Logo
DeutschClear Cookie - decide language by browser settings
Smith, Michael and Pütz, Benno and Auer, Dorothee P. and Fahrmeir, Ludwig (2003): Assessing Brain Activity through Spatial Bayesian Variable Selection. Collaborative Research Center 386, Discussion Paper 316
[img]
Preview

PDF

399kB

Abstract

Statistical parametric mapping (SPM), relying on the general linear model and classical hypothesis testing, is a benchmark tool for assessing human brain activity using data from fMRI experiments. Friston et al. (2002a) discuss some limitations of this frequentist approach and point out promising Bayesian perspectives. In particular, a Bayesian formulation allows explicit modeling and estimation of activation probabilities. In this paper, we directly address this issue and develop a new regression based approach using spatial Bayesian variable selection. Our method has several advantages. First, spatial correlation is directly modeled for activation probabilities and indirectly for activation amplitudes. As a consequence, there is no need for spatial adjustment in a post-processing step. Second, anatomical prior information, such as the distribution of grey matter or expert knowledge, can be included as part of the model. Third, the method has superior edge-preservation properties as well as being fast to compute. When applied to data from a simple visual experiment, the results demonstrate improved sensitivity for detecting activated cortical areas and for better preserving details of activated structures.