Abstract
This paper presents a compositional framework for the construction of symbolic models for a network composed of a countably infinite number of finite-dimensional discretetime control subsystems. We refer to such a network as infinite network. The proposed approach is based on the notion of alternating simulation functions. This notion relates a concrete network to its symbolic model with guaranteed mismatch bounds between their output behaviors. We propose a compositional approach to construct a symbolic model for an infinite network, together with an alternating simulation function, by composing symbolic models and alternating simulation functions constructed for subsystems. Assuming that each subsystem is incrementally input-to-state stable and under some small-gain type conditions, we present an algorithm for orderly constructing local symbolic models with properly designed quantization parameters. In this way, the proposed compositional approach can provide us a guideline for constructing an overall symbolic model with any desired approximation accuracy. A compositional controller synthesis scheme is also provided to enforce safety properties on the infinite network in a decentralized fashion. The effectiveness of our result is illustrated through a road traffic network consisting of infinitely many road cells. (C) 2021 Elsevier Ltd. All rights reserved.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISSN: | 1751-570X |
Sprache: | Englisch |
Dokumenten ID: | 100183 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023, 15:34 |
Letzte Änderungen: | 05. Jun. 2023, 15:34 |