Logo Logo
Help
Contact
Switch Language to German

Tian, Liheng; Huang, Ze; Janssens, Guillaume; Landry, Guillaume; Dedes, George; Kamp, Florian; Belka, Claus; Pinto, Marco and Parodi, Katia (2021): Accounting for prompt gamma emission and detection for range verification in proton therapy treatment planning. In: Physics in Medicine and Biology, Vol. 66, No. 5, 55005

Full text not available from 'Open Access LMU'.

Abstract

Prompt gamma (PG) imaging is widely investigated as one of the most promising methods for proton range verification in proton therapy. The performance of this technique is affected by several factors like tissue heterogeneity, number of protons in the considered pencil beam and the detection device. Our previous work proposed a new treatment planning concept which boosts the number of protons of a few PG monitoring-friendly pencil beams (PBs), selected on the basis of two proposed indicators quantifying the conformity between the dose and PG at the emission level, above the desired detectability threshold. To further explore this method at the detection level, in this work we investigated the response of a knife-edge slit PG camera which was deployed in the first clinical application of PG to proton therapy monitoring. The REGistration Graphical User Interface (REGGUI) is employed to simulate the PG emission, PG detection as well as the corresponding dose distribution. As the PG signal detected by this kind of PG camera is sensitive to the relative position of the camera and PG signal falloff, we optimized our PB selection method for this camera by introducing a new camera position indicator identifying whether the expected falloff of the PG signal is centered in the field of view of the camera or not. Our camera-adapted PB selection method is investigated using computed tomography (CT) scans at two different treatment time points of a head and neck, and a prostate cancer patient under scenarios considering different statistics level. The results show that a precision of 0.8 mm for PG falloff identification can be achieved when a PB has more than 2 x 10(8) primary protons. Except for one case due to unpredictable and comparably large anatomical changes, the PG signals of most of the PBs recommended by all our indicators are observed to be reliable for proton range verification with deviations between the inter-fractional shift of proton range (as deduced from the PB dose distribution) and the detected PG signal within 2.0 mm. In contrast, a shift difference up to 9.6 mm has been observed for the rejected PBs. The magnitude of the proton range shift due to the inter-fractional anatomical changes is observed to be up to 23 mm. The proposed indicators are shown to be valuable for identifying and recommending reliable PBs to create new PG monitoring-friendly TPs. Comparison between our PB boosting method and the alternative PB aggregation, which combines the signal of nearby PBs to reach the desired counting statistics, is also discussed.

Actions (login required)

View Item View Item