Abstract
Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression. DNA methylation profiles from 26 bat species accurately predicts chronological age, while longevity-related methylation patterns across the genome suggest that bat longevity results from augmented immune response and cancer suppression.
Item Type: | Journal article |
---|---|
Faculties: | Biology |
Subjects: | 500 Science > 570 Life sciences; biology |
ISSN: | 2041-1723 |
Language: | English |
Item ID: | 103072 |
Date Deposited: | 05. Jun 2023, 15:41 |
Last Modified: | 05. Jun 2023, 15:41 |