Abstract
Urbanization, agriculture, and the manipulation of the hydrological cycle are the main drivers of multiple stressors affecting river ecosystems across the world. Physical, chemical, and biological stressors follow characteristic patterns of occurrence, intensity, and frequency, linked to human pressure and socio-economic settings. The societal perception of stressor effects changes when moving from broad geographic regions to narrower basin or waterbody scales, as political and ecologically based perspectives change across scales. Current approaches relating the stressor effects on river networks and human societies fail to incorporate complexities associated to their co-occurrence, such as: i) the evidence that drivers can be associated to different stressors;ii) their intensity and frequency may differ across spatial and temporal scales;iii) their differential effects on biophysical receptors may be related to their order of occurrence;iv) current and legacy stressors may produce unexpected outcomes;v) the potentially different response of different biological variables to stressor combinations;vi) the conflicting effects of multiple stressors on ecosystem services;and, vii) management of stressor effects should consider multiple occurrence scales. We discuss how to incorporate these aspects to present frameworks considering biophysical and societal consequences of multiple stressors, to better understand and manage the effects being caused on river networks. (C) 2020 Elsevier B.V. All rights reserved.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Geowissenschaften > Department für Geographie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie |
ISSN: | 0048-9697 |
Sprache: | Englisch |
Dokumenten ID: | 101631 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023, 15:38 |
Letzte Änderungen: | 05. Jun. 2023, 15:38 |