Abstract
For every positive integer r, we introduce two new cohomologies, that we call E-r-Bott-Chern and E-r-Aeppli, on compact complex manifolds. When r = 1, they coincide with the usual Bott-Chem and Aeppli cohomologies, but they are coarser, respectively finer, than these when r >= 2. They provide analogues in the Bott-Chern-Aeppli context of the E-r-cohomologies featuring in the Frolicher spectral sequence of the manifold. We apply these new cohomologies in several ways to characterise the notion of page-(r - 1)-partial derivative(&PARTIAL) over bar;-manifolds that we introduced very recently. We also prove analogues of the Serre duality for these higher-page Bott-Chern and Aeppli cohomologies and for the spaces featuring in the Frolicher spectral sequence. We obtain a further group of applications of our cohomologies to the study of Hermitian-symplectic and strongly Gauduchon metrics for which we show that they provide the natural cohomological framework.
| Dokumententyp: | Zeitschriftenartikel | 
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik | 
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| ISSN: | 0075-4102 | 
| Sprache: | Englisch | 
| Dokumenten ID: | 101196 | 
| Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023 15:37 | 
| Letzte Änderungen: | 13. Aug. 2024 12:46 | 
		
	