Logo Logo
Hilfe
Hilfe
Switch Language to English

Walz, Michael; Hoeflich, Christine; Walz, Christina; Ohde, Daniela; Brenmoehl, Julia; Sawitzky, Mandy; Vernunft, Andreas; Zettl, Uwe K.; Holtze, Susanne; Hildebrandt, Thomas B.; Wolf, Eckhard und Hoeflich, Andreas (2021): Development of a Sensitive Bioassay for the Analysis of IGF-Related Activation of AKT/mTOR Signaling in Biological Matrices. In: Cells, Bd. 10, Nr. 3, 482

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

The bioactivity of the IGF system is not a function of isolated hormone concentrations in a given biological matrix. Instead, the biological activities of IGFs are regulated by IGFBPs, IGFBP proteases, and inhibitors of IGFBP proteases. Therefore, assays based on IGF-related bioactivity may describe functions of the complete IGF system in a given biological matrix. Of particular interest are the IGF system effects on the AKT/mTOR pathway, as a dominant system for controlling growth, metabolism, and aging. In order to improve the sensitivity of IGF-dependent bioactivity, we made use of the known short-term and enhancing effects of IGFBP2 on the intracellular PI3K pathway. As a specific readout of this pathway, and further as a marker of the mTOR pathway, we assessed the phosphorylation of AKT-Ser473. Preincubation using IGFBP2 enhanced IGF1-dependent AKT-Ser473 phosphorylation in our experimental system. The assay's specificity was demonstrated by inhibition of IGF1 receptors outside or inside the cell, using antiserum or small molecule inhibitors, which reduced AKT phosphorylation in response to exogenous IGF1 (p < 0.05). The maximal response of AKT phosphorylation was recorded 15 to 60 min after the addition of IGF1 to cell monolayers (p < 0.001). In our cellular system, insulin induced AKT phosphorylation only at supra-physiological concentrations (mu M). Using this novel assay, we identified the differential biological activity of the IGF system in AKT-Ser473 phosphorylation in serum (mouse, naked mole rat, and human), in cerebrospinal fluid (human), and in colostrum or mature milk samples (dairy cow). We have developed a sensitive and robust bioassay to assess the IGF-related activation of the AKT/mTOR pathway. The assay works efficiently and does not require expensive cell culture systems. By using capillary immuno-electrophoresis, the readout of IGF-related bioactivity is substantially accelerated, requiring a minimum of hands-on time. Importantly, the assay system is useful for studying IGF-related activity in the AKT/mTOR pathway in a broad range of biological matrices.

Dokument bearbeiten Dokument bearbeiten