Abstract
In this article we discuss an approach to cohomological invariants of algebraic groups based on the Morava K-theories. We show that the second Morava K-theory detects the triviality of the Rost invariant and, more generally, relate the triviality of cohomological invariants and the splitting of Morava motives. We compute the Morava K-theory of generalized Rost motives and of some affine varieties and characterize the powers of the fundamental ideal of the Witt ring with the help of the Morava K-theory. Besides, we obtain new estimates on torsion in Chow groups of quadrics and investigate torsion in Chow groups of K(n)-split varieties. An important role in the proofs is played by the gamma filtration on Morava K-theories, which gives a conceptual explanation of the nature of the torsion. Furthermore, we show that under some conditions if the K(n)-motive of a smooth projective variety splits, then its K(m)-motive splits for all m <= n.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0012-9593 |
Sprache: | Englisch |
Dokumenten ID: | 102031 |
Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023, 15:39 |
Letzte Änderungen: | 13. Aug. 2024, 12:46 |