Abstract
The no-free-lunch theorems promote a skeptical conclusion that all possible machine learning algorithms equally lack justification. But how could this leave room for a learning theory, that shows that some algorithms are better than others? Drawing parallels to the philosophy of induction, we point out that the no-free-lunch results presuppose a conception of learning algorithms as purely data-driven. On this conception, every algorithm must have an inherent inductive bias, that wants justification. We argue that many standard learning algorithms should rather be understood as model-dependent: in each application they also require for input a model, representing a bias. Generic algorithms themselves, they can be given a model-relative justification.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft |
| Themengebiete: | 100 Philosophie und Psychologie > 100 Philosophie |
| ISSN: | 0039-7857 |
| Sprache: | Englisch |
| Dokumenten ID: | 102334 |
| Datum der Veröffentlichung auf Open Access LMU: | 05. Jun. 2023 15:39 |
| Letzte Änderungen: | 05. Jun. 2023 15:39 |
