Logo Logo
Hilfe
Hilfe
Switch Language to English

Mayer, Johannes; Reymus, Marcel; Wiedenmann, Felicitas; Edelhoff, Daniel; Hickel, Reinhard und Stawarczyk, Bogna (2021): Temporary 3D-Printed Fixed Dental Prosthesis Materials: Impact of Postprinting Cleaning Methods on Degree of Conversion and Surface and Mechanical Properties. In: International Journal of Prosthodontics, Bd. 34, Nr. 6: S. 784-795

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Purpose: To investigate the influence of different cleaning methods for additively manufactured fixed dental prostheses (FDPs) for long-term temporary use on the degree of conversion (DC), surface roughness, Martens parameters, and biaxial flexural strength. Materials and Methods: A total of 180 specimens per material (3Delta Etemp;Freeprint;Temp PRINT;C & B;and C&B Micro Filled Hybrid) were additively manufactured (D20II) and subsequently cleaned by different methods: by rinsing for 5 minutes in 99.5% acetone;100% butyl glycol;96% ethanol;100% isopropanol;Yellow Magic 7;or by applying centrifugal force for 4 minutes (n = 30 per subgroup). After postpolymerization (Otoflash G171, NK-Optik), the DC was measured using Raman spectroscopy, and the surface roughness, as well as the Martens parameters, were recorded. Biaxial flexural strength was investigated after artificial aging (thermocycling for 10,000 cycles). Data were statistically analyzed (Kolmogorov-Smirnov, Kruskal-Wallis, and Mann-Whitney U tests, and Pearson correlation coefficient). Results: The highest DC was recorded after the use of butyl glycol or isopropyl (P < .001 to P = .047). The highest surface roughness was measured after the use of butyl glycol (P < .001 to P = .024). The use of centrifugal force or Yellow Magic resulted in the highest Martens parameter values (P < .001 to P = .036) and the highest biaxial flexural strength (P < .001 to P = .013), while acetone and butyl glycol led to the lowest values. Conclusion: The use of centrifugal force and Yellow Magic resulted in the highest Martens parameter values and the highest biaxial flexural strength. Concerning Yellow Magic, no negative effect on the mechanical properties was observed. The 3Delta Etemp material especially was prone to degradation after chemical cleaning.

Dokument bearbeiten Dokument bearbeiten