Abstract
This is Part B of an article that defends non-eliminative structuralism about mathematics by means of a concrete case study: a theory of unlabeled graphs. Part A motivated an understanding of unlabeled graphs as structures sui generis and developed a corresponding axiomatic theory of unlabeled graphs. Part B turns to the philosophical interpretation and assessment of the theory: it points out how the theory avoids well-known problems concerning identity, objecthood, and reference that have been attributed to non-eliminative structuralism. The part concludes by explaining how the theory relates to set theory, and what remains to be accomplished for non-eliminative structuralists.
Item Type: | Journal article |
---|---|
Faculties: | Philosophy, Philosophy of Science and Religious Science |
Subjects: | 100 Philosophy and Psychology > 100 Philosophy |
ISSN: | 0031-8019 |
Language: | English |
Item ID: | 100006 |
Date Deposited: | 05. Jun 2023 15:33 |
Last Modified: | 05. Jun 2023 15:33 |