the efficacy of our method
compared to competitive baselines. Our empirical findings reveal that
estimation quality for the approximate-all problem does not necessarily
transfer to top-k identification and vice versa.
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1 Introduction 

The fast-paced development of artificial intelligence poses a double-edged sword. 
Obviously on one hand, machine learning models have significantly improved in 
prediction performance, most famously demonstrated by deep learning models. 
But, on the other hand, their required complexity to exhibit these capabilities 
comes at a price. Human users face concerning challenges comprehending the
decision-making of such models that appear to be increasingly opaque. The field
of explainable AI [25, 34] offers a simple yet popular approach to regain under-
standing and shed light onto these black bo x models by means of additive feature
explanations [11]. Probing a model’s behavior to input, this explanation method 
assigns importance scores to the utilized features. Depending on the explanan-
dum of interest, each score can be in terpreted as the feature’s impact on the
models’ prediction for a particular instance or its generalization performance.

The Shapley value [32] has emerged as a prominent mechanism to assign 
scores. Taking a game-theoretic perspective, each feature is viewed as a player
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in a cooperative game in which the players can form coalitions and reap a col-
lective benefit by solving a task together. For instance, a coalition representing 
a feature subset can be rewarded with the generalization performance of the to 
be explained model using only that subset. Posing the omnipresent question of 
how to divide in equitable manner the collective benefit that all players j ointly
achieve, reduces the search for feature importance scores to a fair-division prob-
lem. The Shapley value is the unique solution to fulfill certain desiderata which
arguably capture an intuitive notion of fairness [32]. The marginal contributions 
of a player to all coalitions, denoting the increase in collective benefit when 
joining a coalition, are taken into a weighted sum by the Shapley value.

It has been extensively applied for local explanations, dividing the prediction
value [22], and global explanations that divide prediction performance [9]. In 
addition to providing understanding, other works proposed to utilize it for the 
selection of machine learning entities such as features [6, 35], datapoints [13], neu-
rons in deep neural networks [14], or base learners in ensembles [30]. We refer t o
[31] for an overview of its applications in machine learning. Unfortunately, the 
complexity of the Shapley value poses a serious limitation: its calculation encom-
passes all coalitions within the exponentially growing power set of players. Hence, 
the exact computation of the Shapley value is quickly doomed for even moderate 
feature numbers. Ergo, the research branch of estimating the Shapley value has
sparked notable interest, in particular the challenge of precisely approximating
the Shapley values of all players known as the approximate-all problem.

However, often the exact importance scores just serve as a means to find the 
most influential features, be it for explanation or preselection [6, 35], and are 
not particularly relevant themselves. Hence, we advocate for the top-k identi-
fication problem [18] in which an approximation algorithm’s goal is to identify 
the k players with highest Shapley values, without having to return precise esti-
mates. This incentivizes to forego and sacrifice precision of players’ estimates for 
whom reliable predictions of top-k membership already manifest during runtime. 
Instead, the available samples, reflecting finite computational power at disposal,
are better spent on players on the verge of belonging to the top-k in order to
speed up the segregation of top-k players from the rest.

Contribution. We propose with Comparable Marginal Contributions Sampling 
(CMCS), Greedy CMCS, and CMCS@K novel top-k identification algorithms 
for the Shapley value. More specifically, our contributions are:

– We present a new representation of the Shapley value based on an altered 
notion of marginal contribution and leverage it to develop CMCS. On the 
theoretical basis of an tithetic sampling, we underpin the intuition behind
utilizing correlated observations especially for top-k identification.

– Moreover, with Greedy CMCS and CMCS@K we propose multi-armed 
bandit-inspired enhancements. Our proposed algorithms are model-agnostic 
and applicable to any coo perative game independent of the domain of interest.

– Lastly, we observe how empirical performance does not directly translate from 
the approximate-all to the top-k identification problem. Depending on the
task, different algorithms are favorable and a conscious choice is advisable.
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2 Related Work 

The problem of precisely approximating all players’ Shapley values has been 
extensively investigated. Since the Shapley value is a weighted average of a 
player’s marginal contributions, methods that conduct mean estimation form 
a popular class of approximation algorithms. Most of these sample marginal
contributions as performed by ApproShapley [4]. Many variance reduction tech-
niques, that increase the estimates’ convergence speed, have been incorporated:
stratification [2, 3, 23, 27, 28, 33], antithetic sampling [16, 24], and control v ariates
[15]. Departing from the notion of marginal contributions, other methods view 
the Shapley value as a composition o f coalition values and sample these instead
for mean estimation [8, 19, 20]. A different class of methods does not approximate 
Shapley values directly, but fits a parametrized surrogate game via sampling. As 
the surrogate game represents the game of interest increasingly more faithful, its 
own Shapley va lues become better estimates. Due to the surrogate game’s highly
restrictive structure these can be obtained in polynomial time. KernelSHAP [22] 
is the most prominent member of this class with succeeding extensions [7, 29]. 
See [5] for an overview of further methods for feature attribution and specific
model classes.

First to consider the top-k identification problem for Shapley values were [26] 
by simply returning the players with the highest estimates effectively computed
by ApproShapley [4]. This straightforward reduction of top-k identification to 
the approximate-all problem can be realized with any approximation algorithm.

[ 18] establish a connection to the field of multi-armed bandits [21] and thus 
open the door to further algorithmic opportunities that top-k identification has 
to offer. Here, pulling an arm of a slot machine metaphorically captures the 
draw of a sample from a distribution. Usually, one is interested in maximizing 
the cumulative random reward obtained from sequentially playing the multi-
armed slot machine or finding the arm with highest mean reward. Modeling each
player as an arm and its reward distribution to be the player’s marginal con-
tributions distributed according to their weights within the Shapley value [18], 
facilitates the usage of bandit algorithms to find the k distributions with highest 
mean values which represent the players’ Shapely values. The inherent trade-off 
between constantly collecting information from all arms to avoid falling victim 
to the estimates’ stochasticity and selecting only those players that promise the
most information gain to correctly predict top-k membership, constitutes the
well-known exploration-exploitation dilemma.

Bandit algorithms such as Gap-E [12]  and  Border Uncertainty Sampling
(BUS) [18] tackle it by greedily selecting the next arm to pull as the one that 
maximizes a selection criterion which combines the uncertainty of top-k member-
ship and its sample number. In contrast Successive Accepts and Rejects (SAR)
[1] phase-wise eliminates arms whose top-k membership can be r eliably pre-
dicted. SHAP@K [17] employs an alternative greedy selection criterion based on 
confidence intervals for the players’ estimates. In each round, samples are taken 
from two players, one from the currently predicted top-k and one outside of them,
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with the highest overlap in confidence intervals. The overlap is interpreted as the 
likelihood that the pair i s mistakenly partitioned and should be swapped instead.

3 The Top-k Identification Problem 

We introduce cooperative games and the Shapley value formally in Sect. 3.1,  and  
briefly after present the widely studied problem of approximating all players’ 
Shapley values in a cooperative game Sect. 3.2. On that basis, we introduce 
the problem of identifying the top-k play ers with the highest Shapley values in
Sect. 3.3 and distinguish it from the former by highlighting decisive differences 
in performance measures which will prepare our theoretical findings a nd arising
methodological avenues alluded to in Sect. 4. 

3.1 Cooperative Games and the Shapley Value

A cooperative game (N ,  ν) consists of a player set N = {1,  .  .  .  ,  n} and a value 
function ν : P(N ) → R that maps each subset S ⊆  N  to a real-valued worth. 
The players in N can cooperate by forming coalitions in order to achieve a goal. 
A coalition is represented by a subset S of N that includes exactly all players 
which join the coalition. The formation of a coalition resolves in the (partial) 
fulfillment of the goal and a collective benefit ν(S) disbursed to the coalition 
which we call the worth of that coalition. The empty set has no worth, i.e. 
ν(∅)  =  0. The abstractness of this notion offers a certain versatility in modeling 
many cooperative scenarios. In the context of feature explanations f or example,
each player represents a feature and the formation of a coalition is interpreted to
express that a model or learner uses only that feature subset and discards those
features absent in the coalition. Depending on the desired explanation type, the
prediction value for a datapoint of interest or an observed behavior of the model
over multiple instances, for example generalization performance on a test set, is
commonly taken as the worth of a feature subset.

A central problem revolving around cooperative games is the question of how 
to split the collective benefit that all players achieve together among them. More 
precisely, which share φi of the grand coalition’s worth ν(N ) should each player 
i ∈  N  receive? A common demand is that these payouts φ are to be fair and
reflect the contribution that each player provides to the fulfillment of the goal.
Guided by this rationale, the Shapley value [32] offers a popular solution by 
assigning each player i the payoff 

φi =
∑

S⊆N\{i} 

1 
n
(
n−1 
|S|

) · [ν(S ∪ {i}) − ν(S)] . (1) 

The difference in worth Δi(S)  :=  ν(S ∪  {i}) − ν(S) is known as marginal con-
tribution and reflects the increase in collective benefit that i causes by joining 
the coalition S. The reason for the Shapley value’s popularity lies within its
axiomatic justification. It is the unique payoff distribution to simultaneously
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satisfy the four axioms, symmetry, linearity, efficiency, and dummy player [32], 
which capture an intuitive notion of fairness in light of the faced fair division 
problem. Despite this appeal, the Shapley value comes with a severe drawback. 
The number of coalition values contained in its summation gro ws exponentially
w.r.t. the number of players n in the game. In fact, its exact calculation is prov-
ably NP-hard [10] if no further assumption on the structure of ν is made, and 
as a consequence, the Shapley value becomes practically intractable for datasets 
with even medium-sized feature numbers. This issue necessitates the precise esti-
mation of Shapley values to provide accurate explanations.

3.2 Approximating All Shapley V alues

Within the approximate-all problem, the objective of an approximation algorithm 
A is to precisely estimate the Shapley values φ =  (φ1,  .  .  .  ,  φn) of all players by 
means of estimates φ̂ =  (  ̂φ1,  .  .  .  ,  ̂φn) for a given cooperative game (N ,  ν).  We  
consider the fixed-budget setting in which the number of times A can access ν 
to evaluate the worth ν(S) of a coalition S of its choice is limited by a bud-
get T ∈ N.  Thus,  A can sequentially retrieve the worth of T many, possibly 
duplicate, coalitions to construct i ts estimate φ̂. This captures the limitation in
time, computational resources, or monetary units that a practical user is facing
to avoid falling victim to the exact computation’s complexity. Furthermore, it is
motivated by the observation that the access to ν poses a common bottleneck,
by performing inference of complex models or re-training on large data, instead
of the negligible arithmetic operations of A.

Since A potentially uses randomization, for instance by drawing samples and 
evaluating random coalitions, the comparison of φ̂ and φ needs to incorporate 
this randomness to judge the approximation quality. In light of this, the expected 
mean squared error is a wide-spread measure of approximation quality that is
to be minimized by A:

E[MSE] :=
1
n

∑

i∈N
E

[(
φi − φ̂i

)2
]

. (2) 

3.3 Identifying Top-k Players: A Subtle but Significant Difference

Instead of estimating the exact Shapley values of all players, of which many 
might be similar and insignificant, one could be interested in just finding the 
players that possess the highest Shapley values, with the particular values being 
incidental. More precisely, in the top-k identification problem (TkIP) an approx-
imation algorithm A is confronted with the task of returning an estimate K̂  ⊆  N
of the coalition K∗ with given size k ∈ [n] := {1, . . . , n} that contains the play-
ers with the highest Shapley values in the game (N , ν). We consider again the
fixed-budget setting with budget T .

However, K∗ is not necessarily unique as players may share the same Shapley 
value. We restrain from any assumptions on the value function ν and will thus
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present notions and measures capable of handling the ambiguity of K∗.  We  call  a  
coalition K  ⊆  N  of k many players eligible if the sum of Shapley values associated 
to the players in K is maximal:

∑

i∈K
φi = max

S⊆N :|S|=k

∑

i∈S

φi . (3) 

We denote by Ek ⊆  P(N ) the set of all eligible coalitions. Any eligible estimate 
K̂ is correct and A should not be punished for it. Note that for distinct Shapley 
values we have Ek = {K∗}. In the following, we give in a first step precision 
measures (to be maximized) and error measures (to be minimized) f or K̂ given
Ek and extend them in a second step to the randomness of A. A straightforward
way to judge the quality of an estimate K is the binary precision [18] 

ψbin( K̂)  :=

{
1 if K̂  ∈ Ek

0 otherwise
(4) 

that maximally punishes every wrongly included player in K̂. In order to further 
differentiate estimates that are close to being eligible from ones that have little 
overlap with an eligible coalition, we introduce the ratio precision

ψrat(K̂) :=
1
k
max
K∈Ek

|K ∩ K̂| (5) 

which measures the percentage of correctly identified players in K̂ by counting 
how many players can remain in K̂ after swapping with players from N  \  ̂K 
to form an eligible coalition. It serves as a gradual but still discrete refinement 
of the binary precision with both measures assigning values in the unit interval 
[0, 1]. Let φk∗ := minK∈Ek

mini∈K φi be the minimal Shapley value in any eligible
coalition. Obviously, it is the minimal value for all coalitions in Ek. [17]  propose  
the inclusion-exclusion error which is the smallest ε  >  0 that fulfills 

φi ≥ φk∗ − ε︸ ︷︷ ︸
inclusion

and φj ≤ φk∗ + ε
︸ ︷︷ ︸

exclusion

(6) 

for all i ∈ K̂ and all j ∈  N  \  ̂K: 

ρinc+exc := inf{ε ∈ R≥0 |  ∀i ∈ K̂ : φi ≥ φk∗ − ε,∀j ∈ N \K̂ : φj ≤ φk∗ + ε} . (7) 

In simple terms, it measures how much the sum of Shapley values associated with 
K̂ can increase at least or that of N  \  ̂K can decrease by swapping a single player 
between them. To account for the r andomness of A, effectively turning K̂ into
a random variable, the expectation of each measure poses a reasonable option
just as in Sect. 3.2. Worth mentioning is that E[ψbin( K̂)] turns out to be the 
probability that A flawlessly solves the top-k identification problem. [17]  resort  
to probably approximate correct (PAC) learning. Specifically for the inclusion-
exclusion error they call A for δ ∈ [0, 1] an (ε, δ )-PAC learner if

P(ρinc+exc(K̂) ≤ ε) ≥ 1 − δ (8)



Antithetic Sampling for Top-K Shapley Identification 137

holds after A terminates on its own with unlimited budget at disposal. Obvi-
ously, any algorithm for the approximate-all problem can be translated t o top-k
identification by simply returning the k players with the highest estimates.

4 The Opportunity of Correlated Observations 

The two problems of approximating all players and top-k identification differ 
in goal and quality measures, hence they also incentivize different sampling 
schemes. It is the aim of our work to emphasize and draw attention to our 
observation that the role of correlated samples between players plays a funda-
mental role for the top-k identification problem, whereas this is not the case 
for the approximate-all problem. We demonstrate this at the example of a sim-
ple and special class of approximation algorithms that can solve both problem 
statements. We call an algorithm A an unbiased equifrequent player-wise inde-
pendent sampler if it samples marginal contributions for all pla yers in M many
rounds. In each round m ∈ {1, . . . , M} A draws n coalitions S

(m)
1 , . . . , S

(m)
n ,

one for each i ∈ N , according to a fixed joint probability distribution over
P(N \ {1}) × . . . × P(N \ {n}) with marginal distribution

P

(
S
(m)
i = S

)
=

1
n · (

n−1
|S|

) (9) 

for each i ∈  N  . Note that this implies E[Δi(S (m) 
i )] = φi for all players. Further, 

the samples are independent between rounds and A aggregates the samples of 
each player to an estimate of its Shapley value ˆ φi by taking the mean of their
resulting marginal contributions, i.e.

φ̂i =
1
M

M∑

m=1

Δi

(
S
(m)
i

)
, (10) 

which is an unbiased estimate of φi. For the approximate-all problem A simply 
returns these estimates and for identifying the top-k players it returns the set of 
k players K̂ that yield the highest estimates φ̂i. Ties can be solved arbitrarily. A
well-known member of this class of approximation algorithms is ApproShapley
proposed by [4]. For the approximate-all problem one can quickly derive the 
expected mean squared error of A to be

E[MSE] =
1

nM

∑

i∈N
σ2

i , (11) 

where σ2 
i := V[Δi(S (m) 

i )] denotes the variance of player i’s marginal contribu-
tions. The expected MSE decreases for a growing number of samples M and 
the sum of variances σ2 

i can be seen as a constant property of the game (N , ν)
that is independent of A. In contrast, turning to top-k identification, we show
the emergence of another quantity in Theorem 1 if one considers the inclusion-
exclusion error. Let Kε := {K ⊆ N | |K| = k, ρinc+exc(K) ≤ ε} for any ε ∈ R

≥0.
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The central limit theorem can be applied within our considered class and thus 
we assume each 

√
M (( φ̂i − φ̂j) − (φi − φj)) to be normally distributed.

Theorem 1. Every unbiased equifrequent player-wise independent sampler A 
for the top-k identification problem returns for any cooperative game (N ,  ν) an 
estimate K̂ with inclusion-exclusion error of at most ε ≥ 0 with probabil-
ity at least 

P( K̂  ∈  Kε) ≥
∑

K∈Kε

⎡ 

⎢⎢⎣1 −
∑

i∈K 
j∈N\K 

Φ

(√ 
M φj − φi 

σi,j

)
⎤

⎥⎥⎦ ,

where σ2
i,j := V[Δi(S

(m)
i )−Δj(S

(m)
j )] and Φ denotes the standard normal cumu-

lative distribution function.

The  proof  is  given  in  Appendix A.1. Notice the difference to Eq. (11)  for  
approximating all Shapley values. The MSE directly reflects the change of each 
single player’s estimate φ̂i, but in contrast, for identifying top-k an estimate 
may change arbitrarily as long as the partitioning of the players into top-k and
outside of top-k stays the same.

For most pairs i, j with i ∈  K  and j ∈  N  \K  of a coalition K  ∈  Kε with suffi-
ciently small ε,  it  holds  φi >  φ  j . Thus, for a fixed game (N , ν) and fixed budget
T , the lower bound in Theorem 1 should favorably increase if σi,j decreases which 
can be influenced by A due to the allowed flexibility in its sampling scheme. Note 
that A is only restricted in the marginal contribution of each S (m) 

i but not in 
the joint distribution of S (m) 

1 ,  .  .  .  ,  S  (m) 
n . In f act, the variance of the difference

between marginal contributions decomposes to

σ2
i,j = σ2

i + σ2
j − 2Cov

(
Δi

(
S
(m)
i

)
,Δj

(
S
(m)
j

))
. (12) 

Consequently, an increased covariance between sampled marginal contributions 
of top-k players and bottom players improves our lower b ound. Leveraging the
impact of covariance shown by Eq. 12 in the sampling procedure is generally 
known as antithetic sampling, a variance reduction technique for Monte Carlo 
methods to which our class belongs. Our considered class of approximation algo-
rithms does not impose any restrictions on the contained covariance between 
marginal contributions sampled within the same round m. We interpret this as
degrees of freedom to shape the sampling distribution. Striving towards more
reliable estimates K̂, we propose in Sect. 5 an approach based on the suspected 
improvement that positiv ely correlated observations promise.

5 Antithetic Sampling Approach 

Motivated by Sect. 4, we develop in Sect. 5.1 Comparable Marginal Contributions 
Sampling (CMCS), a budget-efficient antithetic sampling procedure that natu-
rally yields correlated observations applicable for both problem statements. We
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take inspiration from [17, 18] and extend CMCS with a greedy selection criterion
in Sect. 5.2, deciding from which players to sample from, to exploit opportunities
that top-k identification offers.

Fig. 1. A cooperative game spans a lattice with each coalition S ⊆  N  forming a node 
and each marginal contribution Δi(S) being represented by an edge between S and 
S ∪  {i}, exemplified here for N = {1, 2, 3, 4}. CMCS draws a random coalition S and 
computes the e xtended marginal contributions Δ′

i(S) = Δi(S\{i}) of all players i ∈ N .
For n = 4 it evaluates five coalitions and retrieves four marginal contributions.

5.1 Sampling Comparable Marginal C ontributions

We start by observing that the sampling of marginal contributions can be 
designed to consume less than two evaluations of ν per sample. In fact, the 
budget restriction T is not coupled to the evaluation of marginal contributions 
as atomic units but single accesses to ν. Instead of separately evaluating ν(S) and 
ν(S ∪ {i}) for each Δi(S), the evaluations can be reused to form other marginal
contributions and thus save budget. This idea can already be applied to the
sampling of permutations of the player set. [4] evaluate for each drawn permu-
tation π the marginal contribution Δi(prei(π)) of each player i to the preceding 
players in π. Except for the last player in π, each evaluation ν(pre i(π)∪{i}) can
be reused for the marginal contribution of the succeeding player.

We further develop this paradigm of sample reusage by exploiting the fact 
that any coalition S ⊆  N  appears in n many marginal contributions, one for 
each player, namely in n−|S| many of the form Δi(S) for i  /∈ S and |S| many of 
the form Δi(S \{i}) for i ∈ S. We meaningfully unify both cases by establishing
the notion of an extended marginal contribution in Definition 1.
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Definition 1. For any cooperative game (N ,  ν), the extended marginal contri-
bution of a player i ∈  N  to a coalition S ⊆  N is given by

Δ′
i(S) := ν(S ∪ {i}) − ν(S \ {i}) .

Fittingly, this yields Δ′
i(S)  =  Δi(S \  {i}) for i ∈ S and Δ′

i(S)  =  Δi(S)  =  
Δi(S \  {i}) for i  /∈ S. Thus, we cir cumvent the case of Δi(S) = 0 for i ∈ S.

We aim to draw in each round m (of M many) a coalition S(m) ⊆  N , compute 
the extended marginal contributions Δ ′i(S(m)) of all players as illustrated in
Fig. 1, and update each φ̂i as the average of the corresponding observations: 

φ̂i = 
1 
M 

M ∑

m=1

Δ′
i

(
S(m)

)
. (13) 

We reuse the coalition value vS(m) = ν(S(m)) to update all estimates by com-
puting each extended marginal contribution as 

Δ′
i

(
S(m)

)
=

{
vS(m) − ν(S(m) \  {i}) if i ∈ S

ν(S(m) ∪ {i}) − vS(m) otherwise
. (14) 

Consequently, updating all n estimates requires only n+1 calls to ν such that we 
obtain a budget-efficiency of n 

n+1 sampled observations per call. In comparison, 
drawing marginal contributions separately yields a budget-efficiency of 1/2.  In  
order to make this approach effective, it is desirable to obtain unbiased estimates 
leading to the question whether there even exists a probability distribution over
P(N ) to sample S(m) from such that E[Δ′

i(S
(m))] = φi for all i ∈ N . Indeed,

we show its existence in Proposition 1 by means of a novel representation of the 
Shapley value based on extended marginal contributions.

Proposition 1. For any cooperative game (N ,  ν), the Shapley value of each 
player i ∈  N  is a weighted average of its extended marginal contributions. In 
p articular, it holds

φi =
∑

S⊆N

1
(n + 1)

(
n

|S|
) · Δ′

i(S) .

See Appendix A.2 for a proof. The weighted average allows to view the Shap-
ley value as the expected extended marginal contribution and thus drawing S(m) 

from the distribution 

P

(
S(m) = S

)
=

1
(n + 1)

(
n

|S|
) for all S ⊆ N (15) 

yields unbiased estimates. Note that this is indeed a well-defined probability dis-
tribution over P(N ) as shown in Appendix A.2. The resulting algorithm Com-
parable Marginal Contributions Sampling (CMCS) is given by Algorithm 1.  It  
requires the cooperative game (N, ν), the budget T , and the parameter k as 
input. The number of performed rounds M is bounded by M = � T

n+1
. We solve
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sampling from the exponentially large power set of N by first drawing a size 

ranging from 0 to n uniformly at random (line 3) and then draw ing uniformly a
coalition S of size 
 (line 4). This results in the probability distribution of Eq.
(15) since there are n +  1  sizes and

(
n
�

)
coalitions of size 
 to choose from. For 

the top-k identification problem CMCS returns the set of k many players ˆ K for
which it maintains the highest estimates φ̂i. Ties are solved arbitrarily.

Algorithm 1. Comparable Marginal Contributions Sampling (CMCS) 
Input: (N ,  ν), T ∈ N,  k  ∈ [n] 
1: φ̂i ← 0 for all i ∈  N  
2: for m =  1,  .  .  .  , � T 

n+1
� do 

3: Draw � ∈  {0,  .  .  .  ,  n} uniformly at random 
4: Draw S ⊆  N  with |S| = � uniformly at random 
5: vS ← ν(S) 
6: for i ∈  N  do 

7: Δi ←
{

vS − ν(S \ {i}) if i ∈ S

ν(S ∪ {i}) − vS otherwise

8: φ̂i ← (m−1)·φ̂i+Δi
m

9: end for
10: end for
Output: K̂ containing k players with highest estimate φ̂i

CMCS can also be applied for the approximate-all problem by simply returning 
its estimates since its sampling procedure and computation of estimates is inde-
pendent of k. Thus, it is also an unbiased equifrequent player-wise independent
sampler (see Sect. 4) because the marginal contributions obtained in each round 
stem from a fixed join t distribution and the resulting marginal distributions
coincide with Eq. (9) as implied by Proposition 1. Hence for T being a multiple 
of n +  1, its expected MSE is according to Eq. 11: 

E[MSE]  =  
n +  1  
nT

∑

i∈N 

σ2
i . (16) 

For the top-k identification the sampling scheme in CMCS yields an interesting 
property. All players share extended marginal contributions to the same refer-
ence coalitions S(m). Intuitively, this makes the estimates more comparable, as 
all have been updated using the same samples. Instead of estimating φi and 
φj precisely, CMCS answers the relevant question whether φi >  φj holds, by 
comparing the players marginal contributions to roughly the same coalitions,
modulo the case of i ∈ S and j /∈ S or vice versa. Instead, drawing marginal
contributions separately, independently between the players, can, metaphorically
speaking, be viewed as comparing apples with oranges.

Consequently, the estimates φ̂i and φ̂j are correlated and we further con-
jecture that the covariance Cov(Δ′

i(S
(m)),  Δ′

j(S
(m))) = E[Δ′

i(S
(m))Δ′

j(S
(m))] −
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E[Δ′
i(S

(m))]E[Δ′
j(S

(m))] has a positive impact on the inclusion-exclusion error 
of CMCS in light of Theorem 1. For cooperative games in which the marginal 
contribution of a player is influenced by the coalitions size, our sampling scheme 
should yield positively correlated samples. In this case, if player i or j is added to 
the same coalition S, it is likely that both have a positive marginal c ontribution
(or both share a negative) which in turn speaks for a positive covariance. For
the general case, the covariance is stated in Proposition 2. 

Proposition 2. For any cooperative game (N ,  ν) the covariance between the 
extended marginal contributions of any players i �= j of the same round sampled 
by CMCS is given by 

Cov
(
Δ′

i

(
S(m)

)
,  Δ′

j

(
S(m)

))
= 1 

n+1

∑
S⊆N\{i} 

Δi(S)
(

Δ′
j ( S)

( n
|S|)

+ Δ′
j(S∪{i})
( n

|S|+1)

)
− φiφj .

The proof is given in Appendix A.2. The sum can be seen as the Shapley 
value φi in which each marginal contribution of i is additionally weighted by 
extended marginal contributions of j. To demonstrate the presumably positive 
covariance and give evidence to our conjecture, we consider a simple game of 
arbitrary size n with ν(N ) = 1 and ν(S) = 0 for all coalitions S �= N . Each
player has a Shapley value of 1

n and the covariance in Proposition 2 given by 
1 

n+1 − 1 
n2 is strictly positive f or n ≥ 2.

5.2 Relaxed Greedy Player Selection for T op-k Identification

Striving for budget-efficiency in the design of a sample procedure might be favor-
able, however, CMCS as proposed in Sect. 5.1 is forced to spend budget on the 
retrieval of marginal contributions for all players in order to maximize budget-
efficiency. This comes with the disadvantage that evaluations of ν are performed 
to sample for a player i whose estimate φ̂i is possibly already reliable enough 
and does not need further updates compared to other players. This does not 
even require φ̂i to be precise in absolute terms. Instead, it is sufficient to predict 
with certainty whether i belongs to the top-k or not by comparing it to the other
estimates. This observation calls for a more selective mechanism deciding which
players to leave out in each round and thus save budget.

A radical approach is the greedy selection of a single player which maxi-
mizes a selection criterion based on the collected observ ations that incorporates
incentives for exploration and exploitation. Gap-E [1, 12] composes the selection 
criterion out of the uncertainty of a player’s top-k (exploitation) membership 
and its number of observations (exploration). Similarly, BUS [18] selects the 
player i minimizing the product of its estimate’s distance to the predicted top-k 
border 1 2 (mini∈ ̂K φ̂i − maxj∈N\ ̂K φ̂j) times its sample nu mber Mi. In the same
spirit but outside of the fixed-budget setting, SHAP@K [17] chooses for given 
δ ∈ (0, 1) the two players i ∈ K̂ and j ∈  N  \  ̂K with the highest overlap in 
their δ/n-confidence intervals of their estimates φ̂i and φ̂j . It applies a stopping
condition and terminates when no overlaps between K̂ and N \ K̂ larger then
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a specified error ε exist. Assuming normally distributed estimates φ̂i under the 
central limit theorem, it holds P(ρinc+exc( K̂) ≤ ε) ≥ 1 − δ for its prediction K̂.

Given the core idea of CMCS to draw samples for multiple players at once in 
order to increase budget-efficiency and obtain correlated observations, the greedy
selection of a single player as done in [12, 18] or just a pair [17] is not suitable 
for our method. The phase-wise elimination performed by SAR [1] is not viable 
as it assumes all observations to be independent in order to analytically derive 
phase lengths. Instead, we relax the greediness by probabilistically selecting a 
set of players P (m) ⊆  N  in each round m, favoring those players who fulfill a 
selection criterion to higher degree. By doing so, we propose Greedy CMCS that 
intertwines the overcoming of the exploration-exploitation dilemma with the 
pursuit of budget-efficiency. We do not abandon exploration, since every player
gets a chance to be picked, and the selection criterion incentivizes exploitation
as it reflects how much the choice of a player benefits the prediction K̂.

Our selection criterion is based on the current knowledge of φ̂1,  .  .  .  ,  ̂φn and 
the presumably best players K̂. Inspired by Theorem 1, we approximate the 
probability of each pair of players i ∈ K̂ and j ∈  N  \  ̂K being incorrectly 
partitioned by Greedy CMCS as

p̂i,j := Φ

(
√

Mi,j
δ̂i,j

σ̂i,j

)
. (17) 

For all pairs (i, j) ∈  N  2 we track:

– the number of times Mi,j that both i and j ha ve been selected in a round,

– the mean difference δ̂i,j := 1 
Mi,j 

Mi,j∑
m=1 

Δ′
j(S

(fi,j (m))) − Δ′
i(S

(fi,j (m))) of their 

sampled marginal contributions within these Mi,j rounds, where fi,j(m) 
denotes the m-th round in which i and j are selected, and

– the estimate σ̂2 
i,j of the variance σ2 

i,j := V[Δ′
i(S

(m)) − Δ′
j( S

(m))] w.r.t. Eq.
(15) derived from the s ampled observations.

Important to note is that we may not simply use the difference φ̂j − φ̂i of our 
Shapley estimates, including all rounds, instead of δ̂i,j because φ̂i and φ̂j may 
differ i n their respective total amount of total samples Mi and Mj such that the
central limit theorem used for Theorem 1 is not applicable anymore. We derive
Eq. (17) in Appendix A.3. 

For each pair (i, j) ∈ K̂× (N  \  ̂K) the estimate p̂i,j quantifies how likely i and 
j are wrongly partitioned: Greedy CMCS estimates φ̂i ≥ φ̂j although φi <  φj 
holds. Since we want to minimize the probability of such a mistake, it comes 
natural to include the pair (i, j) with the highest estimate p̂i,j in the next round 
of Greedy CMCS to draw marginal contributions from, i.e. i, j ∈ P (m).  As  a  
consequence, φ̂i and φ̂j should become more reliable causing the error probability 
to shrink. Let Q(m) ⊆ K̂ × (N \ K̂) be the set of selected pairs in round m from
which the selected players are formed as P (m) = {i ∈ N | ∃(i, j) ∈ Q(m)∨∃(j, i) ∈
Q(m)}. In order to allow for more than two updated players in a round m, i.e.
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|Q(m)| > 1, but waive pairs that are more likely to be correctly classified, we 
probabilistically include pairs in Q(m) depending on their p̂-value. Let p̂max = 
maxi∈ ̂K,j /∈ ̂K p̂i,j be the currently highest and p̂min = mini∈ ̂K,j /∈ ̂K p̂i,j the currently 
lowest value. We select each pair (i, j) independent ly with probability

P

(
(i, j) ∈ Q(m)

)
=

p̂i,j − p̂min

p̂max − p̂min
for all (i, j) ∈ K̂ × (N \ K̂) . (18) 

This forces the pair with p̂max to be picked and that with p̂min to be left out. 
The probability o f a pair beings elected increases monotonically with its p̂-value.

Within an executed round we do not only collect marginal contributions for 
players in P (m) and update Mi,j , δ̂i,j ,  and  ̂σ2 

i,j for all (i, j) ∈ Q(m).  We  use  the  
collected information to its fullest by also updating the estimates of all pairs 
(i, j) with both players being present in P (m) despite (i, j) /∈ Q(m). Visually
speaking, we update the complete subgraph induced by P (m) with players being
nodes and edges containing the pairwise estimates.

Since the assumption of normally distributed estimates motivated by the 
central limit theorem is not appropriate for a low number of samples, we initialize
Greedy CMCS with a warm-up phase as proposed for SHAP@K [17]. During 
the warm-up Mmin many rounds of CMCS are performed such that afterwards 
every player’s Shapley estimate is based on Mmin samples. This consumes a 
budget of (n +  1)Mmin many evaluations. Mmin is provided to Greedy CMCS as 
a parameter. Subsequently, the above described round-wise greedy sampling is 
applied as the second phase until the depletion of the in total available budget T .
The pseudocode of the resulting algorithm Greedy CMCS is given in Appendix
B. 

Instead of our proposed selection mechanism, one can sample in the second 
phase only from the two players i ∈ K̂ and j  /∈ K̂ with the biggest overlap in 
confidence intervals as performed by SHAP@K. Leaving the sampling of CMCS 
in the first phase untouched, we call this variant CMCS@K.  This  is  f  easible since
the choice of the sampling procedure in SHAP@K is to some extent arbitrary,
as long as it yields confidence intervals for the Shapley estimates.

6 Empirical Results 

We conduct multiple experiments of different designs to assess the performance of 
sampling comparable marginal contributions at the example of explanation tasks
on real-world datasets. First, we demonstrate in Sect. 6.1 the iterative improve-
ments of our proposed algorithmic tricks ranging from the naive independen t
sampling to Greedy CMCS and CMCS@K. 6.2 investigates whether favorable 
MSE values of algorithms for the approximate-all problem translate on the same 
cooperative games to the inclusion-exclusion error for top-k identification. In
Sect. 6.3 we compare our variants of CMCS against baselines and state-of-the-
art competitors. Lastly, we investigate in Sect. 6.4 the required budget until the 
stopping criterion of [17] applied to CMCS guarantees an error of at most ε with
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probability at least 1 − δ. All performance measures are calculated by exhaus-
tively computing the Shapley values in advance and averaging the results over 
1000 runs. Standard errors are included as shaded bands. We compare against
ApproShapley [4], KernelSHAP [22] (with reference implementation provided 
by the shap python package, the one to s ample without replacement), Strat-
ified SVARM [19], BUS [18], and SamplingSHAP@K [17] which is SHAP@K 
drawing samples according to ApproShapley. For both SamplingSHAP@K  and  
CMCS@K, we use Mmin =  30  and confidence i ntervals of δ/n with δ = 0.001. We
drop Gap-E [12]  and SAR [1] due to wo rse performances1. 

Fig. 2. Inclusion-exclusion error ε for increasingly comparable sampling variants (Inde-
pendent, Same Length, Identical), incorporation of sample-reusage (CMCS), a nd greedy
selection (Greedy CMCS, CMCS@K) depending on T .

Datasets and Games. Analogously to [19, 20], we generate cooperative games 
from two types of explanation tasks in which the Shapley values represent fea-
ture importance scores. For global games, we construct the value function by 
training a sklearn random forest with 20 trees on each feature subset and taking 
its classification accuracy, or the R2-metric for regression tasks, on a test set 
as the coalitions’ worth. We employ the Adult (n =  14, classification), Bank 
Marketing (n =  16, classification), Bike Sharing (n =  15, regression), Diabetes 
(n =  10, regression), German Credit (n =  20, classification), Titanic (n =  11, 
classification), and Wine (n =  13, classification) dataset. For local games, we 
create a game by picking a random datapoint and taking a pretrained model’s
prediction value as each coalition’s worth. Feature values are imputed by their
mean, respectively mode. For this purpose we take the Adult (n = 14, XGBoost,
classification), ImageNet (n = 14, ResNet18, classification), and NLP Sentiment
(n = 14, DistilBERT transformer, regression, IMDB data) dataset.

6.1 Advantage of Comparable Sampling

Greedy CMCS builds upon multiple ideas whose effects onto the approximation 
quality is depicted in isolation by Fig. 2. As a baseline we consider the indepen-
dent sampling of marginal contributions of each player with distribution given
1 All code can be found at https://github.com/timnielen/top-k-shapley. 
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in Eq. (9). The comparability of the samples is stepwise increased by sampling in 
each round marginal contributions to coalitions of the same length for all play-
ers, and next using the identical coalition S(m) drawn according to Eq. (15). In 
compliance with our conjecture, the decreasing error from independent to same 
length and further to identical speaks in favor of the beneficial impact that 
comes with correlated observations. The biggest leap in performance is caused 
by reusing the evaluated worth ν(S(m)) appearing in each marginal contribu-
tion of the independent variant resulting in CMCS. The sample r eusage alone
almost doubles the budget-efficiency from 1/2 to n/n+1. On top of that, incorpo-
rating (relaxed) greedy sampling gifts Greedy CMCS and CMCS@K a further
advantage by halving the error for higher budget ranges.

6.2 MSE vs Inclusion-Exclusion Error

Fig. 3. Comparison of achieved inclusion-exclusion error of various algorithms for top-k 
identification (left) and a pproximate-all (right) depending on T .

Given the similarities between the problem statements of approx imating all
Shapley values (cf. Sect. 3.2) and that of top-k identification (cf. Sect. 3.3)  at  
first sight, one might suspect that approximation algorithms performing well in 
the former, also do so in the latter and vice versa. However, Fig. 3 shows a differ-
ent picture. The best performing methods Stratified SVARM and KernelSHAP 
remain consistent but change in order. The variants of CMCS are less favorable 
in terms of MSE but are barely outperformed in top-k identification. We inter-
pret this as further evidence that top-k identification indeed rewards positively 
correlated samples supporting our intuition of comparability. Most striking is 
the difference between ApproShapley and CMCS. Assuming to know ν(∅)  =  0, 
ApproShapley exhibits a budget-efficiency of 1 as it consumes in each sampled
permutation n evaluations and retrieves n marginal contributions, which is only
slightly better than that of CMCS with n/n+1. Thus, it should be only marginally
better in approximation according to Eqs. (11)  and (16). Our results in Fig. 3 
confirm the precision of our theory. However, notice how CMCS significantly out-
performs ApproShapley in terms of ρinc+exc despite the almost identical budget 
usage. Hence, it is the stronger correlation of samples drawn by CMCS com-
bined with the nature of top-k identification that causes the observed advantage
of comparable sampling.
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6.3 Comparison with Existing M ethods

Fig. 4. Comparison of achieved inclusion-exclusion error with baselines for local expla-
nations: fixed budget with v arying k (left) and fixed k with increasing budget (right).

Figure 4 and 5 compare the performances of our methods against baselines 
for local and global games. For fixed k =  3, we observe the competitiveness 
of Greedy CMCS and CMCS@K being mostly on par with KernelSHAP, but 
getting beaten by Stratified SVARM for global games, which in turns subsides at 
local games. Greedy CMCS exhibits stable performance across both explanation 
types and the whole range of k. On the other hand, if instead the budget is fixed,
Greedy CMCS has often the upper hand for values of k close to n/2 and is even
with KernelSHAP for lower k.

6.4 Budget Consumption for PA C Solution

Assuming normally distributed Shapley estimates, SHAP@K  is  a  (ε, δ)-PAC
learner [17], i.e. upon self-induced termination it holds ρinc+exc( K̂) ≤ ε with 
probability at least 1 − δ. KernelSHAP is not applicable as it does not yield
confidence bounds. For this reason [17] sample marginal contributions referred 
as SamplingSHAP@K. Its stopping condition is triggered as soon as no δ/n confi-
dence intervals for the estimates φ̂i overlap between K̂ and N  \  ̂K . We apply the
stopping condition to our algorithms and compare to SamplingSHAP@K in the
PAC-setting. Table 1 shows the average number of calls to ν until termination 
that is to be minimized. For some local games the number of calls is significantly 
higher due to the large variance in the difficulty of the respective games induced 
from each datapoint. CMCS@K shows the best results in nearly every game by 
some margin, which makes it the algorithm of choice for PAC-learning. Thus,
CMCS@K is preferable when guarantees for approximation quality are required
and improves upon SHAP@K due to its refined sampling mechanism.



148 P. Kolpaczki et al.

Fig. 5. Comparison of achieved inclusion-exclusion error with baselines for global expla-
nations: fixed budget with v arying k (left) and fixed k with increasing budget (right).

Table 1. Average number of calls to ν in the PAC-setting (see Eq. 8) across different 
datasets averaged over 200 runs using δ =  0  .01 and ε = 0.0005 for k = 5.

Game SamplingSHAP@K CMCS CMCS@K Greedy C MCS
#samples SE #samples SE #samples SE #samples SE 

Adult (global) 38 998 1 247 137 861 2 517 30 995 673 39 071 738 
German credit (global) 21 939 336 56 738 1 129 16 437 248 22 327 328 
Bike sharing (global) 4 850 97 13 053 164 3 982 54 8 894 117 
Bank marketing (glo.) 15 124 287 39 144 875 12 000 206 16 260 267 
Diabetes (global) 3 723 94 7 793 143 2 976 55 4 593 85 
Titanic (global) 4 852 113 11 036 237 3 884 72 5 782 124 
Wine (global) 34 953 1 046 120 859 1 906 29 913 641 34 265 501 
NLP sentiment (local) 626 346 188 125 3 351 274 764 663 568 261 156 674 447 252 77 149 
ImageNet (local) 135 851 39 335 578 670 196 181 108 267 32 067 261 586 147 126 
Adult (local) 18 464 4 391 55 779 17 954 14 406 3 645 16 160 3 765 

7 Conclusion 

We emphasized differences between the problem of approximating all Shapley 
values and that of identifying the k players with highest Shapley values. Analyt-
ically recognizing the advantage that correlated samples promise, we developed 
with CMCS an antithetic sampling algorithm that reuses evaluations to save 
budget. Our extensions Greedy CMCS and CMCS@K employ selective strate-
gies for sampling. Both demonstrate competitive performances, with Greedy 
CMCS being better suited for fixed budgets, whereas CMCS@K is clearly favor-
able in the PAC-setting. Our proposed methods are not only model-agnostic,
moreover, they can handle any cooperative game, facilitating their application
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for any explanation type and domain even outside of explainable AI. The diffi-
culties that some algorithms face when translating their performance to top-k 
identification suggest that practitioner’s being consciously interested in top-k 
explanations might have an advantage by applying tailored top-k algorithms 
instead of the trivial reduction to the approximate-all problem. Future work 
could investigate the sensible choice of the warm-up length in Greedy CMCS 
and CMCS@K which poses a trade-off between exploration and exploitation. 
Modifying our considered problem statement to identify the players with high-
est absolute Shapley values poses an intriguing variation for detecting the most 
impactful players and opens the door to new approaches. Finally, Shapley inter-
actions enrich Shapley-based explanations. The number of pairwise interactions
grows quadratically with n, hence top-k identification could play an even more
significant role. Our work can be understood as a methodological precursor to
such extensions.

Disclosure of Interests. The authors have no competing interests to declare that 
are relevant to t he content of this article.

A Theoretical Analysis 
A.1 Proof of Theorem 1 
For the estimate K̂  ⊆  N  returned by an algorithm for the top-k identification 
problem we can obviously state 

P( K̂  ∈  Kε)  =
∑

K∈Kε 

P( K̂ = K) . 

Given the construction of K̂, A must choose any i ∈  N  to be in K̂ if φ̂i > φ̂j 
holds for at least n − k many players j ∈  N  . Hence, for any K  ∈  Kε we have: 

P( K̂ = K) ≥ P(∀i ∈  K  ∀j ∈  N  \  K  : φ̂i > φ̂j) 
=  1  − P(∃i ∈  K  ∃j ∈  N  \  K  : φ̂i ≤ φ̂j) 
≥ 1 − ∑

i∈K 
j∈N\K 

P( φ̂i ≤ φ̂j) 

Given the assumptions on the sampling procedure and the aggregation to esti-
mates φ̂1,  .  .  .  ,  ̂φn, we can apply the central limit theorem (CLT) to state that 
for any i ∈  K  and j ∈  N  \  K  the distribution of 

√
M

(
( φ̂i − φ̂j) − (φi − φj)

)

converges to a normal distribution with mean 0 and variance σ2 
i,j as M →  ∞  

since E[φ̂i − φ̂j ] = φi −φj . Although M is finite as it is limited by the budget T ,
we assume it to be normally distributed, to which it comes close to in practice
for large M . Hence, for any i ∈ K and j ∈ N \ K we derive:

P(φ̂i ≤ φ̂j) = P(φ̂i − φ̂j ≤ 0)
= P((φ̂i − φ̂j) − (φi − φj) ≤ −(φi − φj))
= P(

√
M((φ̂i − φ̂j) − (φi − φj)) ≤ √

M(φj − φi))
CLT= Φ

(√
M

φj−φi

σi,j

)
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where Φ is the standard normal cumulative distribution function. Putting the 
intermediate results together, we obtain 

P( K̂  ∈  Kε) ≥
∑

K∈Kε

⎡ 

⎢⎣1 − ∑
i∈K 

j ∈N\K

Φ
(√

M
φj−φi

σi,j

)
⎤

⎥⎦ .

A.2 Comparable Marginal Con tributions Sampling

Proof that Eq. 15 induces a well-defined probabilit y distribution:
Obviously it holds P(S) ≥ 0 and for the sum of probabilities we have:

∑
S⊆N 

P(S)  =
∑

S⊆N 

1 

(n+1)( n 
|S|) 

= 
n∑

�=0

∑
S⊆N 
|S|=l 

1 

(n+1)(n
�) 

= 
n ∑

�=0

(n
�)

(n+1)(n
�)

= 1 .

Proof  of  Proposition 1: 
For any i ∈  N  we derive:
∑

S⊆N 

1 

(n+1)( n 
|S|) 

Δ′
i(S)  =

∑
S⊆N 
i∈S 

1 

(n+1)( n 
|S|) 

Δi(S \  {i})  + ∑
S⊆N 
i  /∈S 

1 

(n+1)( n 
|S|) 

Δi(S) 

=
∑

S⊆N\{i} 

1 

(n+1)( n 
|S|+1) 

Δi(S)  +
∑

S⊆N\{i} 

1 

(n+1)( n 
|S|) 

Δi(S) 

=
∑

S⊆N\{i} 

1 
n+1

(
1 

( n 
|S|+1) 

+ 1 

( n 
|S|)

)
Δi (S)

=
∑

S⊆N\{i}
1

n·(n−1
|S| )

Δi(S)

= φi

Proof  of  Proposition 2: 
Given the unbiasedness of the samples, i.e. E[Δ′

i(S
(m))] = φi for every i ∈  N  , 

the covariance is given by: 

Cov
(
Δ′

i(S
(m)),  Δ′

j(S
(m))

)
= E

[
Δ′

i(S
(m))Δ′

j(S
(m))

]−E
[
Δ′

i(S
(m))

]
E

[
Δ′

j(S
(m))

]

= E
[
Δ′

i(S
(m))Δ′

j(S
(m))

]−φiφj

For the first term we derive: 

E
[
Δ′

i(S
(m))Δ′

j(S
(m))

]

=
∑

S⊆N 

1 

(n+1)( n 
|S|) 

· Δ′
i(S)Δ

′
j(S) 

= 1 
n+1

∑
S⊆N\{i,j} 

Δi(S)Δj (S) 

( n 
|S|)

+ Δi(S)Δj (S∪{i}) 
( n 

|S|+1)
+ Δi(S∪{j})Δj (S) 

( n 
|S|+1)

+ Δi(S∪{j})Δj (S∪{i}) 
( n 

|S|+2) 

= 1 
n+1

∑
S⊆N\{i,j} 

Δi(S)
(

Δj (S) 

( n 
|S|) 

+ Δj (S∪{i}) 
( n 

|S|+1)

)
+ Δi(S ∪  {j})

(
Δj (S) 

( n 
|S|+1) 

+ Δj (S∪{i}) 
( n 

|S|+2)

)

= 1 
n+1

∑
S⊆N\{i} 

Δi(S)
(

Δ′
j(S)

( n
|S|)

+ Δ′
j(S∪{i})
( n

|S|+1)

)
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A.3 Approximating Pairwise Probabilities f or Greedy CMCS

Analogously to Appendix A.1, we derive for any pair i, j ∈  N  and unbiased 
equifrequent player-wise independent sampler: 

P(φi <  φj)  =  P(φi − φj < 0) 
= P(( φ̂i − φ̂j) − (φi − φj) > φ̂i − φ̂j) 
= P(

√
M(( φ̂i − φ̂j) − (φi − φj)) > 

√
M( φ̂i − φ̂j)) 

CLT = Φ
(√

M φ̂j−φ̂i 
σi,j

)

Since this statement does not require the knowledge of an eligible coalition K,  we  
can estimate the likelihood of φi <  φj during runtime of the approximation algo-
rithm. For this purpose, we use the sample variance to estimate σi,j . Note that 
M is the number of drawn samples that both φ̂i and φ̂j share. Since the players’
marginal contributions are selectively sampled, Greedy CMCS substitutes M by
the true number of joint appearances Mi,j and φ̂i − φ̂j by δ̂i,j which only takes
into account marginal contributions of i and j which have been acquired during
rounds in which both players have been selected.

B Pseudocode of Greedy CMCS 

In addition to the pseudocode in Algorithm 2, we provide further details regard-
ing the tracking of estimates and probabilistic selection of players.

Algorithm 2. Greedy CMCS 
Input: (N ,  ν), T ∈ N,  k  ∈ [n],  Mmin 

1: φ̂i,  Mi ← 0 for all i ∈  N  
2: Mi,j ,  Σi,j ,  Γi,j ← 0 for all i, j ∈  N  
3: t ← 0 
4: while t  <  T  do 
5: Draw � ∈  {0,  .  .  .  ,  n} uniformly at random 
6: Draw S ⊆  N  with |S| = l uniformly at random 
7: vS ← ν(S) 

8: t ← t +  1  

9: P ← SelectPlayers 
10: for i ∈ P do 
11: if t = T then 
12: exit 
13: end if 

14: Δi ←
{

vS − ν(S \  {i}) if i ∈ S 
ν(S ∪  {i}) − vS otherwise 

15: φ̂i ← (Mi−1)· ̂φi+Δi 
Mi

16: Mi ← Mi + 1

17: t ← t + 1

18: end for
19: Mi,j ← Mi,j + 1 for all i, j ∈ P

20: Σi,j ← Σi,j + (Δi − Δj) for all i, j ∈ P

21: Γi,j ← Γi,j + (Δi − Δj)
2 for all i, j ∈ P

22: end while
Output: K̂ containing k players with highest estimate φ̂i
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Algorithm 3. SelectPlayers 
1: P ←  N  
2: if Mi,j ≥ Mmin for all i, j ∈  N  then 
3: K̂  ←  k players of N with highest estimate φ̂i, solve ties arbitrarily 
4: K̂′ ←  N  \  ̂K 

5: σ̂2 
i,j ← 1 

Mi,j−1

(
Γi,j − Σ2 

i,j 
Mi,j

)
for all i ∈ K̂,  j  ∈ K̂′

6: p̂i,j ← Φ
(√

Mi,j 
−Σi,j√

σ̂2 
i,j

)
for all i ∈ K̂,  j  ∈ K̂′

7: if mini,j p̂i,j 	=  maxi,j p̂i,j then 
8: P, Q ←  ∅  
9: for (i, j) ∈ K̂  ×  ̂K′ do 

10: Draw Bernoulli realization Bi,j with P(Bi,j = 1) =
p̂i,j−mini,j p̂i,j

maxi,j p̂i,j−mini,j p̂i,j

11: if Bi,j = 1 then
12: Q ← Q ∪ {(i, j)}
13: P ← P ∪ {i, j}
14: end if
15: end for
16: end if
17: end if
Output: P

– Initialize estimator φ̂i and individual counter of sampled marginal contribu-
tions M i for each player.

– Initialize for each player pair: the counter for joint appearances in rounds 
Mi,j , the sum of differences of marginal contributions Σ i,j , and the sum of
squared differences of marginal contributions Γi,j .

– Given dm := Δi(Sm \  {i}) − Δj(Sm \  {j}) the unbiased variance estimator is 

σ̂2 
i,j :=

1 
Mi,j−1 

Mi,j∑
m=1 

(dm − d̄)2 = 1 
Mi,j−1

(
Γi,j − Σ2

i,j

Mi,j

)
.

– In each round, select with SelectPlayers players P for  whom  t  o form an
extended marginal contribution:
• First phase: select all players Mmin times: P = N .
• Second phase: otherwise, partition the players into top-k players K̂ and 

the rest K̂′ = N  \  ̂  K based on the estimates φ̂1, . . . , φ̂n.
• Compute p̂i,j ≈ P (φi <  φj) for all pairs i ∈ K̂, j ∈ K̂′.
• If all pairs are equally probable, select all players as it is not reasonable

to be selective.
• Otherwise, sample a set of pairs Q based on p̂i,j .
• Select all players as members of P that are in a t least one pair in Q.

– Sample a coalition S and c ache its value.
– Form for all selected players in P their extended marginal contribution Δ′

i(S) 
and update their estimator φ̂i.

– Update the values Mi,j , Σi,j ,  and  Γi,j for all i, j ∈ P required for computing
the variance estimates σ̂2

i,j and p̂i,j .
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– In practice, we precompute and cache ν(∅) and ν(N ) in the beginning. We 
do that for ALL tested algorithms for a fair comparison.

– We modify Stratified SVARM to only precompute coalition values for sizes 
0 and n, instead of including sizes 1 and n − 1. Instead of integrating this 
optimization into all our algorithms, we remov e it as it requires a budget of
2n which might be infeasible for games with large numbers of players.
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