Abstract
A multiplicative subset of a commutative ring contains the zero element precisely if the set in question meets every prime ideal. While this form of Krull's Lemma takes recourse to transfinite reasoning, it has recently allowed for a crucial reduction to the integral case in Kemper and the third author's novel characterization of the valuative dimension. We present a dynamical solution by which transfinite reasoning can be avoided, and illustrate this constructive method with concrete examples. We further give a combinatorial explanation by relating the Zariski lattice to a certain inductively generated class of finite binary trees. In particular, we make explicit the computational content of Krull's Lemma. (c) 2021 Elsevier B.V. All rights reserved.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0022-4049 |
Sprache: | Englisch |
Dokumenten ID: | 101983 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023, 15:39 |
Letzte Änderungen: | 13. Aug. 2024, 12:46 |